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Abstract Simple exponential smoothing (SES) methods

are the most commonly used methods in forecasting and

time series analysis. However, they are generally insensi-

tive to non-stationary structural events such as level shifts,

ramp shifts, and spikes or impulses. Similar to that of

outliers in stationary time series, these non-stationary

events will lead to increased level of errors in the fore-

casting process. This paper generalizes the SES method

into a new adaptive method called revised simple expo-

nential smoothing (RSES), as an alternative method to

recognize non-stationary level shifts in the time series. We

show that the new method improves the accuracy of the

forecasting process. This is done by controlling the number

of observations and the smoothing parameter in an adaptive

approach, and in accordance with the laws of statistical

control limits and the Bayes rule of conditioning. We use a

numerical example to show how the new RSES method

outperforms its traditional counterpart, SES.

Keywords Time series analysis � Adaptive exponential

smoothing � Level shifts � Statistical control limits

Introduction

Daily sales of dairy products, annual harvest of a farm,

daily oil prices, and monthly international air passengers

are some examples of time series which show stochastic

processes or sequences of random variables. Time series is

an important tool in Operations Research which is used to

forecast and analyze the future events in planning, control

and management of projects, personnel, finance, produc-

tion, operations and services (Sekar 2010).

To model stationary and non-stationary time series,

different methods such as ARIMA, innovations state space,

regression, standard exponential smoothing, and Holt’s

trend methods have been developed (Box et al. 2008; Fried

2007; Hyndman et al. 2002; Chen and Tiao 1990; Mont-

gomery and Johnson 1997). Still, simple forecasting

methods such as Simple Exponential Smoothing method

(SES), originated in the seminal work of Brown (1959), is

the most commonly used in practice for its simplicity,

computational efficiency, reasonable accuracy, ease of

adjusting the forecast responsiveness, and the fact that is

competitive with respect to other more complicated fore-

casting methods (Montgomery and Johnson 1997; Makri-

dakis et al. 1998; Croux et al. 2010; Xu and Perron 2013).

Despite the competitive advantages of the SES method

against its more complex counterparts, we note that by

using the SES method the outliers and structural breaks

cannot be detected effectively. In fact, SES is generally less

sensitive to rare events such as level shifts, ramp shifts,

spikes, impulses, and the change of underlying probability

function (Hu and Sun 2001; Hu et al. 2011; Koehler et al.

2012). These events are expected to be caused by institu-

tional, legislative, technical, natural, or economic changes,

e.g. ,the oil embargo crisis in 1973. The results, however,

increase the error level (Gardner 2006). To cope with these
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events more effectively, the researchers have developed

different adaptive exponential smoothing methods in which

the smoothing parameter is changed automatically in a

controlled manner as the characteristics of the time series

change (Trigg and Leach 1967; Whybark 1973; Gardner

2006). Those adaptive methods modify the constant

parameter methods through constructing a convex combi-

nation of the current observations and the previous obser-

vations with weights depending on the last time point of a

level shift. The value of the smoothing parameter in the

existing adaptive methods depends on the magnitude of the

most recent forecasting error (Tsay 1988; Yashchin 1997;

Taylor 2004; Schelter et al. 2006; Fried and Gather 2007;

Fried 2007; Koehler et al. 2012). For instance, in the

Taylor’s STES (2004)1 method, the smoothing parameter is

modeled as a continuous function of a transition variable,

where the choice of the transition variable plays a vital role

in the success of the method.

A new approach was developed by Monfared and Steiner

(2000) to deal with level shifts in time series. The idea behind

the new approach was to turn the infinite-horizon SES

method into a finite-horizon one. The new method was

implemented on an automated scheduling and control man-

ufacturing system when the random order stream faces level

shifts (Monfared and Yang 2005). It was shown that the new

finite-horizon SES method could outperform the traditional

one in dealing with non-stationary level shifts. In fact, the

finite version of SES generalizes the traditional infinite one

in a sense that it can easily be extended to the infinite one in

the absence of level shifts. Monfared and Yang (2004) fur-

ther developed the finite version of SES method by per-

forming a sensitivity analysis on the smoothing parameters.

