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Abstract Considering the competition in today’s busi-

ness environment, tactical planning of a supply chain

becomes more complex than before. In many multi-product

inventory systems, substitution flexibility can improve

profits. This paper aims to prepare a comprehensive sub-

stitution inventory model, where an inventory system with

two substitute products with ignorable lead time has been

considered, and effects of simultaneous ordering have been

examined. In this paper, demands of customers for both of

the products have been regarded as stochastic parameters,

and queuing theory has been used to construct a mathe-

matical model. The model has been coded by C??, and it

has been analyzed due to a real example, where the results

indicate efficiency of proposed model.

Keywords Inventory management � Substitution

flexibility � Simultaneous ordering � Stochastic demand �
Queuing theory

Introduction

One of the challenges in supply chain management is to

find optimal policy for inventory system, the main objec-

tive of inventory management is to balance conflicting

goals like optimization of stock costs and shortage costs

(Arda and Hennet 2006). Using flexible inventories is one

of the ways to reduce inventory costs. Flexibility could be

considered in different ways, for example, through using

product substitution, postponement (Tibben-Lembke and

Bassok 2005) and lateral transshipments (Herer et al.

2006).

In substitution systems, flexible stock (mostly more

expensive) will be used only when regular (cheaper) item

stockout (Deflem and van Nieuwenhuyse 2011). For

instance, if inventory of regular product cannot satisfy its

demand, a higher quality item can be used as a substitute

inventory (Liu and Lee 2007).

In summary, it is clear that despite many contributions

in inventory management, there is little consideration due

to substitution inventory models. In this paper, a stochastic

stock control model has been proposed for two substitute

products when lead time is ignorable, where the main

contributions are summarized as follows.

• Demands have been considered as stochastic

parameters.

• To prepare a comprehensive model, bi-level Markov

process has been used.

• All the steady-state equations have been solved in terms

of one state.

This model can be applied probably for inventory sys-

tems where demand is uncertain and two way substitutions

can be used. For example, some items of dairy inventories

have mostly stochastic demand, and some of them can use

substitution with each other.

The reminder of this paper is organized as follows. In

‘‘Literature review’’, a brief literature review has been

presented. In ‘‘Model development and analysis’’, first we

represent a mathematical model for an inventory system

with substitute products. The model is validated and some

numerical examples are tested in ‘‘Solving approach’’. We

conclude our study in ‘‘Numerical results’’.
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Literature review

There are lots of researchers that worked on inventory

models. For instance, AriaNezhad et al. (2013) proposed a

two echelon system for perishable items in supply chains,

and used a case study to analyze their model.

Generally, in a supply chain, most of the parameters are

not deterministic, for this reason, some researchers used

queuing theory to construct a mathematical model. In this

area, there are some who prepared a model for stochastic

demand and some who prepared a model for stochastic lead

time. Parlar (1996) presented an inventory model which

was combined with queuing theory to consider demand and

lead time stochastic parameters. Hosseini et al. (2013)

considered stochastic lead time, and developed a multi-

objective pricing-inventory model for a retailer, where

their main objective was to maximize retailer’s profit and

service level. Seyedhoseini et al. (2014) considered poison

demand for customers in a cross-docking problem, and

prepare a stochastic model.

For better modeling of stochastic environment, some

researchers used queuing theory, for example, Ha (1997)

considered poison demand and exponential production

times for a single-item make-to-stock production system.

He proposed an M/M/1/S queuing system for modeling the

system. Arda and Hennet (2006) analyzed inventory con-

trol of a multi-supplier strategy in a two-level supply chain.

They considered random arrival for customers and random

delivery time for suppliers, and represented their system as

a queuing network. Isotupa (2006), considered a lost sales

(s, Q) inventory system with two customer groups, and

illustrated the model by Markov processes.

Babai et al. (2010) considered demand and lead time

stochastic and analyzed a single-echelon single-item

inventory system by means of queuing theory. Considering

effectiveness of queuing theory in inventory problems, we

also used queuing theory to develop our model. Toktas-

Palut and Ülengin (2011) coordinated the inventory poli-

cies in a two-stage decentralized supply chain, where each

supplier has been considered as an M/M/1 queue and the

manufacture has been assumed as a GI/M/1 queue.

Alimardani et al. (2013) applied continuous review (S-

1,S) policy for inventory control and supposed a bi-product

three-echelon supply chain which is modeled as an (M/M/

1) queue model for each type of products offered through

the developed network. In addition, to show the perfor-

mance of the proposed bi-product supply chain, they also

considered a network including two (M/M/1) queue for

each type of products.

