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Abstract
This study models a joint pricing, inventory, and preservation decision-making problem for deteriorating items subject to

stochastic demand and promotional effort. The generalized price-dependent stochastic demand, time proportional deteri-

oration, and partial backlogging rates are used to model the inventory system. The objective is to find the optimal pricing,

replenishment, and preservation technology investment strategies while maximizing the total profit per unit time. Based on

the partial backlogging and lost sale cases, we first deduce the criterion for optimal replenishment schedules for any given

price and technology investment cost. Second, we show that, respectively, total profit per time unit is concave function of

price and preservation technology cost. At the end, some numerical examples and the results of a sensitivity analysis are

used to illustrate the features of the proposed model.
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Introduction

In inventory system of perishable products, the deteriora-

tion is well-known phenomenon that reduces the amount or

value of those products with time during storage period.

Hence, many business sectors have taken measures, for

example, process improvement and advancing storage

technology, to control and dilute the deterioration effects.

By an effective capital investment in reducing deterioration

rate, organizations can reduce non-essential inventory

waste and thereby reduces the economic losses and

improves business competitiveness. Accordingly, Hsu et al.

(2010) first investigated the impact of deteriorating

inventory with a constant deterioration rate, time-depen-

dent partial backorders and preservation technology

investment. The main objective in their article is to find the

retailer’s optimal replenishment and preservation technol-

ogy investment strategies which maximize the retailer’s

profit per unit time and concluded that if the deterioration

rate is higher, more investment is needed. Dye and Hsieh

(2012) formulated an inventory model with a time-varying

deterioration rate and partial backlogging with considering

the amount invested in preservation technology. Dye

(2013) presented an extended model of Hsu et al. (2010) to

considering an inventory system with non-instantaneous

deteriorating item and analysis the effect of preservation

technology investment. He and Huang (2013) considered a

retailer’s lot-sizing problem for deteriorating items and

optimal preservation technology investment with price-

sensitive demand. Gupta et al. (2013), Singh and Sharma

(2013) and Dye and Hsieh (2013) adopted preservation

technology investment to the model finite time horizon

inventory problem of decaying items which are subject to

the supplier’s trade credit. Tsao (2014) extended the model

of Dye (2013) to consider a joint location and preservation

technology investment decision-making problem for non-

instantaneous deterioration items under delay in payments.

Yang et al. (2015) formulated a model to determine the

optimal trade credit, preservation technology investment

and replenishment strategies that maximize the total profit

after the default risk occurs over a finite planning horizon

due to credit period. Mishra (2016) presented a production

inventory model for three-level production rate with
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characterising the preservation technology for deterioration

items under shortages. Zhang et al. (2016) investigated a

joint pricing, service, and preservation technology invest-

ment policy under common resource constraints. Other

researchers such as Dhandapani and Uthayakumar (2016),

Dye and Yang (2016), Tayal et al. (2016), Tsao (2016),

Shah et al. (2017), Mishra et al. (2017), Saha et al. (2017)

and Giri et al. (2017) considered investment in preservation

technology.

Promotion is a communication tactic and primary ele-

ment which educates consumers, increases demand, dif-

ferentiates brand, and makes the product visible. Normally,

organizations use promotion to attract customers through

price discount offers, coupons, and free gifts. However, in

today’s internet era, organizations promote the product by

means of online banner advertisements, social networking

websites, blogs, etc., to change the demand pattern of the

product. In this context, Cárdenas-Barrón and Sana (2014)

investigate the issue of channel coordination for echelon

supply chain when demand is sensitive to promotional

efforts. Dash et al. (2014) presented the inventory model

allowing promotional activities and delay in payment for

deteriorating items under inflation with shortages. Cárde-

nas-Barrón and Sana (2015) presented an economic order

quantity inventory model in two-layer supply chain of

multi items, where demand is sensitive with promotional

effort. Roy et al. (2015) considered a joint venturing of

single supplier and single retailer for two-echelon supply

chain under variable price and promotional effort. Talei-

zadeh et al. (2017a, b, c) explored a dual-channel closed-

loop supply chain (CLSC) system to investigate the impact

of marketing effort on optimal decisions in the CLSC. In

this direction, Giri et al. (2015), Palanivel and Uthayaku-

mar (2017), Rajan and Uthayakumar (2017) and Chen et al.

(2017) established the models of promotional effort.

In addition, there is widespread study about promotion

and pricing. According to marketing team, promotion and

price helps to increase the product demand. In this direc-

tion, Zhang et al. (2008) presented an analytical model for

obtaining optimal decisions on pricing, promotion, and

inventory control. Specifically, they studied a single item,

finite horizon, periodic review model in which the demand

is influenced by price and promotion to maximize the total

profit. Tsao and Sheen (2008) investigated the problem of

dynamic pricing, promotion, and replenishment policy for

a deteriorating item with retailer’s promotional efforts. Wu

(2013) presented the bargaining equilibrium behaviour of

an industry in supply chain with price and promotional

effort-dependent demand. Maihami and Karimi (2014)

presented the problem of pricing and replenishment policy

for non-instantaneous deteriorating items subject to pro-

motional efforts.

