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Abstract This paper considers the comparison of two

s; Sð Þ production inventory systems with retrials of unsat-

isfied customers. The time for producing and adding each

item to the inventory is exponentially distributed with rate

b. However, a production rate ab higher than b is used at

the beginning of the production. The higher production rate

will reduce customers’ loss when inventory level approa-

ches zero. The demand from customers is according to a

Poisson process. Service times are exponentially dis-

tributed. Upon arrival, the customers enter into a buffer of

finite capacity. An arriving customer, who finds the buffer

full, moves to an orbit. They can retry from there and inter-

retrial times are exponentially distributed. The two models

differ in the capacity of the buffer. The aim is to find the

minimum value of total cost by varying different parame-

ters and compare the efficiency of the models. The opti-

mum value of a corresponding to minimum total cost is an

important evaluation. Matrix analytic method is used to

find an algorithmic solution to the problem. We also pro-

vide several numerical or graphical illustrations.

Keywords Production inventory � Buffer � Retrial � Matrix

analytic method � Cost analysis

Introduction

A queue is formed when either there is positive service

time or there are no sufficient servers for the arriving

customers. Queuing systems in which an arriving customer

finds the server busy and waiting positions (if any) occu-

pied leaves the service area but repeats his demand after

some random time are called retrial queues. Between trials,

customer is said to be in an orbit. Retrial queues play an

important role in communication and computer networks.

Other applications include stacked aircraft waiting to land,

ticket reservation for trains and flights and queues of retail

shoppers who may leave a long waiting line hoping to

return later when the line may be shorter. For detailed

discussion on retrial queues, one may refer to the mono-

graph by Falin and Templeton (1997) and the bibliography

by Artalejo (2010).

The analysis of inventory systems with retrials has

received little attention of researchers in recent decades.

Inventory is the raw materials, goods in different stages of

production and finished goods, owned by a company that

are ready or will be ready for sale. When customers arrive

into a system and if the demanded item is available the

same is provided with negligible or positive service time. If

the item is out of stock, such customers need not be

backlogged or lost; otherwise they move to an orbit and

may retry from there.

However, retrial in production inventory has received

little attention of the researchers in stochastic analysis. So

we considered a mathematical model in which the main

contributions of this paper are summarized as follows.

• Two production inventory systems with buffer are

developed.

• Matrix analytic method is used to solve the systems.
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• Some important performance measures of the systems

are derived and a cost function is defined.

• The optimum value of a corresponding to the minimum

expected total cost is found.

• The minimum value of expected total cost is found by

varying different parameters of the model.

• The models are compared numerically and suggested

best model for practical purposes.

These models can be applied to manufacturing systems

with stochastic environment.

The rest of the paper is organized as follows. In Sect. 2,

a brief review of literature is presented. In Sect. 3, we

formulate the problem. In Sect. 4, we describe model I and

its stability. We provide performance measures of model I

in Sect. 5. We describe model II and its stability in Sect. 6

and the performance measures of model II in Sect. 7. Cost

analysis is described in Sect. 8. Numerical results and

graphical illustrations are presented in Sects. 9 and 10. In

Sect. 11, we incorporate concluding remarks and future

research.

Literature review

Artalejo et al. (2006) introduced retrial of unsatisfied

customers in inventory systems with positive lead time.

They compared numerically the efficiency of the gener-

alized truncated model with a model based on finite

truncation. There after some important works Krish-

namoorthy and Jose (2007), Yadavalli et al. (2012),

Jeganathan et al. (2013), etc., were reported in this

direction. Recently, Padmavathi et al. (2015) analyzed a

continuous review stochastic s; Sð Þ inventory system.

They considered two models which differ in the way that

the server goes for vacation. Here the joint probability

distribution of the inventory level, the number of demands

in the orbit and the server status is obtained in the steady

state case. Vijaya Laxmi and Soujanya (2015) described

an s; Sð Þ inventory system with service interruptions and

retrial of negative customers. The arrival and service

interruptions were according to a Poisson process. The

lead time and inter-retrial times were exponentially dis-

tributed and solution was obtained in the steady state.

Krishnamoorthy et al. (2015a) analyzed a queuing-in-

ventory system with common life time and retrial of

unsatisfied customers. The arrival of customers followed a

Poisson process and all the underlying distributions were

assumed to be exponential. In this, reservation and can-

cellation of inventory is permitted. Expected number of

revisits to the maximum inventory level and sojourn times

in the maximum inventory level as well as zero inventory

are also computed.

The main area of literature related to this paper is that of

inventory systems with production. Krishnamoorthy and

Jose (2008) compared three production inventory systems

with positive service time and retrial of customers by

assuming all the underlying distributions to be exponential.

They obtained that the model with buffer size equal to the

inventoried items is the best profitable model for practical

purposes. Benjaafar et al. (2010) analyzed a production

inventory system as a Markov decision process and com-

pared the performance of the optimal policy against several

other policies and obtained that performance is poor for

those models that ignore impatience of the customer.

