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Abstract In this paper, we present modified fuzzy goal

programming (FGP) approach and generalized MATLAB

program for solving multi-level linear fractional program-

ming problems (ML-LFPPs) based on with some major

modifications in earlier FGP algorithms. In proposed modi-

fied FGP approach, solution preferences by the decision

makers at each level are not considered and fuzzy goal for the

decision vectors is defined using individual best solutions.

The proposed modified algorithm as well as MATLAB

program simplifies the earlier algorithm on ML-LFPP by

eliminating solution preferences by the decision makers at

each level, thereby avoiding difficulties associate with multi-

level programming problems and decision deadlock situa-

tion. The proposed modified technique is simple, efficient

and requires less computational efforts in comparison of

earlier FGP techniques. Also, the proposed coding of gen-

eralized MATLAB program based on this modified approach

for solving ML-LFPPs is the unique programming tool

toward dealing with such complex mathematical problems

with MATLAB. This software based program is useful and

user can directly obtain compromise optimal solution of ML-

LFPPs with it. The aim of this paper is to present modified

FGP technique and generalized MATLAB program to obtain

compromise optimal solution of ML-LFP problems in sim-

ple and efficient manner. A comparative analysis is also

carried out with numerical example in order to show effi-

ciency of proposed modified approach and to demonstrate

functionality of MATLAB program.

Keywords Multi-level linear fractional programming

problem � Fuzzy goal programming � Compromise optimal

solution � MATLAB program

Introduction

Multi-level programming problem (MLPP) concerns with

decentralized programming problems with multiple deci-

sion makers (DMs) in multi-level or hierarchical organi-

zations, where decisions have interacted with each other.

Multi-level organization or hierarchical organization has

the following common characteristics: Interactive decision-

making units exist within a predominantly hierarchical

structure; the execution of decisions is sequential from

higher level to lower level; each decision-making unit

independently controls a set of decision variables and is

interested in maximizing its own objective but is affected

by the reaction of lower level DMs. So the decision

deadlock arises frequently in the decision-making situa-

tions of multi-level organizations.

Numerous methods were suggested by researchers in

literature (Anandilingam 1988, 1991; Lai 1996; Pramanik

and Roy 2007; Shih et al. 1983; Shih and Lee 2000; Sinha

2003a, b) on MLPPs and also on multi-criteria decision-

making problems (MCDM) and multi-objective program-

ming problems with their applications like Zoraghi et al.

(2013) presented a fuzzy multi-criteria decision making

(MCDM) model by integrating both objective and sub-

jective weights for evaluating service quality in hotel

industries. Sadjadi et al. (2005) proposed a multi-objective
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linear fractional inventory model using fuzzy program-

ming. Fattahi et al. (2006) proposed a Pareto approach to

solve multi-objective job shop scheduling. Aryanezhad

et al. (2011) considered the portfolio selection where

fuzziness and randomness appear simultaneously in opti-

mization process. Tohidi and Razavyan (2013) presented

necessary and sufficient conditions to have unbounded

feasible region and infinite optimal values for objective

functions of multi-objective integer linear programming

problems. Khalili-Damghani and Taghavifard (2011)

proposed a multi-dimensional knapsack model for project

capital budgeting problem in uncertain situation through

fuzzy sets. Makul et al. (2008) presented the use of

multiple objective linear programming approach for gen-

erating the common set of weights under the DEA

framework. Each method appears to have some advanta-

ges as well as disadvantages. So, the issue of choosing a

proper method in a given context is still a subject of active

research. In context of such hierarchical problems, Fuzzy

goal programming (FGP) approach seems to be more

appropriate than other methodologies. The FGP intro-

duced by Mohamed (1997) was extended to solve multi-

objective linear fractional programming problems in Pal

et al. (2003), bi-level programming problems in Moitra

and Pal (2002), bi-level quadratic programming problems

in Pal and Moitra (2003), and also extended to solve

multi-level programming problems (MLPPs) with single

objective function in each level in Pramanik and Roy

(2007). In recent years, Aghdaghi and Jolai (2008) pre-

sented a goal programming approach and heuristic algo-

rithm to solve vehicle routing problem with backhauls.