There has been substantial and growing literature that

describes price–demand relationship linking the inventory

policy and price together through demand (see, Taleizadeh

et al. 2015a, b, 2016, 2017a, b, c; Taleizadeh and Daryan

2015, 2016; Zerang et al. 2017; Taleizadeh and Baghban

2017; Daryan et al. 2017). The model in this article shows

the pattern of stochastic price-dependent demand. The

uncertainty of demand is decided on the basis of quantity of

stock and selling price. Commonly, random demand is

defined as D p; eð Þ ¼ d pð Þ þ e in the additive case and

Dðp; eÞ ¼ dðpÞ � e in the multiplicative case, wherein dðpÞ
is deterministic decreasing function that captures depen-

dency between demand and price and e is a random vari-

able defined on finite range. The shape of demand curve is

deterministic and price related. Numerous researchers,

such as Federgruen and Heching (1999), presented a

combined pricing and inventory control model under

uncertainty. Then, Petruzzi and Dada (1999) presented a

pricing and newsvendor problem. Chen and Simchi-Levi

(2004) investigated a pricing strategy and inventory control

with random demand. Zhang et al. (2008) investigated the

optimal decision on price, promotion and inventory control

subject to stochastic demand. Pang (2011) presented that

optimize the price and inventory control with stock dete-

rioration and partial backordering. Chao et al. (2012) pre-

sented a model on pricing policy in capacitated stochastic

inventory system. Zhu (2012) presented a decision on

pricing and replenishment with returns and expenditure.

Zhu and Cetinkaya (2015) consider an immediate inven-

tory liquidation decision on liquidation quantity, where

demand during the liquidation period (DDLP) is a random

variable, whose distribution depends on the promotional

price. Recently, Roy et al. (2016), Jauhari et al. (2016),

Wangsa and Wee (2017), and AlDurgam et al. (2017)

presented an inventory model under stochastic demand.

Based on the above discussion, this study aims at for-

mulating profit maximization inventory model for deteri-

orating items with stochastic price sensitive demand and

promotional efforts. The generalized time proportional

deterioration and partial backlogging rates are used in

model formulation. An inventory system, wherein short-

ages followed by inventory is considered. Furthermore, it is

assumed that the deterioration rate is controlled by

preservation technology investment. An analytical

approach for inventory decisions is developed under vari-

ous partial backlogging issues. In addition, it is shown that

the total profit per time unit is concave function of price

and preservation technology cost when other decision

variables are fixed. Finally, numerical examples are pro-

vided to illustrate the theoretical results and a sensitivity

analysis of the optimal solution with respect to major

parameters is also carried out.
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The rest of the paper is organized as follows. The next

section describes the notation and assumptions used

throughout this paper. The subsequent section analyzes the

inventory model starting shortages. Some numerical

examples to illustrate the solution procedure are provided,

and sensitivity analysis of the major parameters is also

carried out in section before the conclusion, and the con-

clusions and suggestion for future research are given in

final section.

Notation and assumptions

The mathematical model in this paper is developed on the

basis of the following notation and assumptions.

Notation

Decision variable

t1 The replenishment point, the duration of shortage

period is 0; t1½ �
t2 The length of time after which inventory reaches to

zero

p The selling price per unit

n The preservation technology cost per unit

Parameters

A The ordering cost per order

C The purchasing cost per unit

Ch The holding cost per unit per time unit

Cb The backorder cost per unit per time unit

Cl The lost sale cost per unit

e The random variable of the demand function with

EðeÞ ¼ l
q The promotional effort, q� 1

w Maximum capital investment in preservation

technology

Variables

Q The ordering quantity per cycle

InðtÞ The level of negative inventory at time t, where

0� t� t1
Ip tð Þ The level of positive inventory at time t, where

t1 � t� t1 þ t2
mðnÞ Proportion of reduced deterioration rate,

0�m nð Þ� 1

PA The total profit per unit time of inventory system

Assumptions

(These assumptions are mainly adopted from Maihami and

Karimi 2014; Sana 2010):

1. Replenishment rate is infinite, but its order size is

finite.

2. The basic demand function is DðpÞ þ e, where DðpÞ a
decreasing and deterministic function of selling price

is p and e is a non-negative and continuous random

variable with EðeÞ ¼ l.
3. The promotional effort cost PC is an increasing

function of the promotional effort and the basic

demand PC ¼ K q� 1ð Þ2
R 1

0
ðDðpÞ þ eÞdt

h ia
, where

K[ 0 and a is a constant. Both the market demand

and the cost of the promotional effort will increase as

the promotional effort increases.

4. The demand function is influenced by promotional

effort q and can be expressed by mark-up over the

promotional effort, i.e., qðDðpÞ þ eÞ.
5. The item deteriorates at a time-varying rate of

deterioration hðtÞ, where 0\hðtÞ\1: Besides, there

is no repair or replacement of deteriorated units during

the replenishment cycle.

6. The proportion of reduced deterioration rate, mðnÞ is a
continuous, concave, and increasing function of capital

investment.

7. Shortages are allowed. The inventory model starts with

shortage and ends with zero inventory. Some fraction

of demand during stock-out situation is backordered,

and rest of the demand is partially backlogged.

Model formulation

This study considers the inventory model that starts with

shortages. Shortages begin to be accumulated during 0; t1½ �
which are partially backlogged. The backlogged demand is

satisfied at the replenishment point t1 and rest of lot size

adjusts the demand up to time t2. From Fig. 1, it can be

seen that the depletion of the inventory occurs due to the
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Fig. 1 Graphical representation of inventory system
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combined effects of demand and deterioration during the

time interval t1; t2½ �. Deterioration is reduced by preserva-

tion technology. This process is repeated as mentioned

above.

Based on above description, the status of negative

inventory at any instant of time t 2 0; t1½ � is governed by

differential equation:

dInðtÞ
dt

¼ �qðDðpÞ þ eÞbðt1 � tÞ; 0� t� t1 ð1Þ

with Inð0Þ ¼ 0.

Solving differential equation given in (1) yields

InðtÞ ¼ �qðDðpÞ þ eÞ
Z t

0

bðt1 � tÞdt ð2Þ

and the status of positive inventory at any instant of time

t 2 0; t2½ � is governed by differential equation:

dIpðtÞ
dt

¼ �hðtÞð1� mðnÞÞIpðtÞ � qðDðpÞ þ eÞ; 0� t� t2

ð3Þ

with Ipðt2Þ ¼ 0:.
Solving differential equation defined in (3), one has

IpðtÞ ¼ qðDðpÞ þ eÞe�ðð1�mðnÞÞgðtÞÞ
Z t2

0

eð1�mðnÞÞgðxÞdx; ð4Þ

where gðtÞ ¼
R t

0
hðxÞdx:.