Chang and Lu (2011) studied a serial production inventory

system by providing a phase-type approximation and

obtained good estimates for performance measures such as

fill rate and mean queue-length distributions of each sta-

tion. An efficient production and service scheduling rule to

a flexible production service system was proposed by

Wang et al. (2013). They extended the optimal service

scheduling policy in the classical service system. Yu and

Dong (2014) considered a production lot size problem as a

renewal process and used a numerical approach to find out

the optimal solution to the problem. Karimi-Nasab and

Sabri-Laghaie (2014) constructed three randomised

approximation algorithms to optimize an imperfect pro-

duction problem that creates defectives randomly. The

algorithms can find the global optimum in polynomial time

under certain conditions. Anoop and Jacob (2015) studied

a multiserver Markovian queuing system by considering

the servers as a standard s; Sð Þ production inventory and

they obtained the condition for checking ergodicity and the

steady state solutions. Krishnamoorthy et al. (2015b) ana-

lyzed an s; Sð Þ production inventory system where inter-

ruptions to both service process and production process

may occur and obtained an explicit expression for the

stability of the system. They studied numerically the

dependence of system performance measures on the system

parameters. Rashid et al. (2015) considered a single item

inventory system and extended it to multi item by

proposing a new heuristic algorithm. They considered

demand and production times as stochastic parameters to

calculate long run inventory costs. Baek and Moon (2016)

analyzed an s; Sð Þ production inventory system and found

out an explicit stationary joint probability in product form

and proposed probabilistic interpretations for the inventory

model.

Recently, Cheng et al. (2016) considered the problem of

minimizing the total cost, which includes the production,

delivery and inventory costs. They proposed a fast

approximation algorithm with three different absolute and

asymptotic worst case ratios for the jobs have identical

sizes, identical processing times and both arbitrary sizes

and arbitrary processing times. De et al. (2016) developed a
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mathematical model for ship routing problem for varying

demand and supply scenario at different ports. They pre-

sented a Mixed Integer Non-Linear Programming (MINLP)

model which includes the issues pertaining to multiple time

horizons, sustainability aspects and varying demand and

supply at various ports. They solved the model using Par-

ticle Swarm Optimization of Composite Particle (PSO-CP),

basic Composite Particle (CP) and Genetic Algorithm

(GA).

As presented in above table, there are some papers

which dealt with retrial in inventory. Some others dealt

with production inventory. Even among those researchers

who worked on retrial and production inventory, assump-

tion of different production rates is new.

Mathematical formulation

We consider two production inventory systems where

items are produced one unit at a time according to s; Sð Þ
policy. That is, when the inventory level falls to s produc-

tion starts and it stops when the inventory level reaches

back to S. The time for producing each item to the

inventory is exponentially distributed. The production rate

is ab when production starts, where a 2 1; k½ � and k is a

finite value greater than 1; but the rate is b; when level

crosses above s, i.e., for the level from s þ 1 to S. Items in

inventory incur a holding cost c2 per unit per unit time. The

demand from customers is according to a Poisson process

with rate k. Upon arrival, the customers enter into a buffer

of finite capacity. Orders are fulfilled if inventory is

available. Service times are exponentially distributed with

parameter l. In model I, we provide a buffer having

capacity equal to the maximum inventory level S and in

model II a buffer having varying capacity equal to the

current inventory level. The system incurs holding cost of

customers c4 in the buffer per unit per unit time. When a

customer enters into the system and finds the buffer full, he

moves to an orbit of infinite capacity with probability c and
is lost forever with probability 1��cð Þ. The system incurs

holding cost of customers c3 in the orbit per unit per unit

time. If a customer retries from the orbit and finds the

buffer full, he returns to the orbit with probability d and is

lost forever with probability 1��dð Þ. Inter-retrial times

follow an exponential distribution with linear rate ih when

there are i customers in the orbit.

