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Abstract

Precise identification of the time when a process has changed enables process engineers to search for a potential
special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a
Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step
change, a linear trend and a known multiple number of changes in the Poisson rate. The Markov chain Monte Carlo is
used to obtain posterior distributions of the change point parameters and corresponding probabilistic intervals and
inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that
precise estimates can be obtained when they are used in conjunction with the well-known c-, Poisson exponentially
weighted moving average (EWMA) and Poisson cumulative sum (CUSUM) control charts for different change type
scenarios. We also apply the Deviance Information Criterion as a model selection criterion in the Bayesian context, to
find the best change point model for a given dataset where there is no prior knowledge about the change type in the
process. In comparison with built-in estimators of EWMA and CUSUM charts and ML based estimators, the Bayesian
estimator performs reasonably well and remains a strong alternative. These superiorities are enhanced when
probability quantification, flexibility and generalizability of the Bayesian change point detection model are also
considered.
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Background
Statistical process control charts are used to detect
changes in a process by distinguishing between assignable
causes and common causes of the process variation.When
a control chart signals, process engineers initiate a search
to identify and eliminate the source of variation. Knowing
the time at which the process began to vary, the so-called
change point, would help to conduct the search more
efficiently in a tighter time-frame.
A Poisson process is often used to model the num-

ber of occurrences in an interval of time. In this
regard, Poisson-based control charts have been developed
and frequently applied in an industry context to monitor
the number of defects and nonconformities in a product
(Gardiner and Montgomery 1987; White et al. 1997) and
in a health context to monitor patient mortality and
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spread of an infection in a hospital (Benneyan 1998;
Limayea et al. 2008). The most commonly used con-
trol chart procedures adopted for Poisson-distributed
data include c-charts (Shewhart 1926, 1927), cumula-
tive sum of quality characteristic measurement (CUSUM;
Page 1954, 1961; Brook and Evans 1972), and exponen-
tially weighted moving average (EWMA; Roberts 1959;
Trevanich and Bourke 1993; Borror and Rigdon 1998); see
Woodall (1997) and Montgomery (2008) for more details.
Furthermore, appropriate control charts and methods
were developed in monitoring more complex Poisson
data including correlated (Chiu and Kuo 2007; Niaki and
Abbasi 2008; Niaki and Nafar 2008; Amiri et al. 2011) and
auto-correlated observations (Weiß, 2007; Vermaat et al.
2008).
It has been shown that Poisson CUSUM and Poisson

EWMA charts are more sensitive for detecting small
shifts in the process parameters whereas a c-chart
still remains efficient for the detection of large shifts
(Montgomery 2008). However, upon signaling, none of
them provide specific information regarding the time at
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which the process changed and the magnitude and the
type of the change.
In recent years, statistical and machine-learning meth-

ods have been employed in the development of change
point estimators for a broad range of processes and change
types (Amiri and Allahyari 2012; Atashgar 2013). For
Poisson processes, maximum likelihood (ML) methods
were applied to estimate the true time of a step change
(Samuel and Pignatiello 1998; Perry 2004) and a linear
trend (Perry et al. 2006) in the Poisson rate. It was shown
that more precise estimates were obtained when ML esti-
mators were used in conjunction with Poisson control
charts, compared to charts’ signals and CUSUM (Page
1954) or EWMA built-in estimators (Nishina 1992). A
confidence interval on the estimated change point was
also constructed (Perry 2004; Perry et al. 2006). Fur-
thermore, Perry et al. (2007a) challenged the underly-
ing assumption of knowing the form of change types
and derived a ML estimator for non-decreasing multi-
ple step change points (unknown number of consecutive
changes) using isotonic regression models. The estimator
was reported a reasonable alternative for some magni-
tudes of the step and linear trend disturbances. In the
presence of multiple change points, it was found to be
the superior. ML estimators have also been extended for
step change scenarios in correlated Poisson observations
(Niaki and Khedmati 2012; 2013a; Sharafi et al. 2013).
Similar methods were extended to other attributes includ-
ing binary data (Perry et al. 2007b; Noorossana et al. 2009;
Amiri et al. 2011; Hou et al. 2013; Niaki and Khedmati
2013b).
A Bayesian formulation has recently been proposed as

an alternative in change point estimation within a clin-
ical context (Assareh et al. 2011a). It can easily capture
complexity of patient mix and provide highly informa-
tive and precise estimates for the true time of a step
change (Assareh et al. 2011c) or linear trend (Assareh
et al. 2011b) in the odds ratio of clinical outcomes or mean
survival time following a clinical procedure (Assareh and
Mengersen 2012). Application of the Bayesian framework
to change point estimation provides a way of making a
set of inferences based on posterior distributions for the
time and the magnitude of a change as well as assessing
the validity of underlying assumptions in the change point
model itself (Gelman et al. 2004).
In this paper, we model the change point in a Pois-

son process using a Bayesian framework and compare
the performance of the Bayesian estimator with ML esti-
mators. We model and estimate change points assuming
that the underlying change type is known. In this sce-
nario, the changes are in the form of a step change, a
linear trend and a multiple change with known num-
ber of changes. For each model, we analyze and discuss
the performance of the Bayesian change point model

through posterior estimates and probability-based inter-
vals. The three models are demonstrated and evaluated in
sections ‘Bayesian change point model’, ‘Evaluation’, and
‘Performance analysis’ and then compared with respect to
goodness of fit in section ‘Comparative performance and
model selection’. We then compare the Bayesian estima-
tor withML estimators and others in section ‘Comparison
of Bayesian estimator with other methods’ and summarize
the study and obtained results in section ‘Conclusion’.