Babeai et al. (2009) investigated the optimum portfolio for

an investor using lexicographic goal programming

approach. Ghosh and Roy (2013) formulated weighted

goal programming as goal programming with logarithmic

deviational variables. Lachhwani and Poonia (2012) pro-

posed FGP approach for multi-level linear fractional

programming problem. Lachhwani (2013) presented an

alternate algorithm to solve multi-level multi-objective

linear programming problems (ML-MOLPPs) which is

simpler and requires less computational efforts than that

of suggested by Baky (2010). Baky (2010) suggested two

new techniques with FGP approach based on solution

preferences by the decision maker at each level to solve

new type of multi-level multi-objective linear program-

ming (ML-MOLP) problems through the fuzzy goal pro-

gramming (FGP) approach. Abo-Sinha and Baky (2007)

presented interactive balance space approach for solving

multi-level multi-objective programming problems. Baky

(2009) proposed FGP algorithm for solving decentralized

bi-level multi-objective programming (DBL-MOP) prob-

lems with a single decision maker at the upper level and

multiple decision makers at the lower level. The main

disadvantage of the FGP algorithms is that the possibility

of rejecting the solution again and again by the upper

level DMs and re-evaluation of the problem repeatedly, by

redefining the tolerance values on decision variables,

needed to reach the satisfactory decision frequently arises.

To overcome such computational difficulties, we modified

FGP approach for ML-LFPP in which solution preferences

by decision maker at each level and sequential order of

decision-making process in finding satisfactory solutions

are not taken into account of proposed technique and we

straightforwardly obtain compromise optimal solution of

the problem with higher degree of membership function

values. In this paper, we proposed modified FGP approach

for multi-level linear fractional programming problem

(ML-LFPP) in which solution preferences by decision

maker at each level and sequential order of decision-

making process in finding satisfactory solutions are not

taken into account of proposed technique. Using modified

technique, we straightforwardly obtain compromise opti-

mal solution of the problem with higher degree of mem-

bership function values. This modified approach simplifies

the solution procedure and reduces the computational

efforts with it. Here, we also present coding of generalized

MATLAB program based on proposed modified approach

for solving ML-LFPPs which is the unique toward dealing

with such complex mathematical problems with MAT-

LAB. This software based program is useful and user can

directly obtain compromise optimal solution of ML-

LFPPs. The aim of this paper is to present modified FGP

algorithm and generalized MATLAB program which is

simple, efficient and requires less computational efforts

for solving multi-level linear fractional programming

problems (ML-LFPPs).

The paper is organized in following sections: MLPPs

and related literature reviews are presented in introduction

section. Formulation of ML-LFPP and related notations are

discussed in next Sect. 2. Characterization of membership

functions, solution approach based on FGP and formulation

of FGP models are discussed in next section. Proposed

MATLAB program and its functionality are discussed in

Sect. 4. Numerical example on modified FGP technique

and its comparison with solution technique suggested by

Lachhwani and Poonia (2012) are discussed in numerical

example Sect. 5. Concluding remarks are given in the last

section. Coding of main function and recurresive simplex

function are presented in appendices.

Formulation of ML-LFPPs

We consider a T-level maximization type multi-level linear

fractional programming problem (ML-LFPP). Mathemati-

cally it can be defined as:
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Max
X1

Z1ðXÞ ¼
C11 X1 þ C12 X2 þ � � � þ C1T XT þ a1

D11 X1 þ D12 X2 þ � � � þ D1T XT þ b1

¼ N1ðXÞ
D1ðXÞ

Max
X2

Z2ðXÞ ¼
C21 X1 þ C22 X2 þ � � � þ C2T XT þ a2

D21 X1 þ D22 X2 þ � � � þ D2T XT þ b2

¼ N2ðXÞ
D2ðXÞ

�
�

Max
XT

ZTðXÞ ¼
CT1 X1 þ CT2 X2 þ � � � þ CTT XT þ aT

DT1 X1 þ DT2 X2 þ � � � þ DTT XT þ bT

¼ NTðXÞ
DTðXÞ

Subject to; Ai1 X1 þ Ai2 X2 þ � � � þ AiT XT ð� ;¼; �Þ bi

8i ¼ 1; 2; . . .;m

and X1� 0; X2� 0; . . .;XT � 0:

ð1Þ

X1 ¼ X1
1 ;X

2
1 ; . . .;XN1

1

� �0

decision variables under the control of first level DM:

�
�
XT ¼ X1

T ;X
2
T ; . . .;XNT

T

� �0

decision variable under the control of t - level DM:

where 0denotes transposition, Aij i ¼ 1; 2; . . .;m; j ¼
1; 2; . . .; T are m row vectors, each of dimensionð1� NjÞ.
Ait Xt; t ¼ 1; 2; . . .; T is a column vector of dimension

ðM � 1Þ.C11;C21; . . .;CT1 all are row vectors of dimension

of ð1� N1Þ. Similarly C1T ;C2T ; . . .;CTT and

D1T ;D2T ; . . .;DTT are row vectors of dimension of

ð1� NTÞ. We take X ¼ X1 [ X2 [ � � � : [ XT and

N ¼ N1 þ N2 þ � � � þ NT . Here one DM is located on each

level. Decision vector Xt; t ¼ 1; 2; . . .; T is control of tth

level DM having Nt number of decision variables. Here, it

is assumed that the denominator of objective functions is

positive at each level for all the values of decision variables

in the constraint region.