It was shown that the number of observations which enters

the forecasting process influences the accuracy of predic-

tions. However, no mechanism was proposed to calculate the

size of the observations which should be taken into the

forecasting process in an adaptive manner.

Considering the fact that the weighted average of pre-

vious observations is the base of forecast in any SES

method, it would be better to take more post-shift obser-

vations when a level shift occurs. In this paper, we intro-

duce a new concept of shift arising probability into the

context of our finite-horizon SES method to produce the

Revised Simple Exponential Smoothing (RSES). In RSES,

we estimate the exact number of observations using the

shift arising probability, control charts, and Bayes rule of

conditioning. We assign a probability to a level shift

occurrence with the confidence level equal to 1-a in which

a is the Type I error, i.e., the error that is seeing an out-of-

control value is confused with an actual level shift. The

RSES method is different from the work of Taylor (2004)

in a sense that we do not incorporate transitional variables

and we do not need any judgmental information.

This paper is organized as follows. In Sect. 2, the RSES

method is presented and its basic features are compared with its

standard counterpart, SES. In Sect. 3, discussions are presented

to determine the parameters of the RSES. In Sect. 4, an algo-

rithm for RSES is presented which follows by an illustrative

numerical example. Section 5 concludes the paper.

The RSES

In this Section, the new method called RSES is defined and

compared with the traditional version of SES. SES is

defined as:

YðtÞSES ¼
X1

j¼1

að1 � aÞj�1
Xðt � jÞ ¼ aXðt � 1Þ

þ að1 � aÞXðt � 2Þ þ að1 � aÞ2
Xðt � 3Þ þ . . .

0\a� 1

ð1Þ

In which, Y(t)SES is the forecast value for the time period t,

X(t - j) is the past observation for the time period t-j, and a
is the smoothing parameter or the discounting parameter. It is

important to note that, in SES method, the number of past

observations which is taken into account is infinite.

Now, let us define the revised simple exponential

smoothing (RSES) method as:

YðtÞRSES ¼ 1Ps
j¼1 qj�1

Xs

j¼1

qj�1Xðt � jÞ ¼ 1Ps
j¼1 qj�1

fXðt � 1Þ

þ qXðt � 2Þ þ q2Xðt � 3Þ þ � � � þ qs�1Xðt � s þ 1Þg
0� q� 1

ð2Þ

where, Y(t)RSES is the forecast value for the time period t,

X(t-j) is the past observation for the time period t-j, s is the

maximum number of past observations entering the forecasting

process which is now a variable, and q is the smoothing

parameter or the discounting parameter. Note that, q in the

RSES is the same as 1-a in the SES. This is while in the SES

j changes from 1 to infinity, i.e., s ? ?. In both methods,

however, coefficients of values change exponentially. This

implies that by increasing the power of 1-a in the SES or q in

the RSES, the influence of previous values is decreased in both

methods. To compare the RSES against the SES, some math-

ematical properties should be considered as follows.

Proposition 1 YðtÞRSES ¼ â.

Proof To obtain the forecast value, sum of squared error

(SSE) between the forecast value (â) and the actual value

should be minimized such that:1 Smooth transition exponential smoothing.
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min : SSE ¼
Xs

j¼1

qj�1½Xðt � jÞ � â�2

dSSE

dâ
¼ �2

Xs

j¼1

qj�1½Xðt � jÞ � â� ¼ 0

)
Xs

j¼1

qj�1½Xðt � jÞ � â� ¼ 0

) â ¼ 1Ps
j¼1 qj�1

Xs

j¼1

qj�1Xðt � jÞ

Therefore: YðtÞ
RSES

¼ â.

Proposition 2 SES and RSES methods are equal if the

number of observations goes to infinity.