Bayesian change point model
Statistical inferences for a quantity of interest in a
Bayesian framework are described as the modification
of the uncertainty about their value in the light of evi-
dence, and Bayes’ theorem precisely specifies how this
modification should be made as below:

Posterior ∝ Likelihood × Prior, (1)

where ‘Prior’ is the state of knowledge about the quan-
tity of interest in terms of a probability distribution before
the data are observed; ‘Likelihood’ is a model underly-
ing the data, and ‘Posterior’ is the state of knowledge
about the quantity after data are observed which also is
in the form of a probability distribution. This structure is
expendable to multiple levels in a hierarchical fashion, so-
called Bayesian hierarchical models (BHM), which allows
to enrich the model by capturing all kinds of uncertainties
for data observed as well as priors. In complicated BHMs,
it is not easy to obtain the posterior distribution analyti-
cally. This analytic bottleneck has been eliminated by the
emergence of Markov chain Monte Carlo (MCMC) meth-
ods. InMCMC algorithms, aMarkov chain, also known as
a random walk, is constructed whose stationary distribu-
tion is the posterior distribution of the parameters. Sam-
ples generated from a long run of the Markov chain using
a proposal transition density are drawn from posterior
distributions of interest. Some common MCMCmethods
for drawing samples include Metropolis-Hastings and the
Gibbs sampler (see Gelman et al. (2004) for more details).
Consider a Poisson process Xt , t = 1, . . . ,T , that is

initially in-control, with independent observations com-
ing from a Poisson distribution with a known rate λ0. At
an unknown point in time, τ , the Poisson rate parame-
ter changes from its in-control state of λ0 to λ1, λ1 =
λ0 + δ, δ �= 0. The Poisson process step change model can
thus be parameterized as follows:

p(xt | λt)=
{
exp(−λ0)λ

xt
0 /xt ! if t = 1, 2, . . . , τ

exp(−λ1)λ
xt
1 /xt ! if t = τ + 1, . . . ,T , ,

(2)

where δ is the magnitude of the step change and τ and T
are the change time and the current time, respectively.
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The departure from the in-control state may occur due
to a non-constant change type scenario which can be
explained by a linear trendmodel λt = λ0+β(t−τ) for t >

τ . In this model, β is the magnitude of the linear trend dis-
turbance (slope) in the process parameter and its positive
value implies an increasing trend in which λt > λ0, while
a negative β leads to a linear reduction of the Poisson rate
and λt < λ0 for t = τ + 1, . . . ,T . The Poisson process
linear trend change model can be modelled as follows:

p(xt | λt)=
⎧⎨
⎩
exp(−λ0)λ

xt
0 /xt ! if t = 1, 2, . . . , τ

exp(−(λ0 + β(t − τ)))

(λ0 + β(t − τ))xt/xt ! if t = τ + 1, . . . ,T .
(3)

In order to address the possibility of having change types
other than step and linear trend forms (Perry et al. 2007a),
we introduce a multiple change point scenario where the
number of change points is known. This prior knowl-
edge might have been obtained based on awareness and
past experience of process engineers in factors such as
changes in operators, materials, procedures, tools, and
policies which may lead to increasing or decreasing step
changes in the Poisson rate. Here, we consider the case
of two sequential step changes. Other cases with more
than two change points can be modelled in the same way.
In this scenario, at an unknown point in time, τ1, the
Poisson rate parameter changes from its in-control state
of λ0 to λ1, λ1 = λ0 + δ1, δ1 �= 0. For a period of time,
the process continues with the new parameter, λ1, and
then at an unknown point in time, τ2, it changes to λ2,
λ2 = λ0 + δ2, δ2 �= δ1 �= 0. The Poisson process multi-
ple change point model with two step changes can thus be
parameterized as follows:

p(xt | λt) =
⎧⎨
⎩
exp(−λ0)λ

xt
0 /xt ! if t = 1, 2, . . . , τ1

exp(−λ1)λ
xt
1 /xt ! if t = τ1 + 1, . . . , τ2

exp(−λ2)λ
xt
2 /xt ! if t = τ2 + 1, . . . ,T .

(4)

Regarding above models to Equation 1, p(. | .), is the
likelihood that underlies the observations; and posterior
distributions of the time (τ , τ1, τ2) and the magnitude of
change (δ, β , δ1, δ2) will be constructed and investigated as
they are the unknown parameters of interest in the change
point analysis. Assume that the process Xt is monitored
by a control chart that signals at time T. We assign a zero-
mean normal distribution with a standard deviation of
6 × √

λ0 as a prior distribution for all change sizes (δ, β ,
δ1, δ2). This is a reasonably informative prior for the mag-
nitude of the change in an in-control Poisson rate as the
control chart is sensitive enough to detect very large shifts
and estimate associated change points. Other distribu-
tions such as uniform or Gammamight also be of interest;
see Gelman et al. (2004) for more details on selection of

prior distributions.We place a uniform distribution on the
range of (1, T − 1) as a prior for the time of the change
(τ , τ1, τ2). To avoid obtaining a negative value for process
mean after a change, λ1(2), within MCMC, particularly
when a drop has occurred, we added a constraint such that
λ1(2) must be positive. Although other methods such as
modelling the process on the log scale may be of interest,
we do not pursue these here as we may lose simplicity and
explicit or correct reflection of the Poisson process. See
the Appendix for the change model codes in WinBUGS
(Spielgelhalter et al. 2003).

Evaluation
We used Monte Carlo simulation to study the perfor-
mance of the constructed BHMs in change estimation
following a signal from c-, Poisson CUSUM, and Pois-
son EWMA control charts when a change (step, linear,
multiple) is simulated to occur at τ = 100. We gen-
erated 100 observations of a Poisson process with an
in-control rate of λ0 = 20. To investigate the behavior
of the Bayesian estimators over the population for differ-
ent change sizes, we replicated this simulation method
100 times. Simulated datasets that were obvious outliers
were excluded. This setting allows us to have distribu-
tion of estimates with standard errors in orders of 10. The
number of replication studies is a compromise between
excessive computational time, considering MCMC itera-
tions and sufficiency of the achievable distributions even
for tails.
In the step of change scenario, we induced step

changes of sizes δ = {+2,+6} as an example and δ =
{±2,±6,±15} for a replication study until the control
charts signalled. In the linear trend model, changes of
slopes β = {±0.5,±1.0,±2.0} were induced until the
control charts signalled. For the multiple change point
case, two consecutive changes are simulated to occur at
(τ1, τ2) = (100, 110). We induced two changes of sizes
(δ1, δ2) = {(±4,±8), (±4,±12)} as part of a replication
study at the determined times of change (τ1, τ2) until the
control charts signalled. In this scenario, the replication
study was limited to c-chart, since other control charts
mostly signalled prior to the induction of the second
change point.
Because we know that the process is in-control, if an

out-of-control observation was generated in the simu-
lation of the early 100 in-control observations, it was
taken as a false alarm and the simulation was restarted.
However, in practice, a false alarm may lead to stopping
the process and analyzing root causes. When no cause
is found, the process would follow without adjustment.
Furthermore, for the multiple change scenario, if in any
simulation, the charts signalled earlier than simulating
the second change, that simulation was terminated and
not followed. The simulation was also repeated for rate
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parameters of 5 and 10 over equivalent change scenar-
ios; since the results were similar to these obtained for
λ0 = 20, they are not reported here.
To construct control charts, we applied the Shewhart

