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A hybrid meta-heuristic algorithm for the vehicle
routing problem with stochastic travel times
considering the driver's satisfaction
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Abstract

A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent
years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time,
number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost
and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing
the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a
probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper
investigates the problem of the increasing service time by using the stochastic time for each tour such that the
total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions
of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a
hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution
with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed
algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the
efficiency of the proposed hybrid simulated annealing algorithm.
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Background
Vehicle routing problems (VRPs) have a significant role in
logistics and distribution industries. VRPs include problems
in which a fleet of vehicles presents service from one or
several depots to different geographically located customers
so that the total cost of transportation is minimized. It has
been proven that vehicle routing problems are categorized
as non-deterministic polynomial (NP)-hard problems
(Lenstra and Rinnooy Kan 1981; Mingozzi et al. 1999) and
that exact solution methods are not practical in a large scale
due to high computational cost since most of the proce-
dures have focused on using heuristics and meta-heuristics.
This problem was investigated mathematically by

(Dantzig et al. 1994). The primitive model was devel-
oped by other researchers. Clarke and Wright (1994)
solved VRPs by using a saving algorithm. Developing
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VRP models improves advanced solving methods
based on mathematical programming, heuristics and
meta-heuristics. Altinkemerk (1991) used a sweeping
algorithm to develop a corresponding mathematical
model. Laporte (1992) and Laporte et al. (1992) pro-
pagated a branch-and-bound algorithm. Tavakkoli-
Moghaddam et al. (2005) proposed a multi-criteria
vehicle routing problem considering soft time win-
dows, and their problem is solved by simulated
annealing. Also Tavakkoli-Moghaddam et al. (2006b)
developed a mathematical model for VRP with back-
hauls by using memetic algorithm. Furthermore,
Tavakkoli-Moghaddam et al. (2006b) presented a lin-
ear integer model of capacitated vehicle routing pro-
blems with the independent route length to minimize
the heterogeneous fleet cost and maximize the cap-
acity utilization, and their proposed model is solved
by a hybrid simulated annealing (SA) based on the
nearest neighborhood. Jozefowiez et al. (2009) devel-
oped a multi-objective vehicle routing problem by
pringer. This is an Open Access article distributed under the terms of the
reativecommons.org/licenses/by/2.0), which permits unrestricted use,
provided the original work is properly cited.
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Figure 1 Driver's satisfaction versus working time.
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minimizing the route length and route balance by
using a meta-heuristic method with traditional opera-
tors. A number of meta-heuristics, such as SA, tabu
search and ant colony system, have been developed to
solve more complicated problems containing more
constraints (Fallahi et al. 2008; Bin et al. 2009). In
general, the presented models for VRPs consider the
cost function and propose the solution based on the
cost minimization. However, there are other factors
which have significant effect on the problem, such as
drivers' satisfaction, which is investigated in this
paper.
Since traveling time of the vehicle cannot be deter-

mined certainly due to various factors, such as traffic
congestion, weather condition, vehicle failure and the
like, this parameter is considered by a probability func-
tion. Obviously, increasing the total service time leads to
decreasing the driver's satisfaction. In this paper, the
total cost function of the vehicles is minimized, while the
driver's satisfaction is increased by decreasing the prob-
ability of the service time. This problem is considered as
a graph by n nodes, which represent customers, and con-
necting arcs show the route between customers. Each
customer has a specific demand, and they should be
served by only one vehicle. Due to its successful result in
meta-heuristics, the model is solved by a hybrid simu-
lated annealing (HSA) algorithm (Tavakkoli-Moghaddam
et al. 2006a). The proposed algorithm shows much
higher efficiency than the Lingo 8 software in large scale
problems.
The rest of this paper is organized as follows. ‘Problem

definition’ introduces the problem, and ‘Model formula-
tion’ represents the model formulation. Problem-solving
methodology is described in ‘Hybrid simulation annealing’,
and computational results are discussed in ‘Results and
discussion’. Finally, a conclusion follows in the last section.

Methods
Problem definition
The traveling time for vehicles is a probability variable
depending on the weather conditions, accident, failure of
the vehicle and condition of the route. Before describing
the problem, two definitions are presented based on the
fuzzy theory (Zimmermann 1993).