Modified FGP methodology for ML-LFPP

The proposed modified FGP procedure is based on finding

the compromise optimal solution as described by Lach-

hwani (2013) for multi-level multi-objective linear pro-

gramming (ML-MOLP) problems. Here, we need to

express the definitions related to efficient solution and

compromise optimal solution in context of MLPP as:

Definition 1 X� 2 S is an efficient solution to MLPP if

and only if there exists no other X 2 S such that Zt � Z�t
8t ¼ 1; 2; . . .; T .

Definition 2 For a problem (1), a compromise optimal

solution is an efficient solution selected by the decision

maker (DM) as being the best solution where the selection

is based on the DM’s explicit or implicit criteria.

Zeleny (1982) as well as most authors describes the act

of finding a compromise optimal solution to problem as

‘‘……an effort or emulate the ideal solution as closely as

possible’’.

Our FGP model for determining compromise optimal

(efficient) solution is based on the finding of the totality or

subset of efficient solutions with the DM, then choosing

one best solution on some explicit or implicit algorithm.

FGP formulation for ML-LFPP

To formulate the modified FGP models of ML-LFPP, the

objective numerator ftNðXÞ þ at; 8t ¼ 1; 2; . . .; T , objec-

tive denominator ftDðXÞ þ at; 8t ¼ 1; 2; . . .; T at each level

and the decision vector Xt; ðt ¼ 1; 2; ::; T � 1Þ would be

transformed into fuzzy goals by assigning an aspiration

level to each of them. Then, they are to be characterized by

the associated membership functions by defining tolerance

limits for the achievement of the aspired levels of the

corresponding fuzzy goals. Here, decision vector Xt of up

to (T–1) levels is transformed into fuzzy goals in order to

avoid decision deadlock situations.

Characterization of membership functions

To build membership functions, fuzzy goals and their

aspiration levels should be determined first. Using the

individual best solution without considering inference of

decision variables on lower levels, we find the maximum

and minimum values of all the numerator and denominator

objective functions at each level solution and construct

payoff matrices as:

Xt Nt

X1 N1ðX1Þ
X2 N2ðX2Þ
: :
: :

XT NTðXTÞ

2

6666664

3

7777775

ð2Þ

Xt Nt

X1 N1ðX1Þ
X2 N2ðX2Þ
: :
: :

XT NTðXTÞ

2

6666664

3

7777775

ð3Þ

Xt Dt

X1 D1ðX1Þ
X2 D2ðX2Þ
: :
: :

XT DTðXTÞ

2

6666664

3

7777775

ð4Þ
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and

Xt Dt

X1 D1ðX1Þ
X2 D2ðX2Þ
: :
: :

XT DTðXTÞ

2

6666664

3

7777775

ð5Þ

The maximum values of each row NtðXtÞ and DtðXtÞ
8t ¼ 1; 2; . . .; T give upper and lower tolerance limit or

aspired level of achievement for the membership function

of tth level numerator and denominator objective function

respectively. Similarly, the minimum values of each row

NtðXtÞ and DtðXtÞ 8t ¼ 1; 2; . . .; T give lower and upper

tolerance limit or lowest acceptable level of achievement

for the membership function of tth level numerator and

denominator objective function respectively. Hence, linear

membership functions for the defined fuzzy goals (as

shown in Fig. 1a, b respectively) are:

lZt
ðNtðXÞÞ ¼

1 if NtðXÞ�Nt

NtðXÞ � Nt

Nt � Nt

if Nt�NtðXÞ�Nt

0 if NtðXÞ�Nt

8
>><

>>:
8 t

¼ 1; 2; . . .; T

ð6Þ

lZt
ðDtðXÞÞ ¼

0 if DtðXÞ�Dt

Dt � DtðXÞ
Dt � Dt

if Dt�DtðXÞ�Dt

1 if DtðXÞ�Dt

8
>><

>>:
8 t

¼ 1; 2; . . .; T

ð7Þ

Now, the linear membership functions for the decision

vector XT (t ¼ 1; 2; . . .; T � 1Þ (as shown in Fig. 2) are

formulated in modified form as:

lXt
ðXtÞ ¼

1 for Xt�Xt
Xt � Xt

Xt � Xt

for Xt�Xt�Xt

0 for Xt�Xt

8
>><

>>:
ð8Þ

where Xt and Xt are taken as the values of the corre-

sponding decision vectors at each level which yield the

highest and lowest values of the numerator part of objec-

tive functions ((NtðXÞ and NtðXÞ 8t ¼ 1; 2; . . .; T � 1Þ at

each level respectively defined as:

Nt ¼ Max
Xt2X

NtðXtÞ; 8t ¼ 1; 2; . . .;T
� �

ð9Þ

Nt ¼ Min
Xt2X

NtðXtÞ; 8t ¼ 1; 2; . . .; T
� �

ð10Þ

Here, it is important to note that for simplicity of pro-

posed technique and in order to avoid decision deadlock

situation in the whole solution methodology, the solution

preferences by the decision maker in terms of values of

decision vector at each level with respect to the values of

decision vector at lower levels are not considered. This

results that large amount of computational tasks is reduced

into limited simple calculation in modified FGP model

formulation. Also, linear membership functions are

1

( ( ))
tZ tN Xµ

tN
tN

)(XNt

( ( ))
tZ tD Xµ

tD
tD

1

( )tD X0

(a)

(b)

Fig. 1 a Membership functions of maximization type numerator

objective functions. b Membership functions of maximization type

denominator objective functions

tX

( )
tX tXµ

1

tXtX0

Fig. 2 Membership function for lXt
ðXtÞ 8t ¼ 1; 2; . . .; T � 1
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considered because these are more suitable than nonlinear

ones in context of complex ML-LFPPs and it further

reduces computational difficulties in modified method.

FGP solution approach

In GP approach, decision policy for minimizing the regrets

of the DMs for all the levels is taken into consideration.

Then each DM should try to maximize his or her mem-

bership function by making them as close as possible to

unity by minimizing its negative deviational variables.

Therefore, in effect, we are simultaneously optimizing all

the objective functions. So, for the defined membership

functions in (6), (7) and (8), the flexible membership goals

having the aspired level unity can be represented as:

ltðNtÞ þ dN�
t � dNþ

t ¼ 1 8t ¼ 1; 2; . . .; T ð11Þ

ltðDtÞ þ dD�
t � dDþ

t ¼ 1 8t ¼ 1; 2; . . .; T ð12Þ

lXt
ðXtÞ þ d�t � dþt ¼ I 8t ¼ 1; 2; . . .; T � 1 ð13Þ

where dN�
t ; dD�

t ; dNþ
t dDþ

t ð� 0Þ (8t ¼ 1; 2; . . .; T) and

d�t ; d
þ
t ð� 0Þ 8t ¼ 1; 2; . . .; T � 1 represent the under and

over deviational variables respectively from the aspired

levels. I is the column vector having all components equal

to 1 and its dimension depends on Xt. Thus ML-LFP

problem (1) changes into:

min k ¼
XT

t¼1

ðdN�
t þdD�

t Þ þ
XT�1

t¼1

d�t ð14Þ

Subject to; ltðNtÞ þ dN�
t � dNþ

t ¼ 1 8t ¼ 1; 2; . . .; T

ltðDtÞ þ dD�
t � dDþ

t ¼ 1 8t ¼ 1; 2; . . .;T

lXt
ðXtÞ þ d�t � dþt ¼ I 8t ¼ 1; 2; . . .; T � 1

Ai1 X1 þ Ai2 X2 þ � � � þ AiT XT ð� ;¼; �Þ bi

8i ¼ 1; 2; . . .;m

and X1� 0; X2� 0; . . .;XT � 0:

In this FGP approach, only the sum of under devi-

ational variables is required to be minimized to achieve

the aspired level. It may be noted that when a member-

ship goal is fully achieved, negative deviational variable

becomes zero and when its achievement is zero, negative

deviational variable becomes unity in the solution. Now if

the most widely used and simplest version of GP (i.e.

minsum GP) is introduced to formulate the model of the

problem under consideration, the FGP model formulation

becomes:

FGP model I

min k ¼
XT

t¼1

ðdN�
t þdD�

t Þ þ
XT�1

t¼1

d�t

Subject to; �Nt þ Nt þ dN�
t ðNt � NtÞ� 0 8t ¼ 1; 2; . . .; T

Dt � Dt þ dD�
t ðDt � DtÞ� 0 8t ¼ 1; 2; . . .; T

� Xt þ Xt þ d�t ðXt � XtÞ� 0 8T ¼ 1; 2; . . .;T � 1

Ai1 X1 þ Ai2 X2 þ � � � þ AiT XT ð� ;¼; �Þ bi

8i ¼ 1; 2; . . .;m

and X1� 0; X2� 0; . . .;XT � 0:

FGP model II

min k ¼
XT

t¼1

ð _wtd
N�
t þ €wtd

D�
t Þ þ

XT�1

t¼1

d�t

Subject to; �Nt þ Nt þ dN�
t ðNt � NtÞ� 0 8t ¼ 1; 2; . . .;T

Dt � Dt þ dD�
t ðDt � DtÞ� 0 8t ¼ 1; 2; . . .;T

� Xt þ Xt þ d�t ðXt � XtÞ� 0 8T ¼ 1; 2; . . .; T � 1

Ai1 X1 þ Ai2 X2 þ � � � þ AiT XT ð� ;¼; �Þ bi

8i ¼ 1; 2; . . .;m

and X1� 0; X2� 0; . . .;XT � 0:

where k (in FGP model II) represents the fuzzy achieve-

ment function consisting of the weighted under deviational

variables and the numerical weights _wt; €wt [ 0; ð8t ¼
1; . . .; TÞ represent the relative importance of achieving the

aspired level of the respective fuzzy goals subject to the

constraints in the decision-making situation. To assess the

relative importance of the fuzzy goals properly, the

weighted scheme suggested by Mohamed (1997) can be

used to assign the values to _wt; €wt [ 0; ð8t ¼ 1; . . .; TÞ. In

the present formulation _wt; €wt [ 0 can be determined as:

_wt ¼
1

Nt � Nt

8t ¼ 1; . . .; T ð15Þ

€wt ¼
1

Dt � Dt

8t ¼ 1; . . .; T ð16Þ

MATLAB Program for ML-LFPPs based on modified

FGP approach

Here, we discuss the coding and functionality of generalized

MATLAB program for finding the compromise optimal solu-

tion of any ML-LFPPs based on proposed modified FGP

approach. Using this program, the user needs to input data

related to the problem and then user can directly obtain com-

promise optimal solution of ML-LFPP in single iteration with

this program. To run this program, the two files are imported

(used for main function and simplex function respectively and

as shown in appendices) in the current MATLAB folder as:

1 opt_pro.m

2 simplex_function1.m

Then go to the MATLAB command prompt and type

opt_pro to execute the program. The main coding of this

program is partitioned into following two parts as:

J Ind Eng Int (2015) 11:15–36 19
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(a) Main function (MATLAB coding of main function is

shown in appendices)

(b) Simplex function (MATLAB coding of simplex

function is shown in appendices)

The functionality of MATLAB program to obtain opti-

mized values of decision variables and corresponding

objective functions can be described in following stepwise

algorithm as:

Step 1: In first step, main function takes input values

from the user and converts them into suitable matrices.

Then these matrices are passed to the simplex function

as its input arguments in single matrix containing

constraints as well as objective functions.

Step 2: For each level, the simplex function is called two

times to compute minimized and maximized values of

numerator and denominator objective functions.

Step 3: In this step, firstly the simplex function separates

the constraints matrix and objective function matrix and

then it computes the optimized solution based on the

simplex method after some iteration. Then it provides

these optimized solutions to the main function as its

output argument in a single matrix containing values of

decision variables and values of corresponding objective

functions.

Step 4: So, in this way, repeating the step 2 and step 3,

we get the maximum and minimum values for each

objective function.

Step 5: Using these optimized values, the main function

takes the decision variables up to (T-1) levels.

Step 6: Using these values of decision variables and

values of numerator and denominator objectives, it

constructs the type I, type II and type III constraints as

defined in (6), (7) and (8).

Step 7: It recognizes all these constraints along with the

initial constraints to construct a single constraint matrix.

Step 8: Then it constructs an objective function to

minimize the sum of all the D variables (negative

deviational variables) which are formulated during type

I, II and III constraints.

Step 9: Now it again passes a matrix containing both the

constraints as well as objective functions to the simplex

function as its input argument.

Step 10: Now the simplex function decodes the input

matrix to find the constraint matrix and objective

function.

Step 11: Using the above constraints matrix and

objective function, it computes the optimal solution

using the usual simplex method. This optimized solution

is then passed to the main function as its output

argument.

Step 12: Now the main function, using these optimized

values of main decision variables, computes the

corresponding values of objective functions and displays

them as output values.

Numerical Example

In this section, we illustrate the same numerical example

considered in Lachhwani and Poonia (2012) in order to

show efficiency of modified method over earlier technique

as well as to demonstrate proposed MATLAB program on

numerical example.

Illustration 1

Max
x1;x2

Z1 ¼
7x1 þ 3x2 � 4x3 þ 2x4

x1 þ x2 þ x3 þ 1

Max
x3

Z2 ¼
x2 þ 3x3 þ 4x4

x1 þ x2 þ x3 þ 2

Max
x4

Z3 ¼
2x1 þ x2 þ x3 þ x4

x1 þ x2 þ x3 þ 3

Subject to; x1 þ x2 þ x3 þ x4� 5

x1 þ x2 � x3 � x4� 2

x1 þ x2 þ x3� 1

x1 � x2 þ x3 þ 2x4� 4

x1 þ 2x3 þ 2x4� 3

x4� 2

x1; x2; x3; x4� 0

Following the procedure, FGP model I and II can be

described as:

FGP model I

Minimize k ¼ ðdN�
1 þ dN�

2 þ dN�
3 þ dD�

1 þ dD�
2 þ dD�

3 Þ
þ d�1

Subject to; 7x1 þ 3x2 � 4x3 þ 2x4 þ 23dN�
1 � 17

x2 þ 3x3 þ 4x4 þ 9:5dN�
2 � 9:5

2x1 þ x2 þ x3 þ x4 þ 4dN�
3 � 5

x1 þ x2 þ x3 � 4dD�
1 � 1

x1 þ x2 þ x3 � 4dD�
2 � 1

x1 þ x2 þ x3 � 4dD�
3 � 1

x1 þ 2:3333d�1 � 2:3333

x1; x2; x3; x4; dN�
1 ; dN�

2 ; dN�
3 ; dD�

1 ; dD�
2 ;

dD�
3 ; d�1 � 0

Solving this programming problem, the compromise

optimal solution obtained is: k ¼ 1:8596;

x1 ¼ 2:3333;x2 ¼ 0;x3 ¼ 0; x4 ¼ 2:3750 with the values of

objective functions as: Z1 ¼ 5:0999, Z2 ¼ 0:3076;

Z3 ¼ 0:9374. Also the achieved values of membership

functions are l1ðN1Þ ¼ 0:9999; l2ðN2Þ ¼ 0:1403;
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l3ðN3Þ ¼ 0:9999; l1ðD1Þ ¼ 0:9999;l2ðD2Þ ¼ 0:9999

and l3ðD3Þ ¼ 0:9999. The same compromise opti-

mal solution of this problem is obtained using FGP model

II with the corresponding weights as defined in (15) and

(16).

Note that the satisfactory solutions of the same problem

using FGP technique proposed by Lachhwani and Poonia

(2012) are: ðx1; x2; x3; x4Þ ¼ ð0:4471; 1:169105; 0;

1:2764Þ with ðZ1; Z2; Z3Þ ¼ ð3:42738; 1:642437;

0:7515643Þ (For proposed method I) and ðx1; x2; x3; x4Þ ¼

Fig. 3 Comparison of

membership function values

Table 1 Comparison of values between modified FGP approach and FGP technique by Lachhwani and Poonia (2012) for numerical example 1

Parameters Modified FGP technique

(FGP model I, II)

FGP technique suggested by Lachhwani and Poonia

(2012)

Better values Better values

Method II b Method I (comparison with

method IIb)

(comparison with

method I)

Z1 5.0999 4.5 3.42738 Z�1 ¼ 5:0999 Z�1 ¼ 5:0999

Z2 0.3076 1.3333 1.642437 Z2 ¼ 1:3333 Z2 ¼ 1:642437

Z3 0.9374 0.75 0.751564 Z�3 ¼ 0:9374 Z�3 ¼ 0:9374

lz1
ðN1Þ 0.9999 0.6521 0.7285 l�z1

ðN1Þ ¼ 0:9999 l�z1
ðN1Þ ¼ 0:9999

lz2
ðN2Þ 0.1403 1 0.7155 lz2

ðN1Þ ¼ 1 lz2
ðN1Þ ¼ 0:7155

lz3
ðN3Þ 0.9999 0.42105 0.7154 l�z3

ðN3Þ ¼ 0:9999 l�z3
ðN3Þ ¼ 0:9999

lz1
ðD1Þ 0.9999 1 0.7155 lz1

ðD1Þ ¼ 1 l�z1
ðD1Þ ¼ 0:9999

lz2
ðD2Þ 0.9999 0.5 0.7154 l�z2

ðD2Þ ¼ 0:9999 l�z2
ðD2Þ ¼ 0:9999

lz3
ðD3Þ 0.9999 1 0.7154 lz3

ðD3Þ ¼ 1 l�z3
ðD3Þ ¼ 0:9999

at ðx1; x2; x3; x4Þ
¼ ð2:3333; 0; 0; 2:3750Þ

at ðx1; x2; x3; x4Þ
¼ ð1; 0; 0; 1Þ

at ðx1; x2; x3; x4Þ
¼ ð0:4471; 1:1691; 0; 1:2764Þ

* indicates values from modified FGP approach
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ð1; 0; 0; 1Þ with ðZ1; Z2; Z3Þ ¼ ð4:5; 1:3333; 0:75Þ (For

proposed method II b). These satisfactory solutions of

ML-LFPP are dependent on the tolerance values

ðp�1 ; pþ1 Þ,ðp�1 ; pþ1 Þ on the decision variables and type of

FGP model used.

Table (Table 1) and graphs (Figs. 3, 4) show that the

modified FGP technique yields better values of most of

the membership functions and individual objective func-

tions in comparison of FGP technique (method I and IIb)

suggested by Lachhwani and Poonia (2012). It is clear

that both the approaches are close to one another but the

modified methodology is efficient and requires less com-

putations than earlier technique in terms of considering

the solution preferences by the decision maker at each

level.