Therefore, the lost sale quantity at time t is

IlðtÞ ¼ qðDðpÞ þ eÞ½1� bðt1 � tÞ�; 0� t� t1: ð5Þ

The replenishment size (including back logged) is

Q ¼ fIpð0Þ � Inðt1Þg ¼ q DðpÞ þ eð Þ

e�ð1�mðnÞÞgð0Þ
Z t2

0

eð1�mðnÞÞgðxÞdxþ
Z t1

0

bðt1 � tÞdt
� �

:

ð6Þ

Total cost of lost sale during time span ½0; t1� is

TLC ¼ E Cl

Z t1

0

IlðtÞdt
� �

¼ Clq DðpÞ þ lð Þ
Z t1

0

1� bðt1 � tÞ½ �dt:

Total cost of back logged for stock-out during time span

½0; t1� is

TSC ¼ E Cb

Z t1

0

�InðtÞ½ �dt
� �

¼ Cbq D pð Þ þ lð Þ
Z t1

0

Z t

0

b t1 � xð Þdx
� �

dt:

Total holding cost during time span ½0; t2� is

TIC ¼E Ch

Z t2

0

IpðtÞdt
� �

¼ Chq DðpÞ þ lð Þ
Z t2

0

e�ð1�mðnÞÞgðtÞ
Z t2

t

eð1�mðnÞÞgðxÞdx

� �

dt:

Total purchasing cost is

TPC ¼E C � Qð Þ ¼ Cq D pð Þ þ lð Þ

e� 1�m nð Þð Þg 0ð Þ
Z t2

0

e 1�m nð Þð Þg xð Þdxþ
Z t1

0

bðt1 � tÞdt
� �

:

Total sales revenue is

TRV ¼ E p q D pð Þ þ eð Þ
Z t2

0

dt þ �In t1ð Þð Þ
� �� �

¼ pq D pð Þ þ lð Þ t2 þ
Z t1

0

bðt1 � tÞdt
� �

:

The preservation technology cost is

PTC ¼ t1 þ t2ð Þn:

The promotional cost is

PC ¼ E Kðq� 1Þ2
Z t1þt2

0

ðDðpÞ þ eÞdt
� �a� �

¼ K ðt1 þ t2ÞðDðpÞ þ lÞ½ �að�1þ qÞ2:

Assembling all the cost and profit factors, the total profit

(denoted by Pðt1; t2; p; nÞ) is given by

Pðt1; t2; p; nÞ ¼ TRV� ðAþ TSCþ TLCþ TIC

þ TPCþ PTCþ PCÞ

¼ p � q DðpÞ þ lð Þ t2 þ
Z t1

0

b t1 � tð Þdt
� �

� A

� q � Cb DðpÞ þ lð Þ
Z t1

0

Z t

0

b t1 � xð Þdx
� �

dt

� Cl � q D pð Þ þ lð Þ
Z t

0

1� bðt1 � tÞf gdt

� Ch � q DðpÞ þ lð Þ
Z t2

0

e�ð1�mðnÞÞgðtÞ

Z t2

t

eð1�mðnÞÞgðxÞdx

� �

� C � q DðpÞ þ lð Þ e� 1�m nð Þð Þg 0ð Þ
n

Z t2

0

e 1�mðnÞð ÞgðxÞdxþ
Z t1

0

bðt1 � tÞdt
�

� ðt1 þ t2Þn� Kfðt1 þ t2ÞðDðpÞ
þ lÞgað�1þ qÞ2:

ð7Þ

Therefore, the total profit per unit time is

PA t1; t2; n; pð Þ ¼ P t1; t2; n; pð Þ
t1 þ t2

: ð8Þ
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So that the optimization problem addressed in this paper

is

max
t1;t2;p;n

PA t1; t2; p; nð Þ

subject to C� p; 0� n�w; and t1; t2 � 0:
ð9Þ

The problem defined in (9) can be solved by decom-

posing maximum operator in three stages:

First with respect to t1; t2ð Þ, second with respect to p,

and then with respect to n, that is

max
n

max
p

max
t1;t2

PA t1; t2; p; nð Þ
� �� �

subject to C� p; 0� n�w; and t1; t2 � 0:

ð10Þ

Keeping n; p as fixed, we have the partial derivatives of

PA with respect to t1 and t2 as follows:

oPA t1; t2ð Þ
ot1

¼ � P t1; t2ð Þ
t1 þ t2ð Þ2

þ 1

t1 þ t2

oP t1; t2ð Þ
ot1

� �

: ð11Þ

oPA t1; t2ð Þ
ot2

¼ � P t1; t2ð Þ
t1 þ t2ð Þ2

þ 1

t1 þ t2

oP t1; t2ð Þ
ot2

� �

; ð12Þ

o2PA t1; t2ð Þ
ot21

¼ 2P t1; t2ð Þ
t1 þ t2ð Þ3

� 2

t1 þ t2ð Þ2
oP t1; t2ð Þ

ot1

� �

þ 1

t1 þ t2

o2P t1; t2ð Þ
ot21

� �

; ð13Þ

o2PA t1; t2ð Þ
ot22

¼ 2P t1; t2ð Þ
t1 þ t2ð Þ3

� 2

t1 þ t2ð Þ2
oP t1; t2ð Þ

ot2

� �

þ 1

t1 þ t2

o2P t1; t2ð Þ
ot22

� �

: ð14Þ

Now, the necessary condition for PAðt1; t2Þ to be opti-

mum is

oPA t1; t2ð Þ
ot1

¼ oPA t1; t2ð Þ
ot2

¼ 0: ð15Þ

Hence, it follows from (11) to (14) that

P t1; t2ð Þ ¼ t1 þ t2ð Þ oP t1; t2ð Þ
ot1

� �

; ð16Þ

P t1; t2ð Þ ¼ t1 þ t2ð Þ oP t1; t2ð Þ
ot2

� �

; ð17Þ

o2PA t1; t2ð Þ
ot21

¼ 1

t1 þ t2

o2P t1; t2ð Þ
ot21

� �

; ð18Þ

o2PA t1; t2ð Þ
ot22

¼ 1

t1 þ t2

o2P t1; t2ð Þ
ot22

� �

: ð19Þ

On equating (16) and (17), one has

oP t1; t2ð Þ
ot1

¼ oP t1; t2ð Þ
ot2

: ð20Þ

Next, the first-order partial derivative of P t1; t2ð Þ with

respect to t1 and t2, respectively, is

oP
ot1

¼ p � q D pð Þ þ lð Þ
Z t1

0

ob t1 � tð Þ
ot1

dt þ b 0ð Þ
� �

� Cb � q D pð Þ þ lð Þ
Z t1

0

Z t

0

ob t1 � xð Þ
ot1

dx

� �

dt

�

þ
Z t1

0

b t1 � tð Þdtg � Cl � q D pð Þ þ lð Þ

�
Z t1

0

ob t1 � tð Þ
ot1

� b 0ð Þ þ 1

� �

� C � qðDðpÞ

þ lÞ
Z t1

0

ob t1 � tð Þ
ot1

þ b 0ð Þ
� �

� K t1 þ t2ð Þ D pð Þ þ lð Þ½ �aa q� 1ð Þ2

t1 þ t2ð Þ � n:

ð21Þ

oP
ot2

¼ p � q D pð Þ þ lð Þ � Cq D pð Þ þ lð Þ

e 1�m nð Þð Þ g t2ð Þ�g 0ð Þð Þ
n o

� Chq D pð Þ þ lð Þ
Z t2

0

e 1�m nð Þð Þ g t2ð Þ�g tð Þð Þdt

� �

� K t1 þ t2ð Þ DðpÞ þ lð Þ½ �aa q� 1ð Þ2

t1 þ t2ð Þ � n:

ð22Þ

On substituting the expressions for oP
ot1

and oP
ot2

into (20),

one has

) p� p

Z t1

0

ob t1 � tð Þ
ot1

dt þ b 0ð Þ
� �

þ Cb

Z t1

0

Z t

0

ob t1 � xð Þ
ot1

dx

� �

dt þ
Z t1

0

b t1 � xð Þdx
� �

� Cl

Z t1

0

ob t1 � tð Þ
ot1

þ b 0ð Þ � 1

� �

þ C

Z t1

0

ob t1 � tð Þ
ot1

þ b 0ð Þ
� �

¼ C e 1�m nð Þð Þ g t2ð Þð Þ
n o

þ Ch

Z t2

0

e 1�m nð Þð Þ g t2ð Þ�g tð Þð Þdt

� �

:

ð23Þ

According to the previous literatures, b xð Þ is considered

as either rational or exponential function, i.e., b xð Þ ¼ 1
1þdx

(cf. Papachristos and Skouri 2003; Maihami and Karimi

2014) or b xð Þ ¼ exp �dx½ �(cf. Papachristos and Skouri

2000; Dye et al. 2007; Sana 2010).

Case 1 Let b xð Þ ¼ 1
1þd xð Þ, g tð Þ ¼

R t

0
h tð Þdt; g 0ð Þ ¼ 0,

R t1
0

ob
ot1

dt ¼ � dt1
1þdt1

,
R t1
0

ob
ot1

dt þ b 0ð Þ ¼ 1
1þdt1

,
R t1
0

R t

0

�

ob t1�xð Þ
ot1

dxÞdt þ
R t1
0
b t1 � tð Þdt ¼ t1

1þdt1
, ob

ot1
¼ � d

1þd t1�tð Þf g2 ;
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o2b
ot2

1

¼ 2d2

1þd t1�tð Þf g3,
R t

0
o2b
ot2

1

dt þ ob 0ð Þ
ot1

¼ � d
1þdt1

;
R t1
0

ob
ot1

dt þ b 0ð Þ

¼ 1
1þdt1

;
R t1
0

R t

0
o2b t1�xð Þ

ot2
1

dx
	 


dt ¼ 0:

Substitute these in (23), we get

Cb þ d pþ Cl � Cð Þð Þt1
1þ dt1

¼ C e 1�m nð Þð Þg t2ð Þ
	 


þ Ch

Z t2

0

e 1�m nð Þð Þ g t2ð Þ�g tð Þð Þdt:

ð24Þ

For notational convenience, we take

D pð Þ ¼ A

q D pð Þ þ lð Þ þ
2C

d
� VðpÞ

d2
þ C2

V pð Þ

� �

þ VðpÞ
d2

ln
V pð Þ

VðpÞ � 2C

� �� �

� K a� 1ð Þ q� 1ð Þ2 C D pð Þ þ lð Þ½ �a

q D pð Þ þ lð Þ V pð Þ � dC½ �a :

ð25Þ

Lemma 1 For known p and n, we have

(a) If D pð Þ[ 0 then there exist unique pair of values

t1; t2ð Þ ¼ t01; t
0
2

� �
which satisfies (15).

(b) If D pð Þ� 0 then the optimal value occurs at point

t1; t2ð Þ ¼ C
V pð Þ�dC½ � ; 0

	 

:

Proof Refer to Appendix A.

Suppose t�1; t
�
2

� �
denotes the optimal value of t1; t2ð Þ,

then we can obtain following result.

Theorem 1 For fixed p and n, total profit function

PA t1; t2; p; nð Þ is concave and reaches its global maximum

at point t1; t2ð Þ ¼ t�1; t
�
2

� �
.