Some researchers studied substitution flexibility. For

example, Bayindir et al. (2007) consider a one-way sub-

stitution system with two products which uses S-1, S pol-

icy. They use a two-dimensional Markov process to develop

the model, where the objective of their research was to find

the optimal order up to levels. Liu and Lee (2007) proposed

three different policies to use one-way substitution, and

developed an inventory system with backlogs.

Olssen (2010) considered a continuous review inventory

system where one-way lateral transshipment is allowed.

Nagarajan and Rajagopalan (2008) dealt with a two-product

problem, where substitution has been assumed for both of

the products. Bahri and Tarokh (2012) presented a coordi-

nated seller–buyer supply chain model in two stages, which

is called Joint Economic Lot Sizing (JELS) in the literature.

They assumed that the delivery lead time is stochastic and

follows an exponential distribution and delivery activities

consist of a single raw material. Tan and Karabati (2013)

proposed an inventory management that incorporates the

effects of stockout-based dynamic substitutions.

Deflem and van Nieuwenhuyse (2011) presented an

approach to analyze two-item periodic inventory system

with one-way substitution flexibility, where the objective

function was to minimizing the expected purchasing costs,

holding costs, shortage costs and adjustment costs. Ye

(2014) dealt with the problem of inventory management

and simultaneously horizontal (equivalently inter-brand)

and vertical (equivalently intra-brand) substitution.

Considering great literature of stochastic inventory we

prepare a table in which research on substitute flexibility

and stochastic inventory have been analyzed.

As demonstrated in Table 1, there are some papers

which dealt with the problem of (R, Q) inventory in sto-

chastic environment; however, only some of them con-

sidered substitution flexibility. Even among those

researchers who worked on substitution flexibility,

assumptions of two way of substitution and stochastic (R,

Q) inventory are new.

Model development and analysis

In this paper, an inventory system with two substitute

products has been considered where shortage is not

allowed, and replacement causes costs for both of the

products. For simplification of the system, it has been

assumed that lead time is an ignorable value. In this

research, demand of each product has been considered

poison distributor, and Markov process has been used to

model the system, where the states have been represented

by (I, J). I and J represent inventory levels for each type of

products. For this queue, Fig. 1 demonstrates the transition

diagram when both of the products are ordered together.

As it has been demonstrated in Fig. 1, states have been

put into three sets, set A and set C represent the states

which have only one type of inventories and the inventory

level will be reduced if a demand for each kind of products
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Table 1 Classification of papers in stochastic inventory and substitution flexibility

Authors Shortage Lead time Demand Replenishment policy Substitute flexibility

Lost sales Back order One way Two way

Parlar (1996) 4 Stochastic Stochastic (R, Q)

Isotupa (2006) 4 Stochastic Stochastic (R, Q)

(Arda and Hennet 2006) 4 Stochastic Stochastic (S-1, S)

Boute et al. (2007) 4 Stochastic Stochastic (T, S)

Olssen (2010) 4 4 Deterministic Stochastic (R, Q), (S-1, S)

Hill et al. (2007) 4 Deterministic Stochastic (S-1, S)

Hannet and Arda (2008) 4 Stochastic Stochastic (S-1, S)

Teimoury et al. (2010) 4 Stochastic Stochastic (R, Q)

Toktas-Palut and Ülengin (2011) 4 Stochastic Stochastic (S-1, S)

Babai et al. (2010) 4 Stochastic Stochastic (S-1, S)

Tili et al. (2012) 4 Deterministic Stochastic (T, s, S)

Bahri and Tarokh (2012) 4 Stochastic Deterministic (R, Q)

Alimardani et al. (2013) 4 Stochastic Stochastic (S-1, S)

Guerrero et al. (2013) No shortage Deterministic Stochastic (T, s, S)

Yu and Dong (2014) No shortage Deterministic Stochastic (R, Q)

Baek and Moon (2014) 4 Stochastic Stochastic (R, Q)

Deflem and van Nieuwenhuyse (2011) Combination of both models Deterministic Stochastic (T, S) 4

Ye (2014) 4 Deterministic Stochastic (R, Q) 4

Ahiska and kurtul (2014) Combination of both models Deterministic Stochastic (T, S) 4

Salameh et al. (2014) 4 Deterministic Deterministic (R, Q) 4

Krommyda et al. (2015) 4 Deterministic Deterministic (R, Q) 4

Our model 4 Stochastic Deterministic (R, Q) 4
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Fig. 1 Transition diagram of

proposed model

J Ind Eng Int (2015) 11:37–44 39

123



inters to the system. Set B represents the states which have

inventories for both kinds of products, and no substitution

happens.