Fuzzy number
Definition 2.1. A fuzzy set A in R (real line) is defined
to be a set of ordered pairs A ¼ x; μA xð Þð Þf jxERg, where
μA(x) is called the membership function for the fuzzy set.
Definition 2.2. A fuzzy set A is called normal if there is

at least one point x 2 R with μA(x) = 1.
Definition 2.3. A fuzzy set A on R is convex if, for any

x,y R and any λ 2 0; 1½ � , we have μA λxþ 1� λð Þyð Þ≥
min μA xð Þ; μA yð Þf g.
Definition 2.4. A fuzzy number is a fuzzy set on the
real line that satisfies the conditions of normality and
convexity.

α-cut
One of the most important concepts of fuzzy sets is α-
cut. Given fuzzy set A defined on X and any number α 2
0; 1½ � , the α-cut (i.e. αA) and the strong α-cut (i.e. α+A)
are the crisp sets.

αA ¼ xf jA xð Þ≥αg ð1Þ
αþA ¼ xf jA xð Þ > αg ð2Þ

Also, distributing companies are interested in the
service time of each vehicle not exceeding from a spe-
cific time limit. Increasing of the service time leads to
decreasing of the driver's working utility. It is sup-
posed that the maximum time working utility of the
drivers is achieved when service time is less than tl in
bound of [0, tu] and that increasing the service time
affects linearly on the decreasing of the utility so that,
for service time more than tu, the utility level achieves
its minimum. Also, a driver's utility function versus
time is illustrated by a fuzzy number as shown in
Figure 1. This function states that the driver's utility
decreases linearly as traveling time increases.
Assumptions used in our presented model are as follows:

1. Travel time of each route is a normal variable with
the specific mean and specific variance.

2. The driver's utility function depends on the travel time,
and it decreases linearly with increasing the travel time.

In this way, a stochastic model is presented such that a
vehicle travel time is restricted to time less than tα with
p percent probability in each level of satisfaction. tα is
the maximum length of tour in time for α level of satis-
faction. To develop this model, the sum of the normal
distribution function theorem is described in this section.
Based on this theorem, if xi is an independent variable of
the normal distribution with mean μi's and variance σi's
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by xi � N μi; σ
2
i

� �
, in which ai is the constant number, y

is a summation of xi's by:

y ¼ a1x1 þ a2x2 þ . . .þ anxn

Then, y is also a normally distributed variable given by

y � N μy; σ
2
y

� �
, where μy ¼ a1μ1 þ a2μ2 þ . . .þ anμn and

σ2
y ¼ a21σ

2
1 þ a22σ

2
2 þ . . .þ a2nσ

2
n:

It is now supposed that tvij represents the travel time of

vehicle v from node i to node j, in which tvij is a sequence

of the normal independent variables and follows the nor-
mal distribution of N(μij ,σ

2
ij ). t

v
i is the required time for

servicing customer (node) i by vehicle v and has normal
distribution with μi and σ2i as its parameters. Also, deci-
sion variable xij is defined such that:

xvij ¼ 1
xvij ¼ 0

�
If vehicle v travels through route (i, j).
Otherwise,tα is defined as the maximum time in each

α-level of the satisfaction function. For all of the drivers,
tα is supposed to be the same. It is ideal that the total
service time for each vehicle to be less than tα.Xn

i¼1

tvi
Xn
j¼1

xvij þ
Xn
i¼1

Xn
j¼1

tvijx
v
ij≤tα;

v ¼ 1; 2; . . . ;NV ; i 6¼ j

ð3Þ
where NV is the total number of vehicles.
Expanding Equation 3 for each vehicle (v) leads to the

following equation.

t1 xv12 þ xv13 þ . . .þ xv1N
� �
þ . . .þ tN xvN1 þ xvN3 þ . . .þ xvNN�1

� �
þ tv12x

v
12 þ tv13x

v
13 þ . . .þ tv1Nx

v
1N

� �þ . . .