Proof Refer to Appendix B.

Hence, the value of t�1; t
�
2

� �
gives global maximum for

the problem in (9).

Case 2 Let b xð Þ ¼ exp �d xð Þ½ � and gðtÞ ¼
R t

0
hðtÞdt, g 0ð Þ

¼ 0;
R t1
0
b t1 � tð Þdt ¼ 1� exp �dt1ð Þð Þ=d,

R t

0
ob
ot1

þ b 0ð Þ ¼

exp �dt1½ �,
R t1
0

R t

0

ob t1�xð Þ
ot1

dx
	 


dt ¼ 1þ dt1ð Þ exp �dt1½ � �f
1g= 1þ dt1ð Þ exp �dt1½ � � 1gd::d:

Substituting these in (23), we get

p� C þ Clð Þ 1� e �dt1ð Þ
	 


þ Cbt1e
�dt1ð Þ

¼ C e 1�m nð Þð Þ g t2ð Þð Þ
	 


þ Ch

Zt2

0

e 1�m nð Þð Þ g t2ð Þ�g tð Þð Þdt

0

@

1

A:

ð26Þ

Proceeding as in Case 1, it can be shown that

PA t1; t2; p; nð Þ is concave and reaches its global maximum

at point t1; t2ð Þ ¼ t�1; t
�
2

� �
.

Hence, the value of t�1; t
�
2

� �
gives global maximum for

the optimizing problem (9).

Next, we examine the condition for which the optimal

selling price p exists. Keeping n, t�1 and t�2 as fixed, taking

the first-order derivative of PA t�1; t
�
2; p; n

� �
with respect to

p, we obtain

Then, the second partial derivative of the profit function

PA t�1; t
�
2; p; n

� �
with respect to p is as follows:

It is clear that o2PA

op2
\0. Consequently, PA is a strictly

concave function of p. Thus, p� is the optimal selling price

that maximizes the total profit function PA t�1; t
�
2; p; n

� �
for

fixed t�1; t
�
2 and n.

oPA

op
¼ � qD0 pð Þ

t�1 þ t�2
�pþ Cl þ Cð Þ

Zt
�
1

0

b t�1 � t
� �

dt

0

B
@

1

C
Aþ Cb

Zt
�
1

0

Z t

0

b t�1 � x
� �

dx

0

@

1

Adt

0

B
@

1

C
A

8
><

>:

2

6
4

þ Ch

Zt
�
2

0

Zt
�
2

t

e 1�m nð Þð Þ g xð Þ�g tð Þ½ �dxdt

0

B
@

1

C
A�pt�2 � Clt

�
1 þ C

Zt
�
2

0

e 1�m nð Þð Þg xð Þdx

0

B
@

1

C
A

9
>=

>;

� q D pð Þ þ eð Þ
t�1 þ t�2

t�2 þ
Zt

�
1

0

b t�1 � t
� �

dt

8
><

>:

9
>=

>;
þK t�1 þ t�2

� �
D pð Þ þ eð Þ

� a�1
aD0 pð Þ q� 1ð Þ2

i
:

ð27Þ
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Now, the first and second partial derivatives of the profit

function PA t�1; t
�
2; p

�; n
� �

with respect to n are as follows:

oPA

on
¼ � q D p�ð Þ þ eð Þ

t�1 þ t�2

Ch

Zt
�
2

0

Zt
�
2

t

m0 nð Þ g tð Þ � g xð Þ½ � exp � 1� m nð Þð Þ g tð Þ � g xð Þð Þ½ �dxdt

8
><

>:

þC

Zt
�
2

0

m0 nð Þ g xð Þ½ � exp � 1� m nð Þð Þg xð Þ½ �dx� t�1 � t�2

9
>=

>;
;

ð29Þ

o2PA

on2
¼ � q D p�ð Þ þ eð Þ

t�1 þ t�2

Ch

Zt
�
2

0

Zt
�
2

t

exp � 1� m nð Þð Þ g tð Þ � g xð Þð Þ½ � m00 nð Þ g tð Þ � g xð Þð Þf

8
><

>:

þ m0 nð Þ g tð Þ � g xð Þð Þ½ �2dxdt

þ C

Zt
�
2

0

m00 nð Þg xð Þ exp 1� m nð Þð Þg xð Þ½ �f

þ m0 nð Þg xð Þ½ �2exp 1� m nð Þð Þg xð Þ½ �
oo

:

ð30Þ

It is clear from the above equation that o2PA

on2
is negative.

Hence, the total profit function is a concave function of the

preservation technology cost nð Þ. Therefore, n�ð Þ is the

optimal preservation technology cost that maximizes the

total profit per unit function for fixed t�1; t
�
2 and p�.

Numerical examples and sensitivity analysis

Example 1 To illustrate the solution procedure, we con-

sider an inventory situation with following data: A = $120/

unit, C = $20/unit, Ch = $3/unit/year, Cb = $4/unit/year,

Cl = $5/unit, l = 20, q = 2, K = 5, a = 1,

h tð Þ = 0.2 ? 0.1t, d pð Þ ¼ a1 � pb1 ¼ 350� 2:5p, b xð Þ ¼
1

1þ2x
, the reduced deterioration rate is m nð Þ ¼ 1� e�an,

a� 0, we set a = 0.01 and constraint of preservation

technology cost w = 100.

With the given data, the optimal solution is found using

MAPLE 18 software. The optimum results are:

t�1 = 0.1747, t�2 = 0.2942, p� = 85.8307, n� = 61.72,

P�
A = 18,859.90 and Q� = 66.71.

Next, we consider distinct values of n = 0, 30, 60… 300

to examine the behaviour of total profit function. The

numerical results are presented in Table 1. The numerical

results of Table 1 show that increasing the preservation

technology investment results in an increase in the order

quantity, while the feasible limit of preservation technol-

ogy cost leads to increase in total profit per unit time.