Table for literature of retrial and production inventory

References Demand Retrial inventory Production inventory Replenishment policy

Policy Single rate Different rates

Artalejo et al. (2006) Stochastic Yes ðs; SÞ Yes

Krishnamoorthy and Jose (2007) Stochastic Yes s; Sð Þ Yes

Krishnamoorthy and Jose (2008) Stochastic Yes Yes s; Sð Þ Yes

Benjaafar et al. (2010) Stochastic Yes s; Sð Þ Yes

Chang and Yang-Shu (2011) Stochastic Yes S� 1; Sð Þ Yes

Yadavalli et al. (2012) Stochastic Yes s; Sð Þ Yes

Wang et al. (2013) Stochastic Yes s; Sð Þ Yes

Jeganathan et al. (2013) Stochastic Yes s; Sð Þ Yes

Karimi-Nasab and Sabri-Laghaie (2014) Deterministic Yes R;Qð Þ Yes

Yu and Dong (2014) Stochastic Yes R;Qð Þ Yes

Krishnamoorthy et al. (2015a) Stochastic Yes s; Sð Þ Yes

Krishnamoorthy et al. (2015b) Stochastic Yes s; Sð Þ Yes

Anoop and Jacob (2015) Stochastic Yes s; Sð Þ Yes

Vijaya Laxmi and Soujanya (2015) Stochastic Yes s; Sð Þ Yes

Rashid et al. (2015) Stochastic Yes R;Qð Þ Yes

Padmavathi et al. (2015) Stochastic Yes s; Sð Þ Yes

Baek and Moon (2016) Stochastic Yes s; Sð Þ Yes

De et al. (2016) Stochastic Yes

Cheng et al. (2016) Stochastic Yes Yes

Our Model Stochastic Yes Yes s; Sð Þ Yes
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Assumptions

(i) Inter-arrival times of demands are exponentially

distributed with parameter k.
(ii) Service times are exponentially distributed with

rate l.
(iii) Production time inventory is exponentially dis-

tributed as ab, when the inventory level lies

between 0 and s; otherwise it is b.
(iv) Inter-retrial times are exponential with linear rate

ih, when there are i customers in the orbit.

Notations

I(t): inventory level at time t.

N(t): Number of customers in the orbit at time t.

M(t): Number of customers in the buffer at time t.

J tð Þ ¼ 0; if the production is in OFF mode

1; if the production is in ON mode

�

e : ð1; 1; . . .1Þ0 a column vector of 1’s of appropriate

order.

Description of model I

In this model, we provide a buffer having capacity equal to

the maximum inventory level S. Let I tð Þ be the inventory

level and N tð Þ be the number of customers in the orbit at

time t. LetM tð Þ be the number of customers in the buffer at

time t. Let J tð Þ be the production status which is equal to 1

if the production is in ON mode and 0 if the production is

in OFF mode. Now X tð Þ; t� 0f g, where X tð Þ ¼
N tð Þ; J tð Þ; I tð Þ;M tð Þð Þ is a level dependent quasi birth–

death process on the state space i; 0; j; kð Þ;f i� 0; j ¼
sþ 1; . . .S; k ¼ 0; 1; . . .; SgU i; 1; j; kð Þ; i� 0; j ¼ 0; . . .;f
S� 1; k ¼ 0; 1; . . .; Sg. The infinitesimal generator Q, of

the process is a block tri-diagonal matrix and it has the

following form:

Q ¼

A1;0 A0

A2;1 A1;1 A0

A2;2 A1;2 A0

A2;3 A1;3 A0

. .
. . .

. . .
.

2
666664

3
777775

ð1Þ

where the blocks A0;A1;i i� 0ð Þ and A2;i i� 1ð Þ are square

matrices, each of order Sþ 1ð Þ 2S� sð Þ; they are given

by

A0 ¼

0; sþ 1

0; sþ 2

..

.

0; S
1; 0
1; 1

..

.

1; S� 1

F

F

. .
.

F

F

F

. .
.

F

2
666666666664

3
777777777775

A1;i¼

0; sþ 1

0; sþ 2

..

.

0; S

1; 0

1; 1

..

.

1; s

1; sþ 1

1; sþ 2

..

.

1; S� 1

K J

J K

. .
. . .

.

J K

L0 M1

J L1 M1

. .
. . .

. . .
.

J L1 M1

J L M

J L . .
.

. .
. . .

.
M

M J L

2
666666666666666666666666664

3
777777777777777777777777775

A2;i ¼

0; sþ 1

0; sþ 2

..

.

0; S
1; 0
1; 1

..

.

1; S� 1

V

V

. .
.

V

V

V

. .
.

V

2
666666666664

3
777777777775

p; qð Þth element of the matrices contained in A0, A1;i and

A2;i are given by F½ �pq¼
kc; p ¼ q ¼ Sþ 1

0; otherwise

�
,
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K½ �pq¼

� kþ ihð Þ; p ¼ q ¼ 1

� kþ lþ ihð Þ; 2� p� S; q ¼ p

� kcþ lþ ih 1� dð Þð Þ; p ¼ q ¼ Sþ 1

k; 1� p� S; q ¼ pþ 1

0; otherwise

8>>>><
>>>>:

L0½ �pq¼

� kþ abþ ihð Þ; 1� p� S; q ¼ p

� kcþ abþ ih 1� dð Þð Þ; p ¼ q ¼ Sþ 1

k; 1� p� S; q ¼ pþ 1

0; otherwise

8>><
>>:

L1½ �pq¼

� kþ abþ ihð Þ; p ¼ q ¼ 1

� kþ abþ lþ ihð Þ; 2� p� S; q ¼ p

� kcþ abþ lþ ih 1� dð Þð Þ; p ¼ q ¼ Sþ 1

k; 1� p� S; q ¼ pþ 1

0; otherwise

8>>>><
>>>>:

L½ �pq¼

� kþ bþ ihð Þ; p ¼ q ¼ 1

� kþ bþ lþ ihð Þ; 2� p� S; q ¼ p

� kcþ bþ lþ ih 1� dð Þð Þ; p ¼ q ¼ Sþ 1

k; 1� p� S; q ¼ pþ 1

0; otherwise

8>>>><
>>>>:

J½ �pq¼
l; 2� p� Sþ 1; q ¼ p� 1

0; otherwise

�

M1½ �pq¼
ab; 1� p� Sþ 1; q ¼ p

0; otherwise

�

M½ �pq¼
b; 1� p� Sþ 1; q ¼ p

0; otherwise

�

V½ �pq¼
ih; 1� p� S; q ¼ pþ 1

ih 1� dð Þ; p ¼ q ¼ Sþ 1

0; otherwise

8<
:

We use Neuts and Rao (1990) truncation method to

modify the infinitesimal generator Q to the following form

where A1;i ¼ A1 andA2;i ¼ A2 for i�N.

Q ¼

A1;0 A0

A2;1 A1;1 A0

A2;2 A1;2 A0

. .
. . .

. . .
.

A2;N�1 A1;N�1 A0

A2 A1 A0

A2 A1 A0

2
6666666664

3
7777777775

System stability

Using Lyapunov test function (Falin and Templeton 1997)

we define u sð Þ ¼ i, if s is a state in the level i.

The mean drift ys for any s belonging to the level i� 1 is

given by

ys ¼
X
p 6¼s

qsp u pð Þ � u sð Þð Þ

¼
X
u

qsuðuðpÞ � uðsÞÞ þ
X
m

qsvðuðvÞ � uðsÞÞ

þ
X
w

qswðuðwÞ � uðsÞÞ

where u; v;w vary over the states belonging to the levels

i� 1ð Þ; i and ðiþ 1) respectively. Then by the definition of

u,u uð Þ ¼ i� 1;u vð Þ ¼ i and u wð Þ ¼ iþ 1 so that

ys ¼ �
X
u

qsu þ
X
w

qsw

¼ �ih 1� dð Þ þ kc; if the buffer is full

�ih; otherwise

�

Since 1� dð Þ[ 0, for any e[ 0, we can find N 0 large
enough that ys\� e for any s belonging to the level i�N 0.
Then the system under consideration is stable by Tweedi’s

(1975) result.

Steady state probability vector

Let x ¼ x0; x1; . . .; xN�1; xN ; . . .ð Þ be the steady state prob-

ability vector of Q. Under the stability condition, xi’s

(i C N) are given by

xNþr�1 ¼ xN�1R
r r� 1ð Þ

where R is the unique non negative solution of the equation

R2A2 þ RA1 þ A0 ¼ 0

for which the spectral radius is less than one and the vec-

tors x0; x1; . . .; xN�1 are obtained by solving

x0A1;0 þ x1A2;1 ¼ 0

xi�1A0 þ xiA1;i þ xiþ1A2;iþ1 ¼ 0 1� i�N � 2ð Þ
xN�2A0 þ xN�1 A1;N�1 þ RA2

� �
¼ 0

9=
; ð2Þ

subject to the normalizing condition

XN�2

i¼0

xi þ xN�1 I � Rð Þ�1

" #
e ¼ 1 ð3Þ

Algorithmic analysis

To find R, we use iterative method. Denote the sequence of

R by Rn Nð Þf g and is defined by R0 Nð Þ ¼ 0 and Rnþ1 Nð Þ ¼
�R2

n Nð ÞA2 Nð Þ � A0 Nð Þ
� �

A�1
1 Nð ÞÞ. The value of N must be

chosen such that g Nð Þ � g N þ 1ð Þj j\e, where e is an

arbitrarily small value and g Rð Þ, spectral radius of R(N).

For detailed discussion of selection of the value of N, one

can refer to Neuts (1981).
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System performance measures

We partition the steady state probability vector x ¼
x0; x1; . . .; xN�1; xN ; . . .ð Þ such that its (ðiþ 1Þth component

is given by

xi ¼ ðyi;0;sþ1;0; . . .; yi;0;sþ1;S; yi;0;sþ2;0; . . .; yi;0;sþ2;S;

. . .; yi;0;S;0; . . .; yi;0;S;S; yi;1;0;0; . . .; yi;1;0;S; yi;1;1;0; . . .; yi;1;1;S;

. . .; yi;1;S�1;0; . . .; yi;1;S�1;SÞ

(i) Expected inventory level, EI, in the system is

given by

EI ¼
X1
i¼0

XS
j¼sþ1

XS
k¼0

jyi;0;j;k þ
X1
i¼0

XS�1

j¼0

XS
k¼0

jyi;1;j;k

(ii) Expected number of customers, EC, in the

orbit is given by

EC ¼
X1
i¼1

ixi

 !
e ¼

XN�1

i¼1

ixi

 ! 