Proof It suffices to show that Eqs. 1 and 2 are equal if

s ! 1. Considering the geometric sequence we will have:

YðtÞRSES ¼ 1P1
j¼1 qj�1

X1

j¼1

qj�1Xðt � jÞ ¼ ð1 � qÞ

�
X1

j¼1

qj�1Xðt � jÞ ¼ ð1 � qÞXðt � 1Þ

þ ð1 � qÞqXðt � 2Þ þ ð1 � qÞq2Xðt � 3Þ
þ � � � þ ð1 � qÞq jXðt � j � 1Þ

By considering q = 1-a then the last equation is the

same as Eq. 1. Now, we show that by limiting the number

of past observations from 1 in the SES to s in the RSES,

we enable the RSES to detect sudden level shifts in non-

stationary time series.

Treating level shifts using RSES

In the RSES method, the number of previous observations

(s in Eq. 1) which enters the forecasting process influences

the accuracy of our predictions. This can be associated with

the fact that the weighted average of the previous values is

the basis for our forecast. If a level shift is happened for

certain, i.e., with probability one, then, only post-shift

values could be used to catch the level shift. But when a

level shift occurs with certain probability, we would prefer

to take more of post-shift values and less of pre-shift values

into our estimation. In fact, higher weights are assigned to

the post-shift observations and lower weights are given to

the pre-shift observations. As we will show, this procedure

makes the predictions more accurate.

To detect a level shift, the control charts technique from

the statistical quality control theory is employed. In such

control charts, observation of an out-of-control limit event

might be a sign of a level shift. At the same time, it might

be a sign of an outlier or a spike. To cope with this

uncertainty, we assign a confidence level equal to 1-a to

our perceived level shift event in which a is the Type I

error, i.e., the error that seeing an out-of-control value such

as a spike or an outlier confuses with a level shift. Also, we

introduce the shift arising probability as a new measure of

uncertainty and launch the shift change process according

to this uncertainty measure as will be considered in the

following.

The shift arising probability

In the RSES, total weights (i.e., equal to 1) are assigned to

a limited number of past observations (s) to minimize the

impact of pre-shift values or to maximize the impact of

post-shift values. Also, the portion of the weights which

will be assigned to the post-shift values is equal to the shift

arising probability. If c denotes the shift arising probability,

then 100 c % of the total weight is assigned to the post-

shift values and 100(1-c) % to the pre-shift values. The

probability of a level shift is obtained using the result of

Theorem below.

Theorem When an out-of- control observation has been

detected, the probability of a level shift becomes:

pðBjA0Þ ¼ ð1 � bÞpðBÞ
ð1 � bÞpðBÞ þ að1 � pðBÞÞ ð3Þ

In which, B: is the shift arising event from l0 to l1. A
0
: is

the event of seeing an observation out of the control limits

of l0, a: is the Type I error, i.e., a level shift has not

happened but it is conceived as it happened (e.g., a spike or

an outlier. b: is the Type II error, i.e., an actual level shift

has happened but has not been detected, mistakenly.

Proof First, consider LCLl0
and UCLl0

as the control

limits of l0 and A as the event of seeing an observation

inside the control limits of l0 (complementing A
0
), then b

can be probabilistically defined as:

b ¼ pðAjBÞ ¼ p seeing an observation inside UCLl0

�

and LCLl0

��level shift happenedÞ

Hence,

1 � b ¼ pðA0jBÞ
¼ p seeing an observation outside UCLl0

�

and LCLl0

��level shift happenedÞ

Note that 1-b is not the shift arising probability,

pðBjA0Þ. Therefore, care must be taken to ensure that

pðBjA0Þ is calculated rather than pðA0jBÞ. To find out

pðBjA0Þ, the Bayes law of conditioning is used as follows:
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pðxjyÞ ¼ pðx \ yÞ
pðyÞ ¼ pðyjxÞpðxÞ