þ tvN2x
v
N2 þ tvN3x

v
N3 þ . . .þ tvNN�1x

v
NN�1

� �
≤tα:

ð4Þ

Thus, we consider p percent probability by:

P
Xn
i¼1

tvi
Xn
j¼1

xvij þ
Xn
i¼1

Xn
j¼1

tvijx
v
ij≤tα

 !
≥α;

v ¼ 1; 2; . . . ;NV

ð5Þ

Now, by defining the normal distribution of the travel
time as parameter A, we have:

A ¼
Xn
i¼1

Xn
j¼1

tvijx
v
ijeN ½

Xn
i¼1

μ tvi
� �Xn

j¼1

xvij þ
Xn
i¼1

Xn
j¼1

μ tvij
� �

xvij;Xn
i¼1

σ2 tvi
� �Xn

j¼1

xvij
� �2

þ
Xn
i¼1

Xn
j¼1

σ2 tvij
� �

xvij�v ¼ 1; 2; . . . ;NV :

ð6Þ
It can be concluded that

P A≤tαð Þ≥α⇒P A� μAffiffiffiffiffiffi
σ2
A

p ≤
tα � μAffiffiffiffiffiffi

σ2A
p !

≥α: ð7Þ

This equation is expanded in the presented model as
follows:

tvα �
Pn
i¼1

μ tvi
� � Pn

j¼1
xvij þ

Pn
i¼1

Pn
j¼1

tvij
� �

xvij

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

σ2 tvi
� � Pn

j¼1
xvij
� �2

þ Pn
i¼1

Pn
j¼1

σ2 tvij
� �2

xvij

s ≥Zα;

v ¼ 1; 2; . . . ;NV :

ð8Þ

By this approach, the VRP can be extended in order to
consider the limitation of the specific travel time and the
distribution time of vehicles.

Model formulation
In our presented nonlinear-integer model, customers are
introduced by nodes connected to each other by arcs.
This graph contains n nodes in which each node has its
demand di (depot is located in node 1). The total num-
ber of vehicles is shown by NV, and each vehicle has the
capacity of Kv. tvi is the required time for servicing the
customer (i.e. node) i by vehicle v, and tvij is the required

time for traveling between customers i and j by vehicle v.
Also, Cij is the travel cost (i.e. length of the arc) between
customers i and j. S is the collection of nodes defined as
S ¼ i i ¼ 1; . . . ; nj g:f
Now, the problem can be mathematically formulated

as follows.

z ¼ min
Xn
i¼1

Xn
j¼1

XNV
v¼1

cijx
v
ij ð9Þ

subject to:

Xn
i¼1

Xnv
v¼1

xij
v ¼ 1; j ¼ 1; 2; . . . ; n ð10Þ

Xn
j¼1

Xnv
v¼1

xij
v ¼ 1; i ¼ 1; 2; . . . ; n ð11Þ

Xn
i¼1

xvip �
Xnv
v¼1

xvpi ¼ 0; p ¼ 1; 2; . . . ; n;

v ¼ 1; 2; . . . ;NV

ð12Þ



Figure 2 Crossover and mutation operators.
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tvij �
Pn
i¼1

E tvi
� � Pn

j¼1
xvij þ

Pn
i¼1

Pn
j¼1

tvij
� �

xvij

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

σ2 tvi
� � Pn

j¼1
xvij
� �2

þ Pn
i¼1

Pn
j¼1

σ2 tvij
� �2

xvij

s ≥Zα;

v ¼ 1; 2; . . . ;N

ð13ÞXn
i¼2

di
Xn
j¼1

xvij

 !
< kv; v ¼ 1; 2; . . . ;NV ð14Þ

XN
j¼1

xk1j ¼ 1 v 2 NV ð15Þ

XK
k¼1

X
j2S

X
j=2S

xkij≤ Sj j � r Sð Þ 8S � A� 1f g S 6¼ φ

ð16Þ
x 2 S ð17Þ

In the above model, Equation 9 minimizes the total
travel cost and total travel time. Constraints (10) and (11)
ensure that each customer location is serviced from only
one vehicle. Constraint (12) states that, if a vehicle arrives
at a node (i.e. customer location), it should leave it, and by
this way, the route continuity is ensured. Constraint (13)
states that standard normally distributed function of the
driver's transit time should be larger than za. Constraint
(14) imposes that the vehicle capacity does not exceed
from its limit. Constraint (15) states that the depot is the
first location of each vehicle. Finally, constraint (16) elimi-
nates the sub-tours.