Again, If we compare main advantages of proposed

modified FGP methodology on different parameters as

shown in table (Table 2) considering theoretical aspects

of techniques and numerical example, it shows that the

proposed modified technique has advantages of sim-

plicity, efficiency, construction of MATLAB program,

without decision deadlock situations, less computa-

tional efforts etc. than the technique suggested by

Lachhwani and Poonia (2012) on each of these

parameters.

Now, if we use the proposed MATLAB program on this

numerical example and input the total no. of variables, total

no. of constraints, numerator/denominator objective

matrices, decision variables in matrix format for each stage

etc. (as shown in Fig. 5). Then we get the compromise

optimal solution ðk; x1; x2; x3; x4Þ ¼ ð1:8596; 2:3333;

0; 0; 0:3333Þ which is the same as illustrated above with

our proposed methodology. This validates our proposed

MATLAB program.

Conclusions

This paper presents an improved FGP technique (in terms of

achieving higher values of membership functions, simplic-

ity, computational efforts etc.) as well as generalized

MATLAB program to obtain compromise optimal solution

of ML-LFPPs. The proposed technique is simple, efficient

and requires less computational works than that of earlier

techniques. Also the proposed MATLAB program is unique

and latest for solving these complex mathematical problems.

This software based program is useful and user can directly

obtain compromise optimal solution of ML-LFPPs with it.

However, the main demerit of this MATLAB program is that

construction of its coding is difficult and complex which also

depends on the complexity of the problem.

Certainly there are many points for future research in the

areas of MLPPs, based on modified FGP approach and

should be studied. Some of these areas are:

(1) The proposed technique can be extended to more

complex hierarchical programming problems like

multi-level quadratic fractional programming

problems (ML-QFPPs), multi-level multi-objec-

tive programming problems (ML-MOPPs) etc.

and related computer programs can also be

constructed in MATLAB or other programming

platforms.

(2) Further modifications can be carried out in recent

techniques for ML-LFPPs in order to improve

efficiency of solution algorithm.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Fig. 4 Comparison of objective

function values
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Appendices

Fig. 5 Compromise optimal

solution of ML-LFPP using

proposed MATLAB program

(trial version)

Table 2 Comparison between modified FGP approach and FGP technique by Lachhwani and Poonia (2012) on general parameters

S.

no.

Parameters Proposed modified FGP technique

(degree of parameter)

FGP technique suggested by Lachhwani and

Poonia (2012) (degree of parameter)

1 Simplicity (in terms of linear/non linear

structure of FGP models, repetition of

tolerance values, structure of membership

function etc.)

Simple (all FGP models are linear, No

repetition of values & only linear

membership functions are used)

Complex (repetition of tolerance values

again and again, triangular membership

functions used etc.)

2 Efficiency (in terms of yielding values of

membership functions and objective functions)

More efficient (as shown in comparative

table 1, graph 1 and graph 2)

Less efficient

3 Decision deadlock situation Decision deadlock situations do not

occur at any stage of algorithm

Frequently arise decision deadlock

situations

4 Possibility of construction of MATLAB

program of technique

Easily possible and coding of program is

given in appendices.

Difficult to construct MATLAB program of

the technique

5 Computational efforts Less (simple FGP models, No repetition

of values, solution preferences of the

decision vectors are not considered)

Much (repetition of values, comparative

complex FGP models, solution

preferences of the decision vectors are

considered)
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(a) Main function(opt_pro)
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(b) Recursive simplex function

J Ind Eng Int (2015) 11:15–36 31

123



32 J Ind Eng Int (2015) 11:15–36

123



J Ind Eng Int (2015) 11:15–36 33

123



34 J Ind Eng Int (2015) 11:15–36

123



References

Abo-Sinha MA, Baky IA (2007) Interactive balance space approach

for solving multi-level multi-objective programming problems.

Inf Sci 177:3397–3410

Aghdaghi M, Jolai F (2008) A goal programming model for vehicle

routing problem with backhauls and soft time windows. J Ind

Eng Int 4(6):7–18

Anandilingam G (1988) A mathematical programming model of

decentralized multi-level system. J Oper Res Soc

39(11):1021–1033

Anandilingam G, Apprey V (1991) Multi-level programming and

conflicting resolution. Eur J Oper Res 51:233–247

Aryanezhad MB, Malekly H, Karimi-Nasab M (2011) A fuzzy

random multi-objective approach for portfolio selection. J Ind

Eng Int 7(13):12–21

Babeai H, Tootooni M, Shahanaghi K, Bakhsha A (2009) Lexicog-

rahic goal programming approach for portfolio optimization.

J Ind Eng Int 5(9):63–75

Baky IA (2009) Fuzzy goal programming algorithm for solving

decentralized bi-level multiobjective programming problems.