pðyÞ ¼ pðyjxÞpðxÞ
pðyjxÞpðxÞ þ pðyjx0Þpðx0Þ

Therefore:

pðBjA0Þ ¼ pðA0jBÞpðBÞ
pðA0jBÞpðBÞ þ pðA0jB0ÞpðB0Þ

where, p(B) is the probability of having a shift change in

the mean value of the process, p(B0) = 1-p(B) in which B0

complements B, i.e., not facing a shift level event from l0

to l1, p(A0|B) = 1-b as seen before. Moreover, p(A0|B0) is

evidently equal to a, i.e., p(A0|B0) = a, i.e., Type I error or

the probability of being out of the control limits of l0 when

a level shift has not been happened (e.g., a spike or an

outlier took place). The proof is completed now such that:

pðBjA0Þ ¼ pðA0jBÞpðBÞ
pðA0jBÞpðBÞ þ pðA0jB0ÞpðB0Þ

¼ ð1 � bÞpðBÞ
ð1 � bÞpðBÞ þ að1 � pðBÞÞ : ð4Þ

Please note that the probability b can be estimated using

OC curves as will be considered in the next sub section.

Estimating b using two-sided OC curves

The following three steps should be followed to estimate b
using an OC curve:

Step 1 Set a (i.e., the Type I error), and n (i.e., number of

out-of-control limits observed),

Step 2 Set d = |l1-l0|/r (i.e., normalized level shift

difference, in which,

l0 is the previous level mean,

l1 is the new level mean, which is revealed gradually as

new data are generated and are averaged. For

example, for the event of the first out-of-control

limit data point, i.e., for n = 1, l1 = x(t) and for

n = 2, we have l1 = 1/2[x(t) ? x(t ? 1)] and

henceforth

r is the standard deviation of the time series (past data).

The standard deviation is assumed to be constant

which is estimated from the smooth regions of time

series. However, please note that the level shift or the

change of mean value does not change the standard

deviation as r ¼ ð
P

ðx � xÞ=nÞ0:5
and ðx � xÞ

remains constant both before the shift and after the

shift. Notice, however, that the standard deviation is

changing in the transient period where the stochastic

process is transiting from l0 to l1)

Step 3 Set the value for p(B). This can be estimated using

the past experiences of the stochastic process under

scrutiny. For instance, it is estimated by p(B) = n(A)/

n(S) where n(A) denotes the number of weeks witnessing a

level shift, and n(S) denotes total number of weeks that the

process has been observed. In case of no past data, p(B) can

be set equal to 0.5 that means we are indifferent toward

having or not having a level shift. We will come out of this

indifference when data goes outside the control limits and

n counted as 1,2,…etc.

Step 4 Use a two-sided normal operation characteristic

curve (OC curve) as in Fig. 1 to estimate b which is the

Type II error.

For example, from Fig. 1 when n = 1, d = 1 then the

error b is equal to 0.85. At the same d value, if n increases

from 1 to 2 the error b will become 0.70 which shows an

improvement. Also for n = 10, the error b is equal to 0.15.

Note that in the OC curve shown in Fig. 1, as the difference

between the new mean value and the previous mean value

(l1-l0) decreases, the error b decreases too. For example,

for d = 1 and n = 100, the error b approaches zero (see

Montgomery and Runger 2011).

Determination of weighting coefficients

A level shift is perceived better as more observations are

seen out-of-control limits, i.e., as n is increasing. However,

even a single out-of- control limit observation can signal a

true level shift with a certainty factor of p(B|A0). In other

words, with probability 1-p(B|A0), such a single observa-

tion could be associated with a spike or an outlier and not a

true level shift. Thus, our certainty factor improves as more

out-of-control limit data are seen (i.e. as n increases),

causing the probability p(B|A0) to increase.