(1926, 1927), Brook and Evans (1972), and Trevanich and
Bourke (1993) procedures for c-, Poisson CUSUM, and
Poisson EWMA control charts, respectively. A Poisson
CUSUM accumulates the difference between an observed
value and a reference value k through S+

i = max{0, xi −
k+ + S+

i−1} and S−
i = max{0, k− − xi + S−

i−1}, where
k+ = (λ+

1 − λ0)/(ln(λ+
1 ) − ln(λ0)) and k− = (λ0 −

λ−
1 )/(ln(λ0) − ln(λ−

1 )). If S±
i exceeds a specified deci-

sion interval h± then the control chart signals that an
increase (a decrease) in the Poisson rate occurred. We cal-
ibrated the charts to detect a 25% shift in Poisson rates
and have an in-control average run length (AR̂L0) of 370
approximately, close to a standard c-chart (see Woodall
and Adams (1993)). The resultant Poisson CUSUM charts
had (k+, h+) = (22.4, 22) and (k−, h−) = (17.4, 14). For
simplicity, the values were rounded to one decimal place.
In a Poisson EWMA cumulative values of observations

are obtained through Zi = r × xi + (r − 1) × Zi−1,
where Z0 = λ0, and plotted in a chart with UCL =
λ0+A+√

VarZi and LCL = λ0−A−√
VarZi.We let r = 0.1

and A± = 2.67 to build a chart with an ARL0 of 370, close
to a standard c-chart.
All changes and control charts were simulated in the R

package. To obtain posterior distributions of the time and
the magnitude of the changes, we used the R2WinBUGS
interface (Sturtz et al. 2005) to generate 100,000 samples
through MCMC iterations in WinBUGS (Spielgelhalter et
al. 2003) for all change point scenarios with the first 20,000
samples ignored as burn in. We then analyzed the results
using the CODA package in R (Plummer et al. 2010).
See the Appendix for the change point model codes in
WinBUGS.

Performance analysis
Step changemodel
The posterior distributions for the time and the magni-
tude of a step change of size +6 are presented in Figure 1.
For all control charts, posterior distributions of the change
point concentrate on the 100th sample which is the real
change point. Since the posteriors are asymmetric and
skewed, particularly for the time of the change, the poste-
rior mode is used as an estimator for change point model
parameters (τ , δ).
Table 1 shows the posterior estimates for increases of

sizes +2 and +6 in the process mean. The c-chart detects
a fall of around half a standard deviation (δ = +2) in
the Poisson rate after 101 samples where the mode of
the posterior distribution reports the 101st sample as the
change point. For a medium-shift size, δ = +6, around
one-and-a-half standard deviation, the posterior mode

concentrates on the 100th sample whereas the c-chart sig-
nals with 38 samples delay. The Poisson EWMA chart
detects the shifts +2 and +6, after 42 and 13 samples,
where the posterior distributions report the 103rd and
100th samples as the change points, respectively. This
result implies that although the obtained posterior modes
overestimate the change point for small shifts, they still
perform relatively better than the Poisson EWMA chart.
The resultant posteriors from a Poisson CUSUM are
almost identical to those from Poisson EWMA. Bayesian
estimates of the magnitude of the change tend to estimate
small shifts almost precisely. However, the medium shift
sizes are underestimated, although this slight bias must be
considered in the context of their corresponding standard
deviations.
Applying the Bayesian framework enables us to

construct probability-based intervals around estimated
parameters. A credible interval (CI) is a posterior
probability-based interval which involves those values of
highest probability in the posterior density of the param-
eter of interest. Table 2 presents 50% and 80% credible
intervals for the estimated time and the magnitude of step
changes in all three control charts. As expected, the CIs
are affected by the dispersion and higher order behaviors
of the posterior distributions. Under the same probability
of 0.8 for the c-chart, the CI for the time of the step change
of size δ = +2 covers 53 samples around the 100th sample
whereas it decreases to 6 samples for δ = +6 due to the
smaller standard deviation (see Table 1).
The comparison of the 50% and 80% CIs for the esti-

mated time of a step change of size δ = +6 in the Poisson
EWMA chart reveals that the posterior distribution of the
time is highly left skewed and the increase in the probabil-
ity contracts the left boundary of the interval, from 96.9
to 88 in comparison with the shift in the right boundary.
This investigation can be extended to other shift sizes and
control chart scenarios for the time estimates. As shown
in Table 1 and discussed above, the magnitude of the
changes are not estimated as precisely as the time. How-
ever, Table 2 shows that in most cases for δ = +2, the real
size of change are contained in the respective posterior
50% and 80% CIs.
Having a distribution for the time of the change enables

us to make other probabilistic inferences. As an exam-
ple, Table 3 shows the probability of the occurrence of the
change point in the last 10, 25, and 50 observed samples
prior to signalling in the control charts. For a step change
of size δ = +2, since the c-chart signals very late (see
Table 1), it is unlikely that the change point occurred in the
last 10, 25, and even 50 samples. In contrast, in the Poisson
EWMA and CUSUM charts, where they both signal ear-
lier than the c-chart, the probabilities of occurrence in the
last 10 samples are 0.55 and 0.59, then increase to 0.76 and
0.82, respectively as the next 15 samples are included. In
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(a) (b)

(c) (d)

(e) (f)

Figure 1 Posterior distributions of the time τ and the magnitude δ of a step change (λ0 = 20, δ = + 6, τ = 100) following signals from
(a, b) c-chart, (c, d) Poisson EWMA and (e, f) Poisson CUSUM.