Hybrid simulated annealing
Simulated annealing is the process of physical annealing
with solids in which a crystalline solid is heated and
then allowed to cool very slowly until it achieves its
most regular possible crystal lattice configuration (i.e.,
its minimum lattice energy state) and, thus, is free of
crystal defects. If the cooling schedule is sufficiently
slow, the final configuration results in a solid with such
superior structural integrity. Simulated annealing estab-
lishes the connection between this type of thermo-dy-
namic behavior and the search for global minima for a
discrete optimization problem. Furthermore, it provides
an algorithmic means for exploiting such a connection
(Koskosidis et al. 1992; Kirkpatrick et al. 1983; Hajek
1985; Gidas 1985; Glover and Kochenberger 2003).The
SA parameters are as follows:

Epoch length (EL): the number of accepted solutions in
each temperature for achieving to equilibrium.
MTT: maximum number of consecutive
temperature trails.
T0: initial temperature.
α: rate of the current temperature decrease (cooling
schedule).
X: a feasible solution.
C(X): objective function value of solution X.
L: counter for the number of accepted solutions in each
temperature;
K: counter for the number of consecutive temperature
trails, where TK is equal to the temperature in
iteration K.

Initial solution generation
To generate initial solutions, which is the first step in any
meta-heuristic approach, a creative approach is applied as
follows.

1) Create a new route: Select randomly a node (i.e. r)
which has not been served. Allocate a new vehicle
(i.e. v) with maximum capacity to that from the
depot.

2) Determine neighborhood nodes: Find the nearest
unserved node neighborhoods (i.e. node k) such that,
if vehicle v services k after r, the stochastic service
time constraint and capacity of the vehicle are not
violated for reaching node k. If such node is found,
then vehicle v services k after r xv r k ¼ 1ð Þ.

3) Complete the route: Repeat step 2 until vehicle v
returns to the depot.

4) Complete the service: Repeat above steps until all of
the nodes are served.

5) Determine the optimal kind of vehicles: After
running the algorithm, the optimal kind of
vehicles can be determined by assuming that all
of the vehicles are available with their maximum
capacity.



Table 1 Comparison of results obtained by the HSA for ten small-scale cases

Numbers of
Problems

Numbers of
Customes

Numbers of
Vehicles

Objective function value

HSA Lingo 8

α=0 α=0.25 α=0.5 α=0.75 α=1 CPU.time α=0 α=0.25 α=0.5 α=0.75 α=1 CPU.time

VRP1 5 2 4250 4257 4269 4269 4363 00 4250 4257 4269 4269 4363 03

VRP2 7 2 5316 5374 5473 5501 5536 12 5316 5374 5473 5501 5536 03.3

VRP3 7 3 6369 6376 6383 6496 7012 47 6369 6376 6383 6496 7012 05.67

VRP4 8 3 5476 5483 5499 5512 5528 54 5476 5483 5499 5512 5528 05.82

VRP5 9 2 6873 6879 6891 6905 6925 76 6873 6879 6891 6905 6925 06.54

VRP6 9 3 8023 8056 8168 8174 8192 143 8023 8056 8168 8174 8192 06.98

VRP7 11 2 10367 10381 10393 10659 10896 237 10367 10381 10393 10659 10881 06.31

VRP8 11 3 14368 14382 14697 14697 14987 362 14368 14382 14697 14697 14987 07.27

VRP9 12 2 15698 15717 15764 15764 15925 476 15680 15711 15742 15759 15890 08.11

VRP10 12 3 17698 17698 17705 17705 17798 681 17698 17698 17700 17697 17780 08.67

α, α-cut; CPU, central processing unit; HSA, hybrid simulated annealing; VRP, vehicle routing problem.
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Feasible solution space search
Two efficient genetic operators were designed for search-
ing in a feasible solution space and obtaining neighbor-
hood solution, as follows:

1) Crossover operator: This operator randomly selects
two different routes of two vehicles of the feasible
solution. Then two nodes of these routes are
replaced with each other while considering vehicle
capacity and stochastic transit times limit.