That is why a new concept of shift arising probability

is introduced into our RSES method. Since

0\pðBjA0Þ\1, there are some observations from pre-

shift event and some from post-shift event that should be

Fig. 1 OC curve to find b for given d, n and a = 0.05 (Montgomery

and Runger 2011)
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taken into the forecasting process. Those from post-shift

event help to estimate l1 and those from pre-shift event

hinders this process. The hindering side can only be

eliminated if there is a certainty about a level shift, i.e.,

when p(B|A0) = 1, which is in fact impossible realizing

the nature of stochastic process inherited in a time series.

However, as an extreme case assume that p(B|A0) = 1

then s would have been defined only by the post-shift

observations. For example, for a single observation

which is out-of-control limit with certainty, i.e., when

p(B|A0) = 1 then s = 1 and whole weight of q = 1 is

assigned to this new observation, i.e., Y(t)RSES = X(t).

On the other extreme, for p(B|A
0
) = 0 that means no out-

of-control limit observations is seen for long run so that

s = ? and the RSES method in this case would act as

SES method. In general, the shift arising probability is

updated on the first and subsequent occurrences of out-

of-control data; hence helps to reduce the forecast errors.

Now to find the weight coefficients of q, the following

definitions are considered.

Definition 1 Equation 2 can also be represented in the

following form:

YðtÞRSES ¼ 1Ps
j¼1 qj�1

Xs

j¼1

qj�1Xðt � jÞ ¼ 1Ps
j¼1 qj�1

fXðt � 1Þ

þ qXðt � 2Þ þ q2Xðt � 3Þ
þ . . .þ qs�1Xðt � s þ 1Þg ¼ q1Xðt � 1Þ
þ q2Xðt � 2Þ þ q3Xðt � 3Þ þ . . .þ qsXðt � s þ 1Þ

in which,

q1 ¼ 1Ps
j¼1 qj�1

; q2 ¼ q
1Ps

j¼1 qj�1
¼ q:q1;

q3 ¼ q2:q1 and hence qs ¼ qs�1:q1:

ð5Þ

Thus, q1, q2, q3, and qs represent the weight coefficients

of the RSES method. The value of q1 sets equal to the shift

arising probability p(B|A0) as considered in the following.

Definition 2 The weight coefficient for the most recent

observation, i.e., q1 sets equal to the value of shift arising

probability, i.e., p(B|A0). Or,

q1 ¼ qð1�1Þ
Ps

j¼1 qðj�1Þ ¼
1Ps

j¼1 qðj�1Þ

( )

¼ pðBjA0Þ ¼ ð1 � bÞpðBÞ
ð1 � bÞpðBÞ þ að1 � pðBÞÞ

� �
ð6Þ

In which, both q and s are unknown variables and

need to be estimated simultaneously. Please note that in

(6) both a and p(B)are fixed parameters, and b is

estimated by using a two-sided normal operating char-

acteristic curve (OC curve) as in Fig. 1. Now, for

example, suppose that a = 0.05, p(B) = 0.4, and b = 0

(or 1-b = 1), then the weight coefficient for the first

new forecast becomes

q1 ¼ ð1 � bÞpðBÞ
ð1 � bÞpðBÞ þ að1 � pðBÞÞ ¼

1 � 0:4

0:4 þ 0:05ð1 � 0:4Þ
¼ 0:93

This means that 93 % of prediction is based on the most

recent data and only 7 % of the past data are used.

Therefore, if an out-of-control value is observed which

might be associated with a level shift, 0.93 of importance is

assigned to the most recent data. From the OC curve in

Fig. 1, it is conceivable that b can hardly get a value farther

than 0.95, then the weight coefficient for the first new value

is:

q1 ¼ ð1 � bÞpðBÞ
ð1 � bÞpðBÞ þ að1 � pðBÞÞ

¼ 0:05 � 0:4

0:05 � 0:4 þ 0:05 � 0:6
¼ 0:4

Now, let’s find out q and s values for q1 = 0.4 such

that:

q1 ¼ 0:4 ¼ 1

2:5
¼ qð0Þ ¼ 1Ps

j¼1 qðj�1Þ )
Xs

j¼1

qðj�1Þ ¼ 2:5

) 1 þ q þ q2 þ q3 þ . . . ¼ 2:5

By assuming s = ? we will have,

) 1 þ q þ q2 þ q3 þ . . . ¼ 2:5 ¼ 1

1 � q
) q ¼ 3

5
¼ 0:6

Therefore, q2 = qq1 = 0.6 * 0.4 = 0.24, q3 = q2q1 =

0.62 * 0.4 = 0.144, etc. Now, suppose that a second out-

of-control event has occurred (i.e., n = 2). In this case, the

sum of the two recent coefficients is,

q1 þ q2 ¼ qð1�1Þ ¼ 1Ps
J¼1 qðJ�1Þ þ

qð2�1Þ
Ps

J¼1 qðJ�1Þ ¼
1 þ qPs

J¼1 qðJ�1Þ

� �

¼ pðBjA0Þ ¼ ð1 � bÞpðBÞ
ð1 � bÞpðBÞ þ að1 � pðBÞÞ

� �

Again, for a = 0.05, p(B) = 0.4, and b = 0.95, the shift

arising probability will become:

pðBjA0Þ ¼ ð1�0:95Þ0:4
ð1�0:95Þ0:4þ0:05ð1�0:4Þ ¼ 0:4 so that this cer-

tainty factor is assigned to the current two observations

which happened to be out-of-control limits. Therefore,

weight coefficients for these two observations are:

0.4 = q1 ? q2. Now, q values are found as:
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0:4 ¼ 1 þ q
Ps

j¼1

qðj�1Þ
) 0:4 �

Xs

j¼1

qðj�1Þ ¼ 1 þ q

) 0:4 � ð1 þ q þ q2 þ q3 þ . . .Þ ¼ 1 þ q

) 0:4 � ð 1

1 � q
Þ ¼ 1 þ q

) 0:4 ¼ 1 � q2

) q2 ¼ 0:6

) q ¼ 0:7746:

Then,

q1 þ q2 ¼ q1 þ q:q1 ¼ q1ð1 þ qÞ
) q1 ¼ ðq1 þ q2Þ=ð1 þ qÞ ¼ 0:4=ð1 þ 0:7746Þ ¼ 0:2254

) q2 ¼ q:q1 ¼ 0:7746ð0:2254Þ ¼ 0:17459

) q3 ¼ q2:q1 ¼ 0:77462ð0:2254Þ ¼ 0:13524

) q4 ¼ q3:q1 ¼ 0:77463ð0:2254Þ ¼ 0:10475

) q5 ¼ q4:q1 ¼ 0:77464ð0:2254Þ ¼ 0:08114

) q6 ¼ q5:q1 ¼ 0:77465ð0:2254Þ ¼ 0:06285

) q7 ¼ q6:q1 ¼ 0:77466ð0:2254Þ ¼ 0:04868

Hence, based on the fact that p(B|A0) = 0.4, 40 % of

total weights are assigned to the two recent observations

(i.e. q1 and q2) and 60 % of total weights are assigned to

the other past observations of which q3 to q7 are shown

above which contains about 43 % of the total weight.

It should be noted that when an observation happened to

be out-of-control limit, the RSES method is triggered to

replace the SES method. This transformation is in fact

undertaken by limiting the infinite number of data used in

SES (or s = ?) to some finite number of s\?. How-

ever, the estimation of s comes indirectly from the esti-

mation of qj as shown in the above example.

It is trivial to show that for b = 0, p(B) = 1, or a = 0,

the contribution of the most recent data will be 100 %. In

other words, the most recent observation is the most

valuable data for the forecasting process of the next period.

The current distribution of weight is based on the primary

value of p(B), i.e., initial shift change probability as esti-

mated from the past performance of the non-stationary time

series.