the case of δ = +6, most of the probability density (0.98) is
located between the last 25 and 50 samples for the c-chart,
whereas with 0.80, it is between the last 10 and 25 samples
for the Poisson EWMA chart and with probability 0.91, it
is in the last 10 samples for the Poisson CUSUM chart.
These kinds of probability computations and inferences
can be extended to other change scenarios.
Table 4 shows the average of the estimated parame-

ters obtained from the 100 replicated datasets. As seen,
although the c-chart detects small to medium shifts with

a large delay, it performs better where there exists a jump.
Having a longer delay in the detection of a decrease in the
Poisson rate in comparison with an increase of the same
size in the c-chart is due to the equality of mean and the
variance of the Poisson distribution. Therefore, a fall in the
mean leads to less dispersed observations. The Poisson
EWMA and CUSUM charts behave in the same manner.
For a step change of size around half a standard devi-

ation (δ = ±2) in the Poisson rate, the average of the
modes, E(τ̂ ), reports the 103rd sample as the change point
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Table 1 Posterior estimates (mode, SD) of step change point model parameters τ and δ following signals (RL)

δ
c-chart Poisson EWMA Poisson CUSUM

RL τ̂ δ̂ RL τ̂ δ̂ RL τ̂ δ̂

+2 201
101.1 2.15

142
103 2.03

108
103.1 2.50

(16.3) (0.46) (24.1) (0.92) (16.6) (2.1)

+6 138
100 4.5

113
100 3.1

106
100 5.8

(4.2) (0.8) (13.7) (1.4) (20.1) (2.7)

From c-, Poisson EWMA (r = 0.1 and A± = 2 .67), and Poisson CUSUM charts (k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14), where λ0 = 20 and τ = 100. Standard deviations
are shown in parentheses.

in all three control charts, whereas the charts detect the
changes with delays greater than 17 samples, obtained in
the Poisson CUSUM. This superiority persists where a
medium shift of size δ = ±6 has occurred in the process
mean. As expected, for large-shift sizes (δ = ±15), around
three standard deviations, all control charts perform well,
yet the mean of modes outperform them by a delay of less
than one observation.
Table 4 reveals that in all three control charts, the vari-

ation of Bayesian estimates for time tends to reduce when
the magnitude of shift in the process mean increases.
However, by the nature of the Poisson distribution, for
small to medium drops, δ = (−2,−6), the observed
variation is less than those obtained in the estimation of
jumps. The mean of the standard deviation of the poste-
rior estimates of time, E(στ̂ ), also decreases by moving for
small-shift sizes to medium and large sizes in the Poisson
EWMA and CUSUM charts. In contrast, the greatest vari-
ation is obtained for a large shift of size δ = ±15 in the
c-chart. This is due to the early detection of such shifts by
the c-chart that leads to a very short run of samples after
the change which then compresses the data and hence
informs the MCMC algorithm.
The average of the Bayesian estimates of the magnitude

of the change, E(δ̂), shows that the modes of posteriors
for change sizes do not perform as well as the posterior
distributions of the time across different shift sizes; how-
ever, promising results are obtained where a small shift,
δ = ±2, has occurred in the process mean. This estima-
tor tends to underestimate the sizes, particularly where
there exists a jump. This bias increases when the shift

size increases since a very short run of samples com-
ing from the out-of-control state of the process with a
high variance was used. As seen in Table 4, the best esti-
mates are obtained in Poisson EWMA cases. Having said
that, Bayesian estimates of the magnitude of the change
must be studied in conjunction with their corresponding
standard deviations. In this manner, analysis of credible
intervals would be effective.

Linear trendmodel
Posterior distributions and probabilistic intervals and
inferences are obtainable for the time and the slope of
the linear trend, similar to the step change scenario illus-
trated in section ‘Step change model’. We, here, limited
our results to the replication study over the simulated
datasets outlined in section ‘Evaluation’.
Table 5 shows the average of the estimated parameters

over trends with slope sizes of β = {±0.50,±1.0,±2.0}.
For a linear trend with small slopes of size β = ±0.5 in
the Poisson rate, the average modal value, E(τ̂ ), reports
the 105th sample and less as the change point in all three
control charts, whereas the charts detect the changes with
delays greater than 10 samples, obtained in the Poisson
CUSUM. This superiority also persists where a trend with
larger slopes of size β = ±1.0,±2.0 has occurred in the
process mean. In these scenarios, the bias of the Bayesian
estimator does not exceed two and one samples, where the
minimum delays are seven and four samples, respectively.
Table 5 shows that in all three control charts, the vari-

ation of the Bayesian estimates for time tends to reduce
when the magnitude of slope increases. The mean of

Table 2 Credible intervals for step change point model parameters τ and δ

δ
c-chart Poisson EWMA Poisson CUSUM

50% 80% 50% 80% 50% 80%

+2
τ̂ (101,105) (65,118) (96.6,114) (71.2,125.8) (98.2,105) (65.2,108)

δ̂ (2.1,3.2) (1.9,3.2) (1.41,2.65) (0.76,3.08) (0.12,2.50) (-0.23,4.8)

+6
τ̂ (97.9,100) (96,102) (96.9,101) (88,103) (96,101) (83,106)

δ̂ (3.9,5.2) (3.4,5.5) (2.2,4.1) (1.2,4.8) (1.31,4) (0.05,4.9)

Following signals from c-, Poisson EWMA (r = 0.1, and A± = 2.67) and Poisson CUSUM charts ((k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14)), where λ0 = 20 and τ = 100.
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Table 3 Probability of occurrence of change point in last 10, 25, and 50 observed samples prior to signalling

δ
c-chart Poisson EWMA Poisson CUSUM

10 25 50 10 25 50 10 25 50

+2 0.00 0.00 0.01 0.55 0.76 0.86 0.59 0.82 0.91

+6 0.00 0.01 0.99 0.06 0.86 0.95 0.91 0.97 0.99

For c-, Poisson EWMA (r = 0.1 and A± = 2.67), and Poisson CUSUM charts ((k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14)), where λ0 = 20 and τ = 100.

posterior standard deviation for time, E(στ̂ ), also
decreases by moving for small slope sizes to medium and
large sizes in both directions. However, the observed vari-
ation for estimation of a decreasing trend is less than those
obtained for an increasing trend with the same slope size.
The average of the posterior estimates for the magni-

tude of the change, E(β̂), shows that the modes of the
posteriors for change sizes perform as well as the pos-
terior estimates of the time, particularly, for the c-chart
and Poisson EWMA chart. In the CUSUM chart, the
posteriors tend to underestimate the slope sizes.