þxN N I � Rð Þ�1þR I � Rð Þ�2
� ��

e

(iii) Expected number of customers, EB, in the

buffer is given by

EB ¼
X1
i¼0

XS
j¼sþ1

XS
k¼0

kyi;0;j;k

þ
X1
i¼0

XS�1

j¼0

XS
k¼0

kyi;1;j;k

(iv) Expected switching rate, ESR, is given by

ESR ¼ l
X1
i¼0

XS
k¼1

yi;0;sþ1;k

(v) Expected number of departures, EDS, after

completing service is

EDS ¼ l
X1
i¼0

XS
j¼sþ1

XS
k¼1

yi;0;j;k þ
X1
i¼0

XS�1

j¼1

XS
k¼1

yi;1;j;k

" #

(vi) Expected number of external customers

lost, EL1, before entering the orbit per unit

time is

EL1 ¼ 1� cð Þk
X1
i¼0

XS
j¼sþ1

yi;0:j;S þ
X1
i¼0

XS�1

j¼0

yi;1;j;S

" #

(vii) Expected number of customers lost, EL2, due

to retrials per unit time

EL2 ¼ h 1� dð Þ
X1
i¼1

XS
j¼sþ1

iyi;0;j;S þ
X1
i¼1

XS�1

j¼0

iyi;1;j;S

" #

(viii) Overall rate of retrials,

ORR ¼ h
X1
i¼1

ixi

" #
e

(ix) Successful rate of retrials,

SRR ¼ h
X1
i¼1

i
XS
j¼sþ1

XS�1

k¼0

yi;0;j;k þ
XS�1

j¼0

XS�1

k¼0

yi;1;j;k

" #

Description of model II

In this model, we assume that there is a buffer of varying

(finite) capacity, equal to the current inventory level. Now

X tð Þ; t� 0f g, where X tð Þ ¼ N tð Þ; J tð Þ; I tð Þ;M tð Þð Þ is a

level dependent quasi birth–death process on the state

space i; 0; j; kð Þ; i� 0; j ¼ sþ 1; . . .S; k ¼ 0; 1; . . .; jf g
U i; 1; j; kð Þ; i� 0; j ¼ 0; . . .; S� 1; k ¼ 0; 1; . . .; jf g. Then

the infinitesimal generator Q has the form (1) where the

blocks A0; A1;i i� 0ð Þ and A2;i i� 1ð Þ are square matrices of

the same order 1
2

S� sð Þ Sþ sþ 3ð Þ þ S Sþ 1ð Þ½ � and they

are given by
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A0 ¼

0; sþ 1

0; sþ 2

..

.

0; S
1; 0
1; 1

..

.

1; S� 1

Bsþ1

Bsþ2

. .
.

BS

B0

B1

. .
.

BS�1

2
6666666666664

3
7777777777775

A2;i ¼

0; sþ 1

0; sþ 2

..

.

0; S
1; 0
1; 1

..

.

1; S� 1

Csþ1

Csþ2

. .
.

CS

C0

C1

. .
.

CS�1

2
6666666666664

3
7777777777775

p; qð Þth element of the matrices contained in A0, A1;i and

A2;i are given by

B0½ �pq¼
kc; p ¼ q ¼ 1

0; otherwise

�

Bn½ �pq¼
kc; p ¼ q ¼ nþ 1

0; otherwise

� �
1� n� S

C0½ �pq¼
ih 1� dð Þ; p ¼ q ¼ 1

0; otherwise

�

Cn½ �pq¼
ih; 1� p� n; q ¼ pþ 1

ih 1� dð Þ; p ¼ q ¼ nþ 1

0; otherwise

9=
;

8<
: 1� n� S

E0½ �pq¼
� kcþ abþ ih 1� dð Þð Þ; p ¼ q ¼ 1

0; otherwise

�

En½ �pq¼

� kþ abþ ihð Þ; p ¼ q ¼ 1

� kþ abþ lþ ihð Þ; 2� p� n; q ¼ p

� kcþ abþ lþ ih 1� dð Þð Þ; p ¼ q ¼ nþ 1

k; 1� p� n; q ¼ pþ 1

0; otherwise

9>>>>=
>>>>;

8>>>><
>>>>:

1� n� s

Dn½ �pq¼

� kþ bþ ihð Þ; p ¼ q ¼ 1

� kþ bþ lþ ihð Þ; 2� p� n; q ¼ p

� kcþ bþ lþ ih 1� dð Þð Þ; p ¼ q ¼ nþ 1

k; 1� p� n; q ¼ pþ 1

0; otherwise

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

sþ 1� n� S� 1

Gn½ �pq¼
� kþ ihð Þ; p ¼ q ¼ 1

� kþ lþ ihð Þ; 2� p� n; q ¼ p

� kcþ lþ ih 1� dð Þð Þ; p ¼ q ¼ nþ 1

k; 1� p� n; q ¼ pþ 1

0; otherwise

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

sþ 1� n� S

Hn½ �pq¼
l; 2� p� nþ 1; q ¼ p� 1

0; otherwise

� �
1� n� S

Tn½ �pq¼
ab; 1� p� nþ 1; q ¼ p

0; otherwise

� �
0� n� s

Un½ �pq¼
b; 1� p� nþ 1; q ¼ p

0; otherwise

� �
sþ 1� n� S� 1

A1;i ¼

0; sþ 1
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System stability

The mean drift ys for any s belonging to the level i� 1 is

given by

ys ¼�
X
u

qsu þ
X
w

qsw

¼
�ih 1� dð Þ þ kc; if the buffer is full

�ih; otherwise

�

Since 1� dð Þ[ 0, for any e[ 0; we can find N 0 large
enough that ys\� e for any s belonging to the level i�N 0.
Then the system under consideration is stable.

System performance measures

We partition the steady state probability vector x ¼
x0; x1; . . .; xN�1; xN ; . . .ð Þ such that its ðiþ 1Þth component

is given by

xi ¼ yi;0;sþ1;0; . . .; yi;0;sþ1;sþ1; yi;0;sþ2;0; . . .; yi;0;sþ2;sþ2;
�

. . .; yi;0;S;0; . . .; yi;0;S;S;yi;1;0;0; yi;1;1;0; yi;1;1;1; . . .; yi;1;S�1;0;

. . .; yi;1;S�1;S�1

�

Then,

(i) Expected inventory level, EI, in the system is

given by

EI ¼
X1
i¼0

XS
j¼sþ1

Xj

k¼0

jyi;0;j;k þ
X1
i¼0

XS�1

j¼0

Xj

k¼0

jyi;1;j;k

(ii) Expected number of customers, EC, in the

orbit is given by

EC ¼
X1
i¼1

ixi

 !
e ¼

XN�1

i¼1

ixi

 ! 

þxN N I � Rð Þ�1þR I � Rð Þ�2
� ��

e

(iii) Expected number of customers, EB, in the

buffer is given by

EB ¼
X1
i¼0

XS
j¼sþ1

Xj

k¼0

kyi;0;j;k

þ
X1
i¼0

XS�1

j¼0

Xj

k¼0

kyi;1;j;k

(iv) Expected switching rate, ESR, is given by

ESR ¼ l
X1
i¼0

Xsþ1

k¼1

yi;0;sþ1;k

(v) Expected number of departures, EDS, after

completing service is

EDS ¼ l
X1
i¼0

XS
j¼sþ1

Xj

k¼1

yi;0;j;k

þ l
X1
i¼0

XS�1

j¼1

Xj

k¼1

yi;1;j;k

(vi) Expected number of external customers lost,

EL1, before entering the orbit per unit time is

EL1 ¼ 1� cð Þk
X1
i¼0

XS
j¼sþ1

yi;0:j;jþ
X1
i¼0

XS�1

j¼0

yi;1;j;j

" #

(vii) Expected number of customers lost, EL2; due

to retrials per unit time

EL2 ¼ h 1� dð Þ
X1
i¼1

XS
j¼sþ1

iyi;0;j;j þ
X1
i¼1

XS�1

j¼0

iyi;1;j;j

" #

(viii) Overall rate of retrials,

ORR ¼ h
X1
i¼1

ixi

" #
e

(ix) Successful rate of retrials,

SRR ¼ h
X1
i¼1

i
XS
j¼sþ1

Xj�1

k¼0

yi;0;j;k þ
XS�1

j¼1

Xj�1

k¼0

yi;1;j;k

" #

Table 1 Variations in a

a Model 1 Model 2

ORR SRR ORR SRR

1.1 2.2655 0.9752 2.5856 0.9476

1.2 2.1966 1.0197 2.5293 0.9794

1.3 2.1363 1.0600 2.4839 1.0051

1.4 2.1026 1.0825 2.4479 1.0255

1.5 2.0893 1.0910 2.4194 1.0413

1.6 2.0840 1.0940 2.3971 1.0535

1.7 2.0813 1.0953 2.3796 1.0628

1.8 2.0797 1.0959 2.3658 1.0698

1.9 2.0786 1.0962 2.3548 1.0752

. S = 20; s = 5; k = 1.5; c = 0.8; N = 25; h = 1.5; b = 2; d = 0.7;

l = 3; C = 20; c1 = 1; c2 = 1; c3 = 1; c4 = 1; c5 = 1; c6 = 1;