To prepare a comprehensive model, four lemmas have

been proposed to calculate steady-state probabilities in

terms of probability of state ðQ1;Q2Þ. Henceforth, let pi; j

denote steady-state probability of state (I, J), D1 denote

demand rate for type-one product, and D2 denote demand

rate for type-two product.

Lemma 1 In a network when flows arrive only through

one state like set B, and flows only move to right or top,

arrival flows to node (I, J) would be sum of the flows which

come from node ðQ1;Q2Þ through all the directions. If IFi;j

denotes interval flow for state (I, J), and IFk
i;j demonstrates

arrival flow which comes through path k, and there are N

paths between state ðQ1;Q2Þ and (I, J), so we have:

IFi;j ¼
XN

k¼1

IFk
i;j ð1Þ

Proof Arrival flow for this network only goes through

node ðQ1;Q2Þ. Consequently, each flow goes to state (I,J)

comes from state ðQ1;Q2). Considering flows only move to

right or top, each path between node Q1;Q2ð Þ and node

(I,J), which has I-1 lateral movement and J-1 vertical

movement consists a flow. Also flows only go through

these paths, so IFi;j is sum of flows that go through these

paths and could be calculated by Eq. 1.

Lemma 2 If Fig. 2, demonstrates a queuing network,

where each node has vertical output rate with value of D

and lateral output rate with value of l. IFi; j could be cal-

culated by Eq. 2.

IFi;j ¼
DQ1�i

1 D
Q2�j
2

D1 þ D2ð ÞQ2þQ1�i�j

 !
Q2 þ Q1 � i� j

Q2 � j

� � !
IFQ1;Q2

ð2Þ

Proof IFk;m has a vertical movement with probability of
D2

D1þD2
and a lateral movement with probability of D1

D1þD2
.

Consequently if flow has a vertical movement, it will be

multiplied by coefficient D2

D1þD2
, and if it has a lateral

movement, it will be multiplied by coefficient D1

D1þD2
. Also

between node Q1;Q2ð Þ and node (I, J) there are Q2 � j

vertical movements and Q1 � i lateral movements, conse-

quently, in each path, input flow for (I, J) is:

Di�1lj�1

lþ Dð Þjþi�2

 !
IF1;1 ð3Þ

Also number of paths between node Q1;Q2ð Þ and node

(I, J) is:

Q2 þ Q1 � i� j

Q2 � j

� �
ð4Þ

Considering lemma 1 and Eqs. 3 and 4, below expres-

sion can be obtained.

IFi;j ¼
XN

k¼1

IFk
i;j ¼

DQ1�i
1 D

Q2�j
2

D1 þ D2ð ÞQ2þQ1�i�j

 !

IFQ1;Q2

XN

k¼1

1 ¼ DQ1�i
1 D

Q2�j
2

D1 þ D2ð ÞQ2þQ1�i�j

 ! 

�
Q2 þ Q1 � i� j

Q2 � j

� ��
IFQ1;Q2

ð5Þ

In this Markov process, output rate is equal to D1 þ D2,

and below equation is true for steady-state probabilities.

ðD1 þ D2Þpi;j ¼ IFi;j ð6Þ

Consequently, IFQ1;Q2
is equal to

IFQ1 ;Q2

D1þD2
and steady states

for set B can be calculated by Eq. 7.

pi;j ¼
D

Q1�i
1 D

Q2�j
2

D1 þ D2ð ÞQ2þQ1�i�j

 ! 
Q2 þ Q1 � i� j

Q2 � j

! !
pQ1;Q2

ð7Þ

To calculate steady-state probabilities of set A, lemma 3

has been proposed.

Lemma 3 Steady-state probabilities for set A can be

calculated as follows

pi;0 ¼
XQ1�i

s¼0

pQ1�s;1 �
D1

D1 þ D2

¼
XQ�i

s¼0

Q1 þ Q2 � s� 1

Q2 � 1

� �

� pQ1;Q2
� DQ1�s

1 � DQ2�1
2

ðD1 þ D2ÞQ1þQ2�s�1
� D1

D1 þ D2

ð8Þ

Proof All of the flows which arrive to set A come from

states which have J = 1, and also states of set A have only

lateral rate with value of D1 þ D2. For state (I,0), Eq. 9 is

true.

lðpi;0Þ ¼ D pi;1 þ piþ1;1 þ � � � þ pQ1;1

� �
ð9Þ

Considering Eq. 9 and lemma 2, lemma 3 is proved.