Multiple changemodel
We applied the multiple change point model follow-
ing signals of the c-chart as the Poisson EWMA and
CUSUM mostly signalled before simulating the sec-
ond change in the process. Although results here
are limited to the replication study, distribution of
parameters and probabilistic inferences can easily be
constructed.
As seen in Table 6 and discussed in section ‘Step change

model’, the c-chart signals earlier when a larger shift,
either an increase or decrease, has occurred in the sec-
ond change; however, it performs better where there exists
a jump, regardless of the direction of the first change.

The chart alarmed after 38 samples when two consecutive
drops of sizes around one and two standard deviations,
δ1,2 = (−4,−8), occurred. Although this delay falls to
16 samples when the second change has happened in the
opposite direction, the modes of posteriors for the time of
the first change, E(τ̂1), outperform the chart. This superi-
ority persists when the size of the second change increases
to around three standard deviations, δ2 = (±12). The
same results are also obtained, where the first change is
an increase in the magnitude of one standard deviation,
δ1 = (+4).
Table 6 reveals that the Bayesian estimator tends

to underestimate the time of the first change of two
monotonic changes where the second change is of size
δ2 = (±12). The associated variation, within replica-
tions, increases when the second step change increases
in the same direction of the first change. The minimum
variations of the posterior distributions for the time of
the first change, E(σ̂τ̂1), are obtained where there exist
non-monotonic changes (see δ1,2 = (−4,+8) and δ1,2 =
(+4,−8)). This variation also increases when the second
step change increases in the same direction of the first
change.
The time of the second step change is estimated

precisely by the posterior modes. Table 6 shows that

Table 4 Average of posterior estimates (mode, SD) of step change point model parameters τ and δ following signals (RL)

δ
c-chart Poisson EWMA Poisson CUSUM

E(RL) E(τ̂ ) E(στ̂ ) E(δ̂) E(RL) E(τ̂ ) E(στ̂ ) E(δ̂) E(RL) E(τ̂ ) E(στ̂ ) E(δ̂)

−15
101.17 100.45 22.48 −6.43 102.36 100.40 3.28 −11.49 101.13 100.46 23.21 −6.21

(0.42) (0.36) (8.42) (4.75) (0.67) (0.38) (5.33) (2.79) (0.33) (0.36) (7.39) (4.76)

−6
174.65 101.12 3.26 −5.90 106.43 100.72 14.92 -4.37 103.94 100.74 24.90 −2.10

(66.38) (1.72) (4.48) (1.06) (2.84) (0.76) (7.79) (2.47) (2.36) (0.76) (5.31) (2.13)

−2
663.24 103.05 21.33 −2.03 124.72 103.50 24.45 −2.11 127.54 103.23 27.13 −1.64

(517.23) (2.78) (8.06) (0.38) (18.74) (2.91) (6.92) (0.98) (26.82) (2.91) (6.30) (0.80)

+2
184.22 102.66 20.50 2.00 119.72 103.00 23.26 2.05 117.77 102.70 24.79 1.85

(88.91) (3.83) (9.17) (0.83) (16.08) (3.18) (7.49) (0.82) (18.75) (3.20) (7.15) (0.76)

+6
113.44 101.10 13.54 3.73 106.33 101.20 18.00 3.00 105.30 101.22 23.61 1.89

(13.17) (1.67) (9.71) (2.45) (2.87) (1.31) (7.35) (2.26) (2.55) (1.32) (5.37) (1.80)

+15
101.51 100.48 22.00 3.81 102.56 100.51 10.33 7.52 101.77 100.50 19.43 4.84

(0.96) (0.30) (7.69) (4.17) (0.89) (0.29) (8.15) (3.78) (0.60) (0.30) (6.68) (4.21)

From c-, Poisson EWMA (r = 0.1 and A± = 2.67), and Poisson CUSUM charts ((k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14)), where λ0 = 20 and τ = 100. Standard deviations
are shown in parentheses.
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Table 5 Average of posterior estimates (mode, SD) of linear trend change point model parameters τ and β following
signals (RL)

β
c-chart Poisson EWMA Poisson CUSUM

E(RL) E(τ̂ ) E(στ̂ ) E(β̂) E(RL) E(τ̂ ) E(στ̂ ) E(β̂) E(RL) E(τ̂ ) E(στ̂ ) E(β̂)

−2.0
106.48 100.83 2.27 −2.07 105.35 100.75 3.73 −1.72 104.07 100.92 5.29 −1.51

(1.47) (1.16) (2.14) (1.22) (1.14) (0.93) (3.25) (0.95) (1.15) (0.96) (3.08) (1.59)

−1.0
111.24 102.05 2.80 −1.35 108.01 102.14 5.96 −1.02 106.46 102.74 7.62 −0.78

(2.56) (2.36) (1.73) (0.75) (1.76) (2.07) (5.33) (0.71) (1.92) (2.18) (4.82) (1.06)

−0.5
120.08 102.96 4.19 −0.67 111.65 104.60 8.93 −0.50 109.67 104.70 9.40 −0.47

(4.96) (2.50) (1.54) (0.55) (2.51) (2.91) (5.28) (0.64) (3.06) (2.91) (4.77) (0.74)

+0.5
113.93 103.75 6.66 0.43 110.98 104.45 8.75 0.43 109.82 104.78 8.83 0.49

(5.22) (2.99) (3.15) (0.55) (2.56) (2.94) (5.12) (0.62) (2.89) (2.78) (4.65) (0.54)

+1.0
109.20 102.55 5.65 0.79 107.92 102.75 7.21 0.68 107.19 102.78 7.88 0.74

(3.14) (2.05) (3.87) (0.77) (2.13) (2.11) (5.93) (0.81) (2.09) (2.36) (4.87) (0.70)

+2.0
105.46 101.20 4.93 1.48 105.52 101.18 5.21 1.75 104.82 101.19 6.19 1.66

(1.88) (1.02) (3.21) (0.94) (1.35) (1.04) (4.06) (1.05) (1.30) (1.04) (3.59) (0.88)

From c-, Poisson EWMA (r = 0.1 and A± = 2.67), and Poisson CUSUM charts ((k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14)), where λ0 = 20 and τ = 100. Standard deviations
are shown in parentheses.

the average, E(τ̂1), mostly concentrate on the 110th
sample. Surprisingly, the variation between replica-
tions and also the variation of posterior distribu-
tions obtained for the time of the second change,
E(σ̂τ̂1), are less than those obtained for the first step
change.