c7 = 2; c8 = 1

376 J Ind Eng Int (2017) 13:369–380

123



Cost analysis

Here we consider the following costs

C = fixed cost

c1 = procurement cost/unit

c2 = holding cost of inventory/unit/unit time

c3 = holding cost of customers in the orbit/unit/unit

time

c4 = holding cost of customers in the buffer/unit/unit

time

c5 = cost due to loss of primary customers/unit/unit

time

c6 = cost due to loss of retrial customers/unit/unit time

c7 = cost due to service/unit/unit time

c8 = revenue from service/unit/unit time

In terms of these costs we define the expected total cost

function as

ETC ¼ C þ S� sð Þc1ð ÞESRþ c2EIþ c3ECþ c4EB

þ c5EL1 þ c6EL2 þ c7 � c8ð ÞEDS

.

Numerical results and interpretation

Here we compare the overall rate of retrials and successful

rate of retrials of model I and II by varying different

parameters.

Tables 1 and 2 contain changes of overall rate of retrials

(ORR) and successful rate of retrials (SRR) with respect to

variations of a and l. When the replenishment rate or

service rate increases, the number of customers in the orbit

decreases. Hence, overall rate of retrials decreases and the

Table 2 Variations in l

l Model 1 Model 2

ORR SRR ORR SRR

2.1 2.3901 0.9415 2.8332 0.8324

2.2 2.3457 0.9631 2.7637 0.8685

2.3 2.3044 0.9833 2.7012 0.9008

2.4 2.2661 1.0022 2.6454 0.9295

2.5 2.2305 1.0199 2.5958 0.9548

2.6 2.1975 1.0364 2.5518 0.9771

2.7 2.1670 1.0518 2.5126 0.9966

2.8 2.1388 1.0660 2.4779 1.0136

2.9 2.1129 1.0791 2.4470 1.0284

S = 20; s = 5; k = 1.5; c = 0.8; N = 25; h = 1.5; b = 2; d = 0.7;

a = 1.5; C = 20; c1 = 1; c2 = 1; c3 = 1; c4 = 1; c5 = 1; c6 = 1;

c7 = 2; c8 = 1

Table 3 Variations in c

c Model 1 Model 2

ORR SRR ORR SRR

0.1 1.5532 0.8967 1.5642 0.8284

0.2 1.6109 0.9205 1.6399 0.8549

0.3 1.6742 0.9459 1.7305 0.8831

0.4 1.7437 0.9726 1.8367 0.9129

0.5 1.8199 1.0007 1.9588 0.9439

0.6 1.9028 1.0299 2.0965 0.9758

0.7 1.9926 1.0600 2.2501 1.0083

0.8 2.0893 1.0910 2.4194 1.0413

0.9 2.1931 1.1227 2.6046 1.0745

S = 20; s = 5; k = 1.5; N = 25; h = 1.5; b = 2; d = 0.7; l = 3;

a = 1.5; C = 20; c1 = 1; c2 = 1; c3 = 1; c4 = 1; c5 = 1; c6 = 1;

c7 = 2; c8 = 1

Table 4 Variations in d

d Model 1 Model 2

ORR SRR ORR SRR

0.1 1.8089 0.9971 1.8984 0.8717

0.2 1.8340 1.0063 1.9400 0.8846

0.3 1.8640 1.0171 1.9914 0.9010

0.4 1.9006 1.0300 2.0565 0.9222

0.5 1.9465 1.0458 2.1412 0.9503

0.6 2.0065 1.0654 2.2558 0.9884

0.7 2.0893 1.0910 2.4194 1.0413

0.8 2.2150 1.1262 2.6806 1.1164

0.9 2.4416 1.1795 3.2220 1.2297

S = 20; s = 5; k = 1.5; c = 0.8; N = 25; h = 1.5; b = 2; l = 3;

a = 1.5; C = 20;c1 = 1; c2 = 1; c3 = 1; c4 = 1; c5 = 1; c6 = 1;

c7 = 2; c8 = 1

Table 5 Variations in k

k Model 1 Model 2

ORR SRR ORR SRR

1.1 1.8575 1.0591 2.0378 1.0083

1.2 1.9089 1.0668 2.1230 1.0160

1.3 1.9644 1.0747 2.2149 1.0240

1.4 2.0245 1.0828 2.3137 1.0325

1.5 2.0893 1.0910 2.4194 1.0413

1.6 2.1594 1.0993 2.5322 1.0505

1.7 2.2348 1.1077 2.6519 1.0600

1.8 2.3161 1.1163 2.7789 1.0699

1.9 2.4033 1.1250 2.9133 1.0800

S = 20; s = 5; c = 0.8; N = 25; h = 1.5; b = 2; d = 0.7; l = 3;

a = 1.5; C = 20; c1 = 1; c2 = 1; c3 = 1; c4 = 1; c5 = 1; c6 = 1;

c7 = 2; c8 = 1
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successful rate of retrials increases. Tables 3, 4 and 5 show

the changes of ORR and SRR with respect to variations of

c, d and k respectively. In all the cases as the variations of

c, d and k increases the number of customers in the orbit

increases and hence the overall and successful rates of

retrials increase. Table 6 shows that as the retrial rate h of

customers in the orbit increases, the overall and successful

rate of retrials increase.