Similar to set A, steady-state probabilities of set C can

be obtained as follows:
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p0;j ¼
XQ2�j

s¼0

p0;Q2�s �
D2

D1 þ D2

¼
XQ�i

s¼0

Q1 þ Q2 � s� 1

Q2 � s

� �
� pQ1;Q2

� D
Q1�1
1 � DQ2�s

2

ðD1 þ D2ÞQ1þQ2�s�1
� D2

D1 þ D2

ð10Þ

Lemma 4 Amount of substitution for product 1 and

product 2 is represented by Eqs. 10 and 11.

XQ2

j¼1

p1;j � j �
D1

D1 þ D2

� �2

ð11Þ

XQ1

i¼1

pi;1 � i �
D2

D1 þ D2

� �2

ð12Þ

Proof State of p1;j changes to p0;j by probability of D1

D1þD2
,

and then D1�j
D1þD2

substitution inventories must be used to

satisfy demand of product 1. Consequently, Eq. 11 calcu-

lates substitution amount for product 1 and similar to

product 1, Eq. 12 calculates substitution amount for prod-

uct 2.

This section presents a mathematical model to solve the

problem described above.

Parameters

h1 Holding costs for product 1

h2 Holding costs for product 1

A1 Ordering cost for product 1 for independently

ordering

A2 Ordering costs for product 2 for independently

ordering

A Ordering costs of simultaneous ordering

D01 Average demand for inventory of type one in a

specific decision period

D02 Average demand for inventory of type two in a

specific decision period

c1 Replacement costs for product 1

c2 Replacement costs for product 2

Variables

pi,j Steady-state probability of state (I, J)

Q1 Quantity of ordering for product one

Q2 Quantity of ordering for product two

Objective:

Z ¼
XQ2

j¼0

XQ1

i¼0

ðh1 � iÞ � pi;j þ
XQ2

j¼0

XQ1

i¼0

ðh2 � jÞ � pi;j þ A

� D01 þ D02
Q1 þ Q2

� �
þ c1 �

XQ2

j¼1

p1;j � j �
D1

D1 þ D2

� �2

ð13Þ

The objective function is composed of five sections. The

first two sections are for calculating holding costs, third

section calculates ordering costs. Forth section and fifth

sections are to calculate substitution costs.

In this system, when each product is ordered indepen-

dently, substitution will not used, and optimal ordering

quantity for product 1 and 2 can be calculated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A1�ðD01Þ

h1

q

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A2�ðD02Þ

h2

q
.

Solving approach

When there are two types of products with substitution

flexibility, and Q1 and Q2 represent ordering quantity of

these products, then if Q2 becomes zero, optimal Q1 will be

the biggest amount that it can be. If only product 1 be

ordered CO1 represents costs of the system and if only

product 2 be ordered CO2 represents costs of the system.

CO1 ¼ A � D01 þ D02
Q1

� �
þ h1 � �I1 þ D02 � c2 ð14Þ

CO2 ¼ A � D01 þ D02
Q1

� �
þ h2 � �I2 þ D01 � c1 ð15Þ

where �I1 and �I2 are equal to Q1

2
and Q2

2
. And optimal Q1 and

Q2 for CO1 and CO2 are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A�ðD0

1
þD0

2
Þ

h1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A�ðD0

1
þD0

2
Þ

h2

q
.

Consequently, Eqs. 16 and 17 can be used to limit feasible

space of the problem.

Q1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � A � ðD01 þ D02Þ

h1

s

ð16Þ

Q2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � A � ðD01 þ D02Þ

h2

s

ð17Þ

Table 2 Example

c2 c1 D2 D1 D02 D01 A A2 A1 h2 h1

20 20 10 5 200 100 30 30 30 8 10

Table 3 Comparison between using substitution and independently

ordering

Using substitution Independently ordering

Product 1 Product 2 Product 1 Product 2

Ordering quantity 10 37 24 38

Costs of inventory

system

405 554

Substitution costs 33 0
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Numerical results

In this section, proposed model has been coded by C??

software and an example has been produced in Table 2.

For this example, Table 3 compares using substitution

with independently ordering, where superiority of substi-

tution has been demonstrated.