The average of the posterior estimates of the magnitude
of the changes, E(δ̂1) and E(δ̂2), shows that the modes
of the posteriors for change sizes do not perform as well
as the posterior distributions of the time across differ-
ent scenarios. The modes tend to underestimate the sizes,
particularly, for jumps in either the first or the second step

Table 6 Average of posterior estimates (mode, SD) of multiple step change point model parameters τ1,2 and δ1,2
following signals (RL)

δ1, δ2 E(RL) E(τ̂1) E(σ̂τ̂1 ) E(δ̂1) E(τ̂2) E(σ̂τ̂2 ) E(δ̂2)

−4,−12
113.49 98.18 28.50 −1.17 109.26 7.08 −8.32

(2.46) (15.29) (4.19) (1.24) (1.69) (5.64) (3.07)

−4,−8
138.94 101.04 28.84 −1.18 109.06 5.48 −7.69

(25.94) (7.60) (5.31) (1.33) (2.06) (3.36) (1.65)

−4,+8
116.98 100.74 23.30 −2.48 110.49 8.14 4.69

(5.75) (6.52) (9.20) (1.80) (0.60) (8.90) (3.63)

−4,+12
112.78 100.37 23.86 −2.21 110.30 11.08 5.42

(2.29) (6.75) (8.27) (1.75) (1.06) (8.90) (4.87)

+4,−12
113.10 101.77 25.03 1.64 110.48 7.23 −9.34

(2.50) (3.40) (7.67) (1.74) (0.34) (8.91) (3.28)

+4,−8
134.69 101.67 24.92 1.41 110.71 3.36 −7.7

(22.74) (7.04) (6.78) (1.38) (0.73) (5.59) (2.03)

+4,+8
117.69 101.28 30.40 0.59 108.81 11.61 4.41

(5.69) (11.10) (2.53) (0.93) (1.96) (7.35) (2.50)

+4,+12
112.23 98.32 29.93 0.09 108.37 11.90 4.17

(2.50) (15.32) (3.19) (1.13) (2.00) (8.15) (2.71)

From c-, Poisson EWMA (r = 0.1 and A± = 2.67), and Poisson CUSUM charts ((k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14)), where λ0 = 20 and τ = 100. Standard deviations
are shown in parentheses.
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change. However, there still exists some gain in studying
the estimated sizes and directions, particularly when the
obtained standard deviations are also considered.

Comparative performance andmodel selection
We used Monte Carlo simulation to study the perfor-
mance of the developed change point models in different
change point scenarios following a signal from a c-chart.
We generated 100 observations of a Poisson process with
an in-control rate of λ0 = 20. We then induced a step,
a linear trend, and a multiple change in the Poisson rate.
For each scenario the three change point models were
applied and the time of the change was estimated. Based
on the MCMC simulation, the Deviance Information
Criterion (DIC) and related parameters, mean and vari-
ance of the posterior distribution of the deviance and the
penalty value, were recorded. The DIC is a goodness of
fit criterion which takes into account the deviance of the
model, −2log(p(y | θ)), and a penalty for the model
complexity, pD (Spielgelhalter et al. 2002). To allow for
asymmetry in the posterior distribution, seen in Figure 1,
pV was used as an alternative to pD, where pV is half of
the variance of the posterior distribution of the deviance
(Gelman et al. 2004).
Table 7 indicates that the Bayesian estimate of a step

change outperforms other Bayesian estimates, linear and
multiple, where there is a step change in the process

parameter. It estimates 101.9 and 108.3 as the times of
change of sizes δ = −4 and δ = +4, respectively, whereas
the linear model underestimates the time with a bias of
around 55 and 24 samples and the multiple model tends
to overestimate it relative to the step model. According
to the reported DICs, the DICV supports that the step
model with values of 1,167 and 845.5 is a preferable fit
where there exists either an increasing or a decreasing
step change.
In the case of an occurrence of a linear trend shift in

the Poisson rate, the Bayesian estimate of a linear trend
change outperforms other Bayesian estimates in estimat-
ing the change point. The reported DICV is convincing
that the linear model with values of 603.7 and 630.9 is
also the best fit. These results can be extended to the mul-
tiple change scenario. Table 7 shows that the Bayesian
estimate of a multiple change (two changes) outperforms
other Bayesian estimates, step and linear, where there are
two consecutive changes in the Poisson rate. Similarly,
the reported DICV supports that the multiple model with
values of 636.4 and 791.2 is also the best fit in this case.

Comparison of Bayesian estimator with other
methods
To study the performance of the proposed Bayesian
estimators in comparison with those introduced in

Table 7 Performance and goodness of change point models on different change types following signal

Change type Change size RL Model τ̂ Deviance SD pD DICD DICV

Step 101.9 1163.4 2.7 1.9 1165.3 1167

Step δ = −4 200 Linear 45.2 1168.9 2.1 2.1 1171 1171.1

Multiple 102.5 1163.7 3.3 −0.8 1162.9 1169.1

Step δ = +4 148

Step 108.3 842.2 2.6 0.8 843 845.5

Linear 86.3 843.7 2.1 2.1 845.8 845.9

Multiple 108.5 841.7 3.2 −1.7 840 846.8

Linear β = −1 107

Step 102.3 607 3.9 −2.1 604.9 614.6

Linear 101.7 601.9 1.9 1.5 603.4 603.7

Multiple 102.4 604.9 3.2 −0.5 604.4 610.0

Linear β = +1 108

Step 102.1 631.5 3.8 0.9 632.4 638.7

Linear 100.4 629.1 1.9 0.3 629.5 630.9

Multiple 101.5 628.4 4.0 −1.2 627.2 636.4

Multiple
δ1 = −4

δ2 = −8
138

Step 109.5 788.8 2.7 −9.9 778.9 792.4

Linear 88.1 788.2 3.3 1.9 790.1 793.6

Multiple 100.1 784 3.8 0.8 784.9 791.2

Multiple
δ1 = +4

δ2 = +8
119

Step 100.5 723.1 2.8 0.0 723.1 727.0

Linear 108.3 722.8 3.1 −0.7 658.9 727.6

Multiple 100.3 722.6 2.9 1.7 722.3 726.8

From a c-chart where λ0 = 20, τ 1 = 100 and τ 2 = 110.