Whereas the total profit increases up to some extent and

then decreases subsequently.

Table 2 shows the optimal results for different values of

the shape parameter að Þ of the function m nð Þ with the

above stated values of the other model parameters. The

o2PA

op2
¼ � qD00 pð Þ

t�1 þ t�2
�pþ Cl þ Cð Þ

Zt
�
1

0

b t�1 � t
� �

dt

0

B
@

1

C
Aþ Cb

Zt
�
1

0

Z t

0

b t�1 � x
� �

dx

0

@

1

Adt

8
><

>:

2

6
4

þCh

Zt
�
2

0

Zt
�
2

t

e 1�m nð Þð Þ g xð Þ�g tð Þð Þdxdt

0

B
@

1

C
A� pt�2 þ Clt

�
1 þ C

Zt
�
2

0

e 1�m nð Þð Þg xð Þdx

9
>=

>;
� 2qD0 pð Þ

t�1 þ t�2
t�2 þ

Zt
�
1

0

b t�1 � t
� �

dt

8
><

>:

9
>=

>;

þ
Ka q� 1ð Þ2 t�1 þ t�2

� �
D pð Þ þ eð Þ

� a�1
D pð Þ þ eð ÞD00 pð Þ þ D0 pð Þð Þ2 a� 1ð Þ

h i

D pð Þ þ e

3

5:

ð28Þ

Table 1 Computational results for different values of n

n t1 t2 p PA Q

0 0.0194 0.2618 85.88 18,841.41 60.66

30 0.0183 0.2788 85.85 18,855.34 63.82

60 0.0175 0.2935 85.83 18,859.90 66.56

90 0.0169 0.3059 85.81 18,856.75 68.87

120 0.0164 0.3160 85.80 18,847.42 70.76

150 0.0160 0.3242 85.79 18,833.20 72.27

180 0.0157 0.3306 85.78 18,815.15 73.47

210 0.0155 0.3356 85.77 18,794.17 74.39

240 0.0154 0.3395 85.77 18,770.94 75.11

270 0.0153 0.3424 85.76 18,746.01 75.65

300 0.0152 0.3446 85.76 18,719.79 76.06
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results reveal that as a increases, optimal shortage period

t�1
� �

; optimal selling price p�ð Þ and optimal preservation

technology cost n�ð Þ decreases whereas optimal inventory

period t�2
� �

, optimal total profit per unit P�
A

� �
and optimal

ordering quantity Q�ð Þ increase which is quite rational.

Example 2 The same set of data is considered as in the

Example 1 except putting b xð Þ ¼ e� dxð Þ. From Example 1, we

find thatPA t1; t2; p; nð Þ reaches its maximum at n = 61.72 and

by (6) and (7),weget t�1 = 0.01716, t�2 = 0.2967,p� = 85.8347,

n� = 98.4092, Q� = 69.99 andP�
A = 18,823.94.

Example 3 We investigate the effects of changes in the

value of promotional effort (q) and scaling parameter (K)

on optimal solution. The identical set of input data are as in

Example 1. The optimal solution for different values of q
and K is summarized in Table 3.

From Table 3, it can be observed that for promotional

effort qð Þ increases, optimal selling price p�ð Þ, optimal

preservation technology cost n�ð Þ, optimal total profit per unit

P�
A

� �
and optimal order quantity Q�ð Þ increase, while optimal

shortage period (t�1) and optimal inventory period (t�2)

decrease. These results reveal that if the retailer encourages

promotional activity which increases the demand of the pro-

duct and thereby increase the total profit significantly.

On the other hand, as the value of scaling parameter Kð Þ
increases, optimal inventory period t�2

� �
and optimal selling

price p�ð Þ increase, while optimal shortage period t�1
� �

,

optimal preservation technology cost n�ð Þ, optimal total

profit per unit P�
A

� �
, and optimal ordering quantity (Q�)

decrease.

Example 4 In this example, we study the effect of constant

parameter (a1) and scaling parameter (b1) on the optimal

solution. The same set of input data are considered as in

Example 1. Computational results are summarized in

Table 4 for various set of values of parameters a1 2 {180,

240, 300, 360, 420} and b1 [ {1.62, 2.16, 2.7, 3.24, 3.78}.

Table 3 Computational results

for different values of q and K
Parameter Values t1 t2 p n PA Q

q 1.08 0.0256 0.3711 84.82 27.07 10,427.56 47.49

1.44 0.0214 0.3333 85.02 43.63 13,875.52 55.99

1.80 0.0186 0.3063 85.50 56.01 17132.93 63.16

2.16 0.0167 0.2858 86.11 65.82 20,199.13 69.35

2.52 0.0152 0.2695 86.80 73.90 23,075.75 74.76

K

3 0.0175 0.2932 85.32 62.10 19,172.01 67.28

4 0.0175 0.2937 85.57 61.91 19015.65 66.99

5 0.0175 0.2943 85.83 61.72 18,859.91 66.71

6 0.0175 0.2948 86.08 61.52 18,704.80 66.42

7 0.0174 0.2953 86.33 61.33 18,550.32 66.14

Table 4 Computational results

for different values of demand

parameters

Parameter Values t1 t2 p n PA Q

a1 180 0.0559 0.3767 52.12 02.57 3577.85 61.98

240 0.0331 0.3419 63.97 31.32 7634.95 76.67

300 0.0226 0.3135 75.88 49.98 13,152.37 89.10

360 0.0167 0.2908 87.82 63.78 20,122.22 100.10

420 0.0130 0.2724 99.77 74.71 28,540.68 110.11

b1 1.62 0.0108 0.2909 126.01 68.95 33,478.05 03.03

2.16 0.0148 0.2930 97.47 64.57 23,071.13 47.66

2.70 0.0191 0.2951 80.35 60.00 16,889.81 75.96

3.24 0.0237 0.2972 68.93 55.21 12,821.46 96.20

3.78 0.0287 0.2994 60.79 50.17 9960.69 111.91

Table 2 Computational results for different values of a

a t1 t2 p n PA Q

0.06 0.0153 0.3412 85.7699 42.66 18,971.16 111.13

0.08 0.0152 0.3436 85.7670 35.68 18,982.41 111.81

0.10 0.0151 0.3451 85.7653 30.82 18,989.82 112.22

0.12 0.0151 0.3462 85.7642 27.23 18,995.11 112.49

0.14 0.0151 0.3469 85.7633 24.45 18,999.09 112.69
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Based on the computational results shown in Table 4,