Decision for this system, can be influenced by different

parameters. For that matter, this section has analyzed the

model due to different parameters. For the previous

example, Fig. 2 illustrates sensitivity of the model due to

A. Decision of using substitution or not depends on value of

A. For this example, if A be less than 57 it would be

affordable to use substitution, otherwise it can cause more

costs than independently ordering. Consequently, it can be

inferred that decision of independently ordering or simul-

taneous ordering (using substitution) are dependent on

parameter of A.

To analyze sensitivity of substitution costs, it has been

assumed that q be a coefficient for both of products substi-

tution costs and systems costs have been analyzed in Fig. 3.

Substitution costs effect decision of using substitution flex-

ibility. In this example, if substitution costs be bigger than

120, it is not affordable to use substitution flexibility.

To analyze sensitivity of holding costs, it has been

assumed that c be a coefficient for both of products holding

costs and systems costs have been analyzed in Fig. 4,

where sensitivity of independent ordering due to holding

costs is more than when substitution flexibility is used.

Real example

The proposed model can be appropriately used for Dairy

supply chains. KALE Company produces Dairy products,

and this company has two factories located in Amol and

Karaj cities, and also 25 cities consisting majority of

KALE customers.

In this supply chain, 25 retailers exist, where 18 retailers

are for KALE and the other 7 retailers are acting in a

decentralized supply chain. For most of these retailers,

transportation is more than 3 h and there are only five

retailers near KALE factories, which have less transpor-

tation time than 3 h. For this reason, we only considered

one retailer which has less transportation time than the

other retailers. Ahamd Abad retailer is located at Tehran

city and it acts in a centralized supply chain with KALE.

KALE has some characteristics that make it suitable for

our model. First its production rate is high, and it has a
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Table 4 Comparison between using substitution and independently ordering for cream cheese and Amol cheese

Using substitution Independently ordering Current policy in company

Product 1 Product 2 Product 1 Product 2 Product 1 Product 2

Ordering quantity 1,520 3,640 3,330 3,560 2,100 21,000

Costs of inventory system 1,513 2,633 2,124

Table 5 Comparison between using substitution and independently ordering for low-fat Tetra milk and low-fat Manshori milk

Using substitution Independently ordering Current policy in company

Product 1 Product 2 Product 1 Product 2 Product 1 Product 2

Ordering quantity 1,330 2,640 2,630 2,780 1,850 1,850

Costs of inventory system 1,851 3,210 2,520
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small transportation time for Ahmad Abad retailer, so we

could consider lead time as an ignorable parameter. On the

other hand, demand of Ahmad Abad is high. For this rea-

son, we considered poison distribution for demand of each

retailer.

Although KALE Company produces different kinds of

Dairy products, we only considered three kinds of pro-

ducts that can use substitution. For this company, cream

cheese and Amol cheese, low-fat Tetra milk and low-fat

Manshori milk, and IML yogurt and Ps yogurt are sub-

stitute products. This company has same ordering quan-

tity for each of these kinds of products. For this case,

analyses of these three substitution products have been

represented in Tables 4, 5 and 6, where costs are in

1,000,000 Rials.

As demonstrated in these tables, current policy is to

order in same quantity for each kind of substitute products.

Using this policy, their costs are lesser than when they use

independent ordering. But using substitution flexibility

they can improve inventory costs significantly, where

major reason is decrease in ordering costs. Using substi-

tution, overall ordering quantity has been increased, where

1794 items have been increased for cheese, 270 items

increased for milk, and 470 items for yogurt; however,

611,000,000 Rials for cheese, 669,000,000 Rials for milk

and 660,000,000 Rials for yogurt would diminish.

Conclusion

In this research, an inventory system with two substitute

products with ignorable lead time and stochastic demand

has been considered, and by means of queuing theory a

mathematical model has been proposed. For this system,

steady-state equations have been solved and all of the

steady-state probabilities have been calculated in terms of

pQ1;Q2
.

In this paper, the model has been analyzed due to dif-

ferent parameters and their behaviors have been discov-

ered. Using substitution requires simultaneous ordering and

it can be compared with the situation when different items

use independent ordering. It is clear that, sometimes deci-

sion of using substitution and simultaneous ordering is not

affordable and it depends on values of problem parameters,

so we analyzed this too.

We also prepared a real example, which is for Kale

Company. Inventory costs of this Company for three kinds

of substitution products have been analyzed, and effec-

tiveness of the model has been revealed.

For future studies, this research can be extended by

considering substitution stock control system for more than

two products with different substitution relations, this may

increase complexity of the problem but the model would

become more realistic. Another extension of this research

is possible by considering rate of corruption for perishable

inventories.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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