Fuzzy Sets Syst 160:2701–2710

Baky IA (2010) Solving multi-level multi-objective linear program-

ming problems through fuzzy goal programming approach. Appl

Math Model 34:2377–2387

Fattahi P, Mehrabad MS, Aryanezhad MB (2006) An algorithm for

multi-objective job shop scheduling problem. J Ind Eng Int

2(3):43–53

Gosh P, Roy TK (2013) A goal geometric programming problem (G2

P2) with logarithmic deviational variables and its applications on

two industrial problems. J Ind Eng Int 9:5. doi:10.1186/2251-

712X-9-5

J Ind Eng Int (2015) 11:15–36 35

123

http://dx.doi.org/10.1186/2251-712X-9-5
http://dx.doi.org/10.1186/2251-712X-9-5


Khalili-Damghani K, Taghavifard M (2011) Solving a bi-objective

project capital budgeting problem using a fuzzy multi-dimen-

sional knapsack. J Ind Eng Int 7(13):67–73

Lachhwani K (2013) On solving multi-level multi objective linear

programming problems through fuzzy goal programming

approach. OPSEARCH Oper Res Soc India. doi:10.1007/

s12597-013-0157-y (In press)

Lachhwani K, Poonia MP (2012) Mathematical solution of multi-

level fractional programming problem with fuzzy goal program-

ming approach. J Ind Eng Int 8:12. doi:10.1186/2251-712x-8-16

Lai YJ (1996) Hierarchical optimization: A satisfactory solution.

Fuzzy Sets Syst 77:321–335

Makul A, Alinezhad A, Zohrehbandian M (2008) Practical common

weights MOLP approach for efficiency analysis. J Ind Eng Int

4(6):57–63

Mohamed RH (1997) The relationship between goal programming

and fuzzy programming. Fuzzy Sets Syst 89:215–222

Moitra BN, Pal BB (2002) A fuzzy goal programming approach for

solving bilevel programming problems. In: Pal NR, Sugeno M

(eds) AFSS, vol 2275., Lecture notes in artificial intelligenc-

eSpringer, Berlin, pp 91–98

Pal BB, Moitra BN (2003) A fuzzy goal programming procedure for

solving quadratic bilevel programming problems. Int J Intell Syst

18(5):529–540

Pal BB, Moitra BN, Malik U (2003) A goal programming procedure

for fuzzy multiobjective linear fractional programming prob-

lems. Fuzzy Sets Syst 139(2):395–405

Pramanik S, Roy TK (2007) Fuzzy goal programming approach to

multi-level programming problems. Eur J Oper Res

176:1151–1166

Sadjadi SJ, Aryanezhad MB, Sarfaraz A (2005) A fuzzy approach to

solve a multi-objective linear fractional inventory model. J Ind

Eng Int 1(1):43–47

Shih HS, Lee ES (2000) Compensatory fuzzy multiple decision

making. Fuzzy Sets Syst 14:71–87

Shih HS, Lai YJ, Lee ES (1983) Fuzzy approach for multi-level

programming problems. Comput Oper Res 23(1):773–791

Sinha S (2003a) Fuzzy mathematical approach to multi-level

programming problems. Comput Oper Res 30:1259–1268

Sinha S (2003b) Fuzzy programming approach to multi-level

programming problems. Fuzzy Sets Syst 136:189–202

Tohidi G, Razavyan S (2013) An L1-norm method for generating all

the efficient solutions of multi-objective integer linear program-

ming problem. J Ind Eng Int 8:17. doi:10.1186/2251-712X-8-17

Zeleny M (1982) Multiple criteria decision making. McGraw-Hill

book company, New York

Zoraghi N, Amiri M, Talebi G, Zowghi M (2013) A fuzzy MCDM

model with objective and subjective weights for evaluating

service quality in hotel industries. J Ind Eng Int 9:38. doi:10.

1186/2251-712X-9-38

36 J Ind Eng Int (2015) 11:15–36

123

http://dx.doi.org/10.1007/s12597-013-0157-y
http://dx.doi.org/10.1007/s12597-013-0157-y
http://dx.doi.org/10.1186/2251-712x-8-16
http://dx.doi.org/10.1186/2251-712X-8-17
http://dx.doi.org/10.1186/2251-712X-9-38
http://dx.doi.org/10.1186/2251-712X-9-38

	Modified FGP approach and MATLAB program for solving multi-level linear fractional programming problems
	Abstract
	Introduction
	Formulation of ML-LFPPs
	Modified FGP methodology for ML-LFPP
	FGP formulation for ML-LFPP
	Characterization of membership functions

	FGP solution approach

	MATLAB Program for ML-LFPPs based on modified FGP approach
	Numerical Example
	Conclusions
	Open Access
	Appendices
	References