When a level shift takes place, any consideration of pre-

shift data is harmful since it introduces bias into the esti-

mated l1. However, this is the case when p(B) \ 1 or

b[ 0 both the after and pre-shifts data are used. By con-

sidering n = 0, s would be infinite and the RSES method

reduces to SES method. As n increases more out-of-control

limits data are seen then, the total weights which is

assigned to the recent data becomes larger approaching

100 %. Now, the level shift from l0 to l1 becomes certain.

In the next Section, the RSES algorithm is presented

which follows with a numerical example to illustrate the

working logic of the new adaptive method, the RSES.

The algorithm of the RSES

In this Section, the algorithm for the RSES is presented as

follows:

Step 1 Set values for a (the Type I error), p(B) i.e., the

prior shift arising probability, and n = 0, i.e., initializing

the variable for counting the out-of-control data.

Step 2 Calculate r and l0 for smooth regions of time

series by canceling level shifts.

Step 3 Determine the control limits to detect the level

shift as:

LCLl0
�XðtÞ�UCLl0

or

l0 � za=2r�XðtÞ� l0 þ za=2r

Step 4 Check for an out-of-control event, i.e.,

LCLl0
�XðtÞ�UCLl0

then set n = n ? 1 and apply the

RSES.

Step 5 Set l1 ¼
P

n XðtÞ=n, d ¼ l1 � l0j j=r, and esti-

mate b from a two-sided OC curve.

Step 6 Use a, p(B)and b to determine the posterior

probability p(B|A
0
)as in Eq. 4.

Step 7 Calculate the weighting coefficients qj for

j = 1,2,.., s using Definition 2 and forecast the new event

using Eq. 5.

Step 8 Switch back to the SES method and set l0 = l1 if

two consecutive values for l1 is less than e, where e
denotes the error tolerance (e.g., e = 0.001). Or if p(B|A0)
approaches unity (e.g., p(B|A0) C 0.9), then the level shift

certainly happened. Otherwise, check for the next obser-

vation and go to Step 4.

Numerical example

To test the performance of the RSES method, we consider the

sales of a hypothetical manufacturer as shown in Table 1.

Data are generated from a normally distributed stochastic

process X(t) * N(l0 = 0, r = 1). A level shift is intro-

duced at time period t = 0 converting the X(t) * N(l0 = 0,

r = 1) process into the X(t) * N(l1 = 2, r = 1) process.

With a = 0.05, SES method uses the following equation to

forecast the results for time period t = 1 as:

Y(1)SES = (0.05)X(0) ? (0.05)(0.95)X(-1) ? (0.05)

(0.95)2X(-2) ? (0.05)(0.95)3X(-3) ? ….. = 0.05(2.27) ?

0.04(-0.21) ? 0.04(-0.01-0.15 ? 2.72 ? 0.97) ? 0.03
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(-0.2-0.2 ? 1.51 ? 0.69) = 0.56. Results for time

periods t = 2 to t = 8 are reported in Table 1.

Now, if the RSES is adopted for time period t = 0 we

have x(0) = 2.27, r = 1, n = 1, and d1 ¼ ½xðtÞ � l0�=r ¼
½2:27 � 0�=1 ¼ 2:27, P(B) = 0.4 and a = 0.05, then from

Fig. 1 the value of b becomes 0.37 and the weight coeffi-

cient of the first observation will be:

q1 ¼ ð1 � bÞpðBÞ
ð1 � bÞpðBÞ þ að1 � pðBÞÞ ¼

0:63 � 0:4

0:63 � 0:4 þ 0:05 � 0:6
¼ 0:89

Now, to find the other weight coefficients q is estimated

as:

) 0:89 ¼ qð0Þ ¼ 1Ps1

j¼1 qðj�1Þ )
Xs1

j¼1

qðj�1Þ ¼ 1:123

) 1 þ q þ q2 þ q3 þ . . . ¼ 1:123

) 1

1 � q
¼ 1:123 ) q ¼ 0:123

1:123
¼ 0:1095

Then, the weight coefficient for the second observation

is q2 = qq1 = 0.1095(0.8905) = 0.0975. The third weight

coefficient is q3 = q2q1 = 0.10952(0.8905) = 0.01067

and henceforth for the rest. Therefore, the forecast for

t = 1 will become:

Y(1)RSES = (0.89)X(0) ? (0.097)X(-1) ? (0.01)X(-2)

? (0.001)X(-3) = (0.89)(2.27) ? (0.097)(-0.21) ? (0.01)

(-1) ? (0.001)(-0.15) = 1.99. Using the similar method

as considered above, the results for time periods t = 2 to

t = 8 are calculated and then shown in Table 1.

The results for both the RSES and the SES are also

shown in Fig. 2 from which it is quite clear that the level

shift at t = 0 is successfully and quickly perceived by

RSES method. With the SES, however, it takes a large

number of time steps to detect the level shift change from

l0 = 0 to l1 = 2. The mean square error for both RSES

and SES are estimated as:

MSESES = {(2.06-0.566)2 ? (2.28-0.88)2 ? (4.26-

1.17)2 ? (4.12-1.78)2 ? (2.78-2.25)2 ? (2.01-2.36)2 ?

(4.36-2.29)2 ? (2.2-2.7)2 ?}/8 = 3.02,

MSERSES = {(2.06-1.99)2 ? (2.28-1.91)2 ? (4.26-

2.03)2 ? (4.12-2.94)2 ? (2.78-3.06)2 ? (2.01-2.87)2 ?

(4.36-2.65)2 ? (2.2-2.89)2}/8 = 1.34.

It is clear that error associated with the SES method is

2.25 times larger than the error associated with the RSES

method.

Conclusion

In this paper, a new adaptive method called the RSES is

developed to predict time series with non-stationary level

shifts. The RSES method enjoys the traditional properties

of simple exponential smoothing (SES) method except that

only a limited number of observations are taken into con-

siderations. In fact, the RSES is a finite version of the

infinite-horizon SES method. The RSES method employs a

shift arising probability to monitor the event of level shifts

and to adopt the weight coefficients accordingly

To implement this new scheme, the timing of a level

shift is detected using the control chart limits from the

statistical quality control theory. A new concept of shift

arising probability has been developed to measure the

certainty factor associated with occurrence of a level shift

and updated this measure using the Bayes rule of condi-

tioning. The shift arising probability is used to determine

the weight coefficients of the forecasting process. It is

shown that the RSES method enables one to more

Table 1 Forecasting using RSES and SES

t X(t) Y(t)RSES Y(t)SES

-8 0.69

-7 1.51

-6 -0.2

-5 0.97

-4 2.72

-3 -0.15

-2 -0.10

-1 -0.21

0 (level shift) 2.27

1 2.06 1.99 0.56

2 2.28 1.91 0.88

3 4.26 2.03 1.17

4 4.12 2.94 1.78

5 2.78 3.06 2.25

6 2.01 2.87 2.36

7 4.36 2.65 2.29

8 2.2 2.89 2.7

Mean squared error 1.34 3.02

MSESES to MSERSES ratio 2.25

- 1

0

1

2

3

4

5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

X(t) Y(t)RSES Y(t)SES

Fig. 2 Comparing results of SES and RSES for a level shift at t = 0
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accurately predict time series with sudden level shifts. A

numerical example is used to illustrate the working logic of

the RSES method in comparison with its traditional

counterpart (the SES method).

Still, there are some important topics of interests that

need to be investigated. Included are whether the RSES is

sensitive toward deviations from normality, could the

RSES produce robust results, how the choice of prior

probability P(B) will influence the results, what if level

shift augments with variance changes, and how the RSES

could deal with ramp shifts and long term cycles. Also,

performing extensive experiments using real and simulated

data is another path of further research.
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