2) Mutation operator: This operator randomly selects
two routes of two vehicles of the feasible solution.
Then, one node is deleted from one route, and it is
added to another route while considering vehicle
capacity and stochastic transit times limit
(Tavakkoli-Moghaddam et al. 2005, 2006b)

Also, a schematic diagram of the two genetic operators
used in the proposed algorithm is represented in Figure 2.
Table 2 Computational results for large-scale cases

Problems Customers Vehicles

α = 0 α = 0.2

VRP1 20 4 18968 18976

VRP2 25 4 19354 19369

VRP3 30 5 20365 20391

VRP5 35 5 22157 22161

VRP6 40 6 24698 24698

VRP7 45 6 26874 26894

VRP8 50 7 31265 31286

VRP9 55 7 32169 32212

VRP10 60 8 33698 33705

α, α-cut; CPU, central processing unit; VRP, vehicle routing problem.
The main steps of the proposed HSA embedded with
genetic operators are as follows.

Step 1: Generate an initial solution according to the
initial solution generation algorithm.
Step 2: Generate a neighborhood solution for X1

(i.e. X2) and estimate its corresponding objective
function value, E2.
Step 3: If E1 ≥ E2, then X2 is a new solution of the
given problem; otherwise, regenerate a random
number, Rnd (0, 1).
Step 4: If Rnd (0, 1) < exp {−(E2-E1)/KT}, then
accept X2; otherwise, reject X2, and the new solution
is X1. Also, k is a constant, and it considers 1 in
problems.
Step 5: Repeat the algorithm several times for T
temperature.
Step 6: Decrease T by a relation such as (n + 1) = η ×T
(n), 0 < η < 1, in which η is the cooling schedule.
Objective function value CPU time (s)

5 α = 0.5 α = 0.75 α = 1.0

18990 18995 19014 4

19387 19394 19406 4

20409 20431 20434 7

22169 22177 22190 7

24710 24726 24759 7

26902 28187 29036 8

31297 31297 31306 11

32236 32263 32298 12

33742 33775 33796 13
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Step 7: Terminate the algorithm when the
convergence criterion is satisfied.

Results and discussion
The computational results are obtained from the pro-
posed solution approach in this section. All solution pro-
cedures are coded in the visual basic, and all test
problems are run using the Intel Dual Core 1.66-GHz
compiler and 1 GB of RAM. In the proposed HSA, the
travel route and the travel cost are estimated for each
service. Hence a small-sized problem is generated by
using the uniform distribution, and it is solved with the
Lingo 8 software. To solve this problem by the proposed
HSA, the related parameters are set as EL = 100, MTT =
100, T0 = 100 and η = 0.99.
In addition, the stochastic travel time of a fleet for the

different route is estimated with the confident coefficient
of 95% and in several satisfaction levels. The results of
ten cases in small sizes are shown in Table 1. The com-
parison of the Lingo software with the proposed algo-
rithm shows that this algorithm has good capability to
solve the proposed problem in less computational time
than Lingo. Furthermore, increasing the size of the prob-
lem increases the solution time of Lingo exponentially,
while it does not affect the solution time of the proposed
HSA. The efficiency of this algorithm is shown for ten
large-scale cases in Table 2.
As illustrated in these tables, the results show that in-

creasing the driver's satisfaction grows the routing cost,
resulting in the increase of the total cost of a distributing
company. For this reason, increasing the driver's satisfac-
tion and decreasing the costs are considered as objective
functions which are in conflict with each other. Improving
each objective leads to the deterioration of the other ob-
jective. Thus, definition of an appropriate satisfaction level
can be considered as a decision management. Paying atten-
tion to Pareto set and following its data with regard to
management utility, appropriate solutions can be obtained.

Conclusions
Vehicle routing problems are categorized as NP-hard
problems in which exact solution methods, such as
solving with Lingo, are not practical in large scale due
to high computational cost. For this kind of problems,
using meta-heuristic algorithms are efficient. In this
paper, a hybrid simulated annealing algorithm was pro-
posed to solve vehicle routing problems. The total travel
time was limited to a definite probability percent, and
also, other constraints, such as capacity and time distri-
bution restrictions, are considered while the total cost
of the transportation was minimized. Based on the
obtained results, the proposed HSA can be used for
obtaining high-quality solutions with a reasonably com-
putational cost.
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