2013, 9:32
http://www.jiei-tsb.com/content/9/1/32

http://www.jiei-tsb.com/content/9/1/32


Assareh et al. Journal of Industrial Engineering International Page 10 of 13

Table 8 Average of estimated time of a step change in a Poisson process obtained by Bayesian estimators, CUSUM and
EWMA built-in estimators, andML estimator following signals (RL)

δ
c-chart Poisson EWMA Poisson CUSUM

E(RL) E(τ̂MLE) E(τ̂b) E(RL) E(τ̂EWMA) E(τ̂MLE) E(τ̂b) E(RL) E(τ̂CUSUM) E(τ̂MLE) E(τ̂b)

−15
101.17 99.97 100.45 102.36 95.42 99.98 100.40 101.13 99.56 99.96 100.46

(0.42) (0.22) (0.36) (0.67) (10.12) (0.20) (0.38) (0.33) (0.89) (0.24) (0.36)

−6
174.65 100.19 101.12 106.43 96.73 99.65 100.72 103.94 100.08 97.78 100.74

(66.38) (1.72) (1.72) (2.84) (6.41) (2.19) (0.76) (2.36) (1.69) (13.16) (0.76)

−2
663.24 93.16 103.05 124.72 97.86 102.70 103.50 127.54 122.70 103.56 103.23

(517.23) (19.76) (2.78) (18.74) (17.80) (17.91) (2.91) (26.82) (26.51) (15.62) (2.91)

+2
184.22 94.20 102.66 119.72 100.87 96.75 103.00 117.77 109.12 96.89 102.70

(88.91) (22.15) (3.83) (16.80) (13.51) (17.12) (3.18) (18.75) (19.63) (21.09) (3.20)

+6
113.44 100.55 101.10 106.33 95.94 99.31 101.20 105.30 99.75 99.29 101.22

(13.17) (2.65) (1.65) (2.87) (10.04) (7.81) (1.31) (2.55) (2.36) (7.79) (1.32)

+15
101.51 99.95 100.48 102.56 94.95 99.51 100.51 101.77 98.92 99.51 100.50

(0.96) (0.45) (0.30) (0.89) (9.09) (4.02) (0.29) (0.60) (2.32) (4.02) (0.30)

From c-, Poisson EWMA (r = 0.1 and A± = 2.67), and Poisson CUSUM charts ((k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14)), where λ0 = 20 and τ = 100. Standard deviations
are shown in parentheses.

section ‘Background’, we run the alternatives, built-
in estimators of Poisson EWMA and CUSUM charts
and ML estimators, within replications as discussed in
section ‘Evaluation’.
Table 8 shows the mean of Bayesian estimates and

detected change points provided by built-in estimators of
EWMA (Nishina 1992) and CUSUM (Page 1954) charts
and the ML estimator (Perry 2004) for a step change in a
Poisson process.
Although the Bayesian estimator, τ̂b, tends to overesti-

mate the time of a step change of small sizes, δ = ±2, with
a delay of three samples, it outperforms the ML estimator,
τ̂MLE, which underestimates the time by six samples fol-
lowing a signal from the c-chart. For step sizes of one and
half and three standard deviations, the ML estimator per-
forms slightly better than the Bayesian estimator; however
considering the obtained standard deviations decreases
this superiority, particularly where there exists a jump in
the process mean.
Table 8 reveals that the EWMA estimator, τ̂EWMA,

underestimates the change point when the size of shift
increases for both directions where the Bayesian estimator
tends to be more precise. τ̂b still remains the best estima-
tor for small changes and shows acceptable performance
in comparison with τ̂MLE over larger shifts, particularly
when the standard deviations are taken into account.
The CUSUM estimator, τ̂CUSUM, outperforms the

equivalent estimators in EWMA for larger shifts, δ =
(±6,±15); however, it overestimates the time of small
shifts significantly. Similar to c-chart and EWMA cases,
in CUSUM, the Bayesian estimator outperforms alterna-
tives for small shifts and offers acceptable performance

over other shift sizes, considering the obtained standard
deviations over replications.
Table 9 shows the mean of the Bayesian estimates and

detected change points provided by built-in estimators of
EWMA (Nishina 1992) and CUSUM (Page 1954) charts
and the ML estimator (Perry et al. 2006) for a linear
trend change in a Poisson process. Application of the pro-
posed ML estimator is restricted to trends with a positive
slope as Newton’s method is not tractable for decreasing
trends in Poisson mean; see Perry et al. (2006) for more
details.
The Bayesian estimator, τ̂b, almost outperforms the

built-in estimator of EWMA, τ̂EWMA, where there exists
a decreasing trend. This superiority increases when the
slope size raises, β = −2. The CUSUM estimator,
τ̂CUSUM, estimates the change point more precisely than
the EWMA; however the Bayesian estimator, τ̂b, still
remains the best alternative for detection of linear trends
with negative slopes, when the variation of the estimates
is taken into account.
Table 9 reveals that the Bayesian estimator, τ̂b, is

slightly outperformed by the ML estimator, τ̂MLE, across
the charts when there exists an increasing linear trend
in the process mean. Having said that, the Bayesian
estimator can still be a reasonable alternative in light
of the obtained standard deviations which are less
than those observed from the ML estimator over
replications.
The ML estimator proposed by Perry et al. (2007a) is

suitable for monotonic consecutive changes. In contrast,
the Bayesian estimator for a known number of change
points proposed in section ‘Multiple change model’ can
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Table 9 Average of estimated time of linear trend in Poisson process obtained by Bayesian estimator, CUSUM and EWMA
built-in estimators, andML estimator following signals (RL)

β
c-chart Poisson EWMA Poisson CUSUM

E(RL) E(τ̂MLE) E(τ̂b) E(RL) E(τ̂EWMA) E(τ̂MLE) E(τ̂b) E(RL) E(τ̂CUSUM) E(τ̂MLE) E(τ̂b)

−2.0
106.48 - 100.83 105.35 97.59 - 100.75 104.07 100.36 - 100.92

(1.47) - (1.16) (1.14) (6.11) - (0.93) (1.15) (1.82) - (0.96)

−1.0
111.24 - 102.05 108.01 97.34 - 102.14 106.46 102.49 - 102.74

(2.56) - (2.36) (1.76) (9.92) - (2.07) (1.92) (2.74) - (2.18)