Graphical illustrations and interpretations

Here we compare the two models by calculating the

expected total cost (ETC) per unit time by varying the

parameters one at a time keeping others fixed. In Fig. 1, we

compare the values of the cost function by varying the

value of a. For given parameter values, the cost function

has minimum values 138.6508 at a ¼ 1:3 for model I and

92.1336 at a ¼ 1:4 for model II. From Fig. 2, as l varies

ETC has minimum values 346.2704 at l = 2.1 for model I

and 320.5516 at l = 2.1 for model II. From Fig. 3, as c
varies ETC has minimum values 92.9188 at c = 0.5 for

model I and 44.4500 at c = 0.5 for model II. The minimum

values of ETC are at d = 0.6 for model I and at d = 0.8 for

model II as seen in Fig. 4. The optimum values are 73.1769

and 24.0576, respectively. In Figs. 5, 6 we can see that

ETC is minimum for model II. Hence, model II is more

efficient for practical purposes in the given range of

parameter values.

Table 6 Variations in h

h Model 1 Model 2

ORR SRR ORR SRR

1.1 1.5776 0.9232 1.8664 0.9281

1.2 1.7081 0.9694 2.0089 0.9609

1.3 1.8367 1.0125 2.1485 0.9903

1.4 1.9638 1.0529 2.2852 1.0170

1.5 2.0893 1.0910 2.4194 1.0413

1.6 2.2136 1.1270 2.5513 1.0635

1.7 2.3367 1.1611 2.6810 1.0840

1.8 2.4586 1.1934 2.8088 1.1029

1.9 2.5796 1.2243 2.9347 1.1206

S = 20; s = 5; k = 1.5; c = 0.8; N = 25; b = 2; d = 0.7; l = 3;

a = 1.5; C = 20; c1 = 1; c2 = 1; c3 = 1; c4 = 1 c5 = 1 c6 = 1;

c7 = 2; c8 = 1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
138
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E
TC
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92

93
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95

Alpha

E
TC

Model 1

Model 2

Fig. 1 ETC versus a. S = 20; s = 5; k = 1.5; c = 0.8; N = 25;

h = 1.5; b = 2; d = 0.7; l = 3 C = 20; c1 = 1; c2 = 1; c3 = 28;

c4 = 3.6; c5 = 50; c6 = 50; c7 = 1.01; c8 = 1

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
300

350

400

450

500

Mu

E
TC

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
320

340

360
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Mu

E
TC

Model 1

Model 2

Fig. 2 ETC versus l. S = 20; s = 5; k = 1.5; c = 0.8; N = 25;

h = 1.5; b = 2; d = 0.7; a = 1.5; C = 20; c1 = 1; c2 = 1; c3 = 1;

c4 = 1; c5 = 1; c6 = 1; c7 = 150; c8 = 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
92.9

93

93.1

93.2

Gamma

E
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Fig. 3 ETC versus c. S = 20; s = 5; k = 1.5; N = 25; h = 1.5;

b = 2; d = 0.7; l = 3; a = 1.5; C = 20; c1 = 14; c2 = 1; c3 = 3;

c4 = 3; c5 = 3.3; c6 = 6; c7 = 4; c8 = 1
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Concluding remarks and future research

The main aspect of the paper is to compare two production

inventory systems with different production rates and

retrials. We derived formulae for some important perfor-

mance measures of the system and constructed a suit-

able cost function. The most striking feature of the paper is

the evaluation of the optimum value of a, the coefficient of
replenishment rate, corresponding to the minimum expec-

ted total cost. The minimum value of total cost is obtained

by varying different parameters of the system. These

evaluations are carried out in previous section of the paper.

We found that the model with buffer of varying capacity is

efficient for practical purposes in the given range of

parameter values.

The models discussed in this paper have remarkably

good applications in industries such as automobiles, tex-

tiles and drugs. For instance, when we consider an auto-

mobile tyre producing company, each tyre can be

considered as an inventory. When the storage of tyres in

the company is reduced to a particular lower level, we

increase the production rate. The increased production rate

will reduce the loss of customers from the company in the

absence of tyres. The higher production rate also increases

the rate of satisfaction of the customers and goodwill of the

company. This situation leads to more profitable circum-

stances of the company.

For future research, one can extend this model in several

ways. For instance, it could be of interest to extend the

exponential service distribution to phase-type distribution

or a general distribution. Another interesting extension may

be the case with the change of both arrival and service

distributions to some other suitable probability

distributions.
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