we can observe that the optimal selling price (p�), optimal

preservation technology (n�), optimal ordering quantity

(Q�), and optimal total profit (P�
A) increase with an

increase while optimal shortage period (t�1) and optimal

inventory period (t�2) decrease with an increase in the value

of constant parameter (a1). These results imply that as

constant parameter a1ð Þ of the demand function increases

with the total profit increases drastically.

On the other hand, we can observe that the optimal

shortage period t�1
� �

, optimal inventory period t�2
� �

, and

optimal ordering quantity Q�ð Þ increase with an increase in

the value of scaling parameter (b1). Apparently, the

reduction in the value of optimal selling price p�ð Þ, optimal

preservation technology cost n�ð Þ and optimal total profit

P�
A

� �
found with an increase in the value of scaling

parameter (b1). Obviously, the demand rate decreases as

the value of b1ð Þ increases. This result reveals that scaling
parameter b1 increases in demand function which decrea-

ses the demand. Therefore, there will be decrease in total

profit.

Example 5 This example presents the impact of random

variable E eð Þ ¼ l on optimal solution. We considered the

same set of input data as in Example 1. The optimal

solution for different values of random variable (l) is

summarized in Table 5.

The results of Table 5 reveal that as optimal selling

price p�ð Þ, optimal preservation technology cost n�ð Þ,
optimal total profit P�

A

� �
, and optimal ordering quantity

Q�ð Þ increase, while optimal shortage period t�1
� �

and

optimal inventory period t�2
� �

decrease with an increase in

the value of random variable eð Þ. Table 5 displays the

results for different normal distribution, uniform distribu-

tion, and exponential distribution function parameters of

random variable. Obviously, the demand increases as the

value of mean lð Þ increases. With the increase in demand

rate, retailer increases ordering quantity of product as well

as preservation technology cost to reduce the deterioration

rate. Consequently, the increased demand enhances the

total profit which is quite rational.

Conclusions

In this paper, a shortage followed by inventory model for a

joint pricing, inventory, and preservation decision for

deteriorating items is presented. The demand is character-

ized as stochastic and depend on price which is further

influenced by promotional effort and expressed by mark-up

over the promotional effort. In model formulation, the

utilization of general time proportional deterioration and

partial backlogging rates makes the scope of the applica-

tion broader. Moreover, the analysis of objective function

with rational and exponential partial backlogging is carried

out and some useful results on finding the optimal

replenishment are derived. Furthermore, to illustrate the

model numerical examples together with some managerial

implications by varying the values of key parameters are

provided. The numerical results succinctly demonstrated

the importance of promotional effort. In addition, an

improvement in total profit by investing in preservation

technology is explained.

For future research, this model can be extended for multi

item EOQ model, trade credit policy, a finite replenishment

rate, and so forth. It would be interesting to study the model

under supply chain settings.
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Appendix A: Proof of Lemma 1

Let,

v t2ð Þ ¼ C e 1�m nð Þð Þ g t2ð Þð Þ
n o

þ Ch

Z t2

0

e 1�m nð Þð Þ g t2ð Þ�g tð Þð Þdt

� �

and V pð Þ ¼ Cb þ d pþ Cl � Cð Þð Þ:.
Hence, (24) becomes

Table 5 Computational results

for different distribution of e
Random variable t1 t2 p n PA Q

e * N(2,1) 0.0191 0.3008 82.24 57.79 16,689.2 62.62

e * N(6,1) 0.0187 0.2993 83.04 58.68 17,160.3 63.54

e * N(9,1) 0.0184 0.2982 83.64 59.35 17,517.8 64.23

e * U(12,8) 0.0183 0.2978 83.84 59.57 17,637.8 64.46

e * exp(12) 0.0182 0.2971 84.23 60.01 17,879.0 64.91
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V pð Þt1
1þ dt1

¼ v t2ð Þ

t1 ¼
v t2ð Þ

V pð Þ � dv t2ð Þ ¼ / t2ð Þ ðSay):
ð31Þ

Now, from (17), we get

We assume an auxiliary function from (32), say H t2ð Þ,
t2 2 0;1Þ½ , where

Differentiating H t2ð Þ with respect to t2, we get

Thus, H t2ð Þ is strictly decreasing function of

t2 2 0;1Þ½ . Moreover

H 0ð Þ ¼ V pð Þ
d

t1 �
ln 1þ dt1ð Þ

d

� �

� K a� 1ð Þ q� 1ð Þ2 t1ð Þ D pð Þ þ lð Þ½ �a

q D pð Þ þ lð Þ :

þ A

q D pð Þ þ lð Þ � C t1ð Þ:

ð35Þ

On substituting the value of t1 from (31), H (0) becomes

H 0ð Þ ¼ D pð Þ ¼ A

q D pð Þ þ lð Þ þ
2C

d
� VðpÞ

d2
þ C2

V pð Þ

� �

þ VðpÞ
d2

ln
V pð Þ

VðpÞ � 2C

� �� �

� K a� 1ð Þ q� 1ð Þ2 C D pð Þ þ lð Þ½ �a

q D pð Þ þ lð Þ V pð Þ � dC½ �a :