−0.5
120.08 - 102.96 111.65 97.61 - 104.60 109.67 104.94 - 104.70

(4.96) - (2.50) (2.51) (12.03) - (2.91) (3.06) (3.74) - (2.91)

+0.5
113.93 103.55 103.75 110.98 99.37 102.02 104.45 109.82 104.00 102.12 104.78

(5.22) (3.48) (2.99) (2.56) (9.12) (9.23) (2.94) (2.89) (3.30) (11.68) (2.78)

+1.0
109.20 102.70 102.55 107.92 97.13 101.08 102.75 107.19 101.07 101.57 102.78

(3.14) (3.19) (2.05) (2.13) (9.70) (12.42) (2.11) (2.09) (3.01) (3.59) (2.36)

+2.0
105.46 100.23 101.20 105.52 96.35 100.57 101.18 104.82 99.61 100.59 101.19

(1.88) (2.81) (1.02) (1.35) (8.80) (4.07) (1.04) (1.30) (3.47) (3.81) (1.04)

From c-, Poisson EWMA (r = 0.1 and A± = 2.67), and Poisson CUSUM charts ((k+ ,h+) = (22.4,22),(k− ,h−) = (17.4,14)), where λ0 = 20 and τ = 100. Standard deviations
are shown in parentheses.

also be applied where there exists non-monotonic consec-
utive changes in the processmean. Therefore, the compar-
ison study was not followed for the multiple change point
case as there is no appropriate ML alternative against
which to evaluate the Bayesian estimator. Similarly, the
built-in EWMA and CUSUM estimators cannot be stud-
ied as they tend to signal before the second change point.
In the case of signalling after the second change, they
also failed as they tend to concentrate on the time of the
latter step change as the change point in non-monotonic
scenarios.
Apart from the accuracy and precision criteria used for

the comparison study, the posterior distributions for the
time and the magnitude of a change enable us to con-
struct probabilistic intervals around estimates and prob-
abilistic inferences about the location of change point
as discussed in section ‘Step change model’ for the step
change scenario. This is a significant advantage of the pro-
posed Bayesian approach. Although similar results may be
obtained when resampling in conjunction with ML meth-
ods, the inferential basics of this approach is more limited;
see Bernardo and Smith (1994) for more details. Further-
more, flexibility of Bayesian hierarchical models, ease of
extension to more complicated change scenarios such as
combination of steps and linear and nonlinear trends,
relief of analytic calculation of likelihood function, par-
ticularly for non-tractable likelihood functions and ease
of coding with available packages should be considered
as additional benefits of the proposed Bayesian change
point model for monitoring purposes. This approach can
be easily applied for other types of data and processes such
as Bernoulli, normal and exponential family data and the
mentioned advantages remain achievable.

The two-step approach to change point identification
described in this paper has the advantage of building on
control charts that may be already in place in practice.
An alternative may be to retain the two-step approach
but to use a Bayesian framework in both stages. There
is now a substantial literature on Bayesian formulation
of control charts and extensions such as monitoring pro-
cesses with varying parameters (Feltz and Shiau 2001),
over-dispersed data (Bayarri and Garcia-Donato 2005),
start-up and short runs (Tsiamyrtzis and Hawkins 2005,
2008). A further alternative is to consider a fully Bayesian,
one-step approach, in which both the monitoring of the
in-control process and the retrospective or prospective
identification of changes is undertaken in the one analysis.
This is the subject of further research.

Conclusion
Identification of the time when a process has changed
enables process engineers to pursue investigation of spe-
cial causes more effectively. Indeed, knowing the change
point restricts the search efforts to a tighter window of
observations and related variables. In this paper, we mod-
eled the change point estimation for a Poisson process
in a Bayesian framework. We considered three scenarios
of changes, a step change, a linear trend, and a multi-
ple change when the number of changes is known. We
constructed Bayesian hierarchical models and derived
posterior distributions for change point estimates using
MCMC. We compared the performance of the Bayesian
estimators with c-, Poisson EWMA, and CUSUM con-
trol charts. The results showed that the Bayesian estimates
outperform standard control charts in change estima-
tion, particularly where there exists a small to medium
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size of step change(s) and a linear trend change with
small to relatively large magnitude of slope. In compari-
son with built-in estimators of EWMA and CUSUM and
ML-based estimators, the Bayesian estimator performs
reasonably well and remains a strong alternative, particu-
larly when other criteria such as probability quantification
through credible intervals and probabilistic inferences,
flexibility, generalization, and simplicity are taken into
accounts.
The investigation on the performance of the Bayesian

estimates over different change scenarios reveals that each
Bayesian change point model outperforms other models
where its underlying change type has occurred in the Pois-
son process. The results also support the idea of using
DIC as a primary step in change point estimation which
can direct process engineers to identify the appropriate
change point model before making inferences about the
derived underlying changes in the process.

Appendix
The following are the different change model codes:
1. Step change model
model {
for(i in 1 : RLc){
xc[i] ∼ dpois(lambda2[i])
lambda1[i]=lambda0+delta × step(i-change)
lambda2[i]=max(lambda1[i],0.000001)}
tau=1/(6 × sqrt(lambda0))
RL=RLc − 1
delta ∼ dnorm(0, tau)
change ∼ dunif(1,RL)}
2. Linear trend change model
model {
for(i in 1 : RLc){
xc[i] ∼ dpois(lambda2[i])
lambda1[i]=lambda0+beta × (i-change) × step(i-change)
lambda2[i]=max(lambda1[i],0.000001)}
tau=1/(6 × sqrt(lambda0))
RL=RLc − 1
beta ∼ dnorm(0, tau)
change ∼ dunif(1,RL)}
3. Multiple change model
model {
for(i in 1 : RLc){
xc[i] ∼ dpois(lambda2[i])
lambda1[i]=lambda0+delta1 × step(i-change1) ×

step(change2-i)+delta2 × step(i-change2)
lambda2[i]=max(lambda1[i],0.000001)}
tau=1/(6 × sqrt(lambda0))
RL=RLc − 1
delta1 ∼ dnorm(0, tau)
delta2 ∼ dnorm(0, tau)
change1 ∼ dunif(1,change2)
change2 ∼ dunif(change1,RL)}
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