ð36Þ

Now, the optimal value of t1 depends on sign of D pð Þ.
Therefore, we examine two cases as follows:

q D pð Þ þ lð Þ
t1 þ t2ð Þ

V pð Þ
d

t1 �
ln 1þ dt1ð Þ

d

� ��

þ Ch

Zt2

0

e� 1�m nð Þð Þg tð Þ
Zt2

t

e 1�m nð Þð Þg xð Þdx

0

@

1

Adt

8
<

:

9
=

;
:

þ C

Zt2

0

e 1�m nð Þð Þg xð Þdx

8
<

:

9
=

;
�K a� 1ð Þ q� 1ð Þ2 t1 þ t2ð Þ D pð Þ þ lð Þ½ �a

q D pð Þ þ lð Þ � v t2ð Þ t1 þ t2ð Þ þ A

q D pð Þ þ lð Þ

#

¼ 0: ð32Þ

H t2ð Þ ¼ V pð Þ
d

t1 �
ln 1þ dt1ð Þ

d

� �

þ Ch

Zt2

0

e� 1�m nð Þð Þg tð Þ
Zt2

t

e 1�m nð Þð Þg xð Þdx

0

@

1

Adt

8
<

:

9
=

;

2

4 þ C

Zt2

0

e 1�m nð Þð Þg xð Þdx

8
<

:

9
=

;

�K a� 1ð Þ q� 1ð Þ2 t1 þ t2ð Þ D pð Þ þ lð Þ½ �a

q D pð Þ þ lð Þ � v t2ð Þ t1 þ t2ð Þ þ A

q D pð Þ þ lð Þ

#

:

ð33Þ

dH t2ð Þ
dt2

¼ � Ka a� 1ð Þ q� 1ð Þ2 t1 þ t2ð Þ D pð Þ þ lð Þ½ �a�1

q
� Ch

Zt2

0

e 1�m nð Þð Þ g t2ð Þ�g tð Þð Þdt

8
<

:

9
=

;

2

4

� C e 1�m nð Þð Þg t2ð Þ
n o

þ v t2ð Þ þ t1 þ t2ð Þv0 t2ð Þ

#

\0:

ð34Þ
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(a) Let D pð Þ[ 0. Since H t2ð Þ is strictly decreasing

function of t2 2 0;1Þ½ using intermediate value

theorem, there exists unique value of t02, such that

H t02
� �

¼ 0. Hence, t02 is the unique solution of (22)

and the corresponding value of t01 can be found from

(31).

(b) Let D pð Þ� 0. Since H t2ð Þ is strictly decreasing

function of t2 2 0;1Þ½ . Then, minimum occurs at

zero. It means that positive inventory level is not

permitted. Hence, optimal value occurs at point t2 ¼
0 and corresponding optimal value of t01 can be found

from (31) and is given by C
V pð Þ�dC½ �.

This completes the proof of Lemma 1.

Appendix B: Proof of Theorem 1

From Lemma 1, the pair of values t�1; t
�
2

� �
which optimizes

profit function PA t1; t2; p; nð Þ is given by

t�1; t
�
2

� �
¼

t01; t
0
2

� �
; D pð Þ[ 0

C

V pð Þ � dC½ � ; 0
� �

D pð Þ� 0

8
<

:
: ð37Þ

Now, at point t1; t2ð Þ ¼ t�1; t
�
2

� �

o2PA

ot21
¼� D pð Þ þ lð Þ

t�1 þ t�2
� �

1þ dt�1
� �

q d p� C þ Clð Þ þ Cb � Cbdt
�
1

� ��

þ 1þ dt�1
� �

Ka a� 1ð Þ q� 1ð Þ2
n

t�1 þ t�2
� �

D pð Þ þ eð Þ
� a�1

oi
� 0:

ð38Þ

and from (19)

o2PA

ot22
¼�D pð Þ þ l

t�1 þ t�2
qe 1�m nð Þð Þ 1�m nð Þð Þ
h

Ceg t2ð Þ og t�2
� �

ot�2
þCh

Z t�
2

0

eg t�
2ð Þ�g tð Þ og t�2

� �

ot�2
dtþ 1

� �

þKa a� 1ð Þ q� 1ð Þ2 t�1 þ t�2
� �

D pð Þ þ eð Þ
� �a�1

i
�0:

ð39Þ

o2P
ot1ot2

¼ �Ka a� 1ð Þ q� 1ð Þ2 t1 þ t2ð Þ D pð Þ þ lð Þ½ �a�2

D pð Þ þ l½ �2 6¼ 0:

ð40Þ

Moreover, the determinant of the Hessian matrix at

point t1; t2ð Þ ¼ t�1; t
�
2

� �
is

o2P

ot21

o2P
ot1ot2

o2P
ot1ot2

o2P

ot22

0

B
B
B
@

1

C
C
C
A

¼ D pð Þ þ lð Þ q d p� C þ Clð Þ þ Cb � Cbdt1f g
1þ dt1ð Þ

��

þ Ka a� 1ð Þ q� 1ð Þ2 t1 þ t2ð Þ D pð Þ þ eð Þ½ �a�1
n oio

D pð Þ þ l qe 1�m nð Þð Þ 1� m nð Þð Þ
hn

Ceg t2ð Þ og t�2
� �

ot�2
þ Ch

Z t�
2

0

eg t�
2ð Þ�g tð Þ og t�2

� �

ot�2
dt þ 1

� �

� Ka a� 1ð Þ q� 1ð Þ2 t1 þ t2ð Þ D pð Þ þ lð Þ½ �a�2
n

D pð Þ þ l½ �2
o2

� 0:

ð41Þ

Thus, the Hessian matrix is positive define at point

t1; t2ð Þ ¼ t�1; t
�
2

� �
.

This completes the proof of Theorem 1.
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