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Minimizing the total tardiness and makespan in
an open shop scheduling problem with
sequence-dependent setup times
Samaneh Noori-Darvish1 and Reza Tavakkoli-Moghaddam2*
Abstract

We consider an open shop scheduling problem with setup and processing times separately such that not only the
setup times are dependent on the machines, but also they are dependent on the sequence of jobs that should be
processed on a machine. A novel bi-objective mathematical programming is designed in order to minimize the
total tardiness and the makespan. Among several multi-objective decision making (MODM) methods, an interactive
one, called the TH method is applied for solving small-sized instances optimally and obtaining Pareto-optimal
solutions by the Lingo software. To achieve Pareto-optimal sets for medium to large-sized problems, an improved
non-dominated sorting genetic algorithm II (NSGA-II) is presented that consists of a heuristic method for obtaining
a good initial population. In addition, by using the design of experiments (DOE), the efficiency of the proposed
improved NSGA-II is compared with the efficiency of a well-known multi-objective genetic algorithm, namely SPEA-
II. Finally, the performance of the improved NSGA-II is examined in a comparison with the performance of the
traditional NSGA-II.
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Background
An open shop scheduling problem (OSSP) is a kind of
shop scheduling such that the operations can be exe-
cuted in any order. The open shop allows much flexibil-
ity in scheduling, but it is difficult to develop rules that
give an optimum sequence for every problem (Sule 1997).
This problem is a class of NP-hard ones (Gonzalez
and Sahni 1976. In this paper, we consider a special
feature in OSSPs, called sequence-dependent setup
time. The process of preparing machines between jobs
is considered as a setup. In fact, setup times affect on
the completion time of each job. As a result, they also
affect on tardiness, earliness and other important criteria.
Allahverdi et al. (2008) surveyed the literature of setup
times or costs in scheduling problems. They classified
scheduling problems into those with batching and non-
batching considerations as well as sequence-independent
and sequence-dependent setup times. According to the
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technology and the kind of machines used in a work en-
vironment and variety of products, setup times can be
dependent on both machines and the sequence of jobs
that should be processed on a machine.
In many practical production systems (e.g., chemical,

printing, pharmaceutical and automobile manufactur-
ing), the setup tasks (i.e., cleaning up and changing
tools) are sequence-dependent (Zandieh et al., 2006 and
Roshanaei et al., 2009). Low and Yeh (2008) addressed
an open shop scheduling problem as a 0–1 integer pro-
gramming model with the objective of minimizing the
total job tardiness along with some assumptions, such as
sequence-independent setup and sequence-dependent
removal times. They proposed some hybrid genetic-
based heuristics to solve the problem in an acceptable
computing time. Mosheiov and Oron (2008) addressed
batch scheduling problems on an open-shop with m
machines and n jobs. Identical processing time jobs,
machine-independent and sequence-independent setup
times are the main assumptions of their problems. The
objectives are to minimize the makespan and minimize
m; licensee Springer. This is an Open Access article distributed under the terms
http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
provided the original work is properly cited.
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flow time. They proposed an O(n) time algorithm for the
flow time minimization problem.
To achieve Pareto-optimal sets for medium to large-

sized open shop problems using efficient meta-heuristic
methods can be necessary and helpful. Naderi et al.
(2011) considered an open shop with a set of parallel
machines at each stage to minimize the total completion
times. They proposed a mixed-integer linear program-
ming (MILP) model for this problem. Moreover, they
applied a memetic algorithm to solve the problem.
Ahmadizar et al. (2010) addressed a stochastic group
shop scheduling problem with known distributions for
random release dates and random processing times.
They formulated a stochastic programming problem and
solved it by the use of an approach being a hybrid of an
ant colony optimization (ACO) algorithm and a heuristic
algorithm to minimize the expected makespan. Zhang
and van de Velde (2010) considered an on-line two-
machine open shop scheduling problem with time lags
between the completion time and the start time of two
consecutive operations of any job. They developed and
analyzed the performance of a greedy algorithm to
minimize the makespan. Mastrolilli et al. (2010) dealt
with a concurrent open shop and proposed a primal–
dual 2-approximation algorithm to minimize the total
weighted completion times. They also considered sev-
eral natural linear programming relaxations for the
problem.
Fei et al. (2010) considered a weekly surgery sched-

ule in an operating theatre. The objectives are to
maximize the utilization of the operating rooms,
minimize the overtime cost in the operating theatre,
and minimize the unexpected idle time between surgi-
cal cases. They proposed a column-generation-based
heuristic (CGBH) procedure and a hybrid genetic algo-
rithm (HGA) for solving the planning problem as a
set-partitioning integer-programming model and the
daily scheduling problem as a 2-stage hybrid flow-shop
problem, respectively. Matta (2009) developed two ori-
ginal mixed-integer programming (MIP) models (i.e.,
time-based model and sequence-based model) for the
proportionate multiprocessor open shop scheduling
problem and proposed a genetic algorithm (GA) to
schedule the shop with the objective of the makespan
minimization. Seraj and Tavakkoli-Moghaddam (2009)
proposed a TS method to solve a new bi-objective
mixed-integer mathematical programming model for
an OSSP. This model seeks to minimize the mean tar-
diness and the mean completion time. Panahi and
Tavakkoli-Moghaddam (2011) proposed a hybrid
method based on multi-objective simulated annealing
(SA) and ant colony optimization (ACO) to solve an
open shop scheduling problem that minimizes bi-
objectives, namely makespan and total tardiness. They
compared their computational results with a well-known
multi-objective genetic algorithm, namely NSGA II.
By considering the previous studies, we can conclude

that there is only one paper considered the sequence-
dependent setup time as an assumption for a single-
objective OSSP without any mathematical model and
written by Roshanaei et al. (2009). Therefore, in this
paper, a bi-objective mixed-integer linear programming
(MILP) model is designed with the sequence-dependent
setup time as a constraint for the OSSP. To solve
medium to large-sized problems, the well-known NSGA-II
proposed by Deb et al. (2002) is improved by using a heur-
istic method in order to achieve good approximate Pareto-
optimal frontiers.
The rest of this paper is organized as follows. The math-

ematical programming is presented in Section 2. The inter-
active multi-objective decision making approach is
presented in Section 3. Section 4 elaborates the proposed
improved NSGA-II. The numerical examples, computational
results and performance analysis are given in Section 5.
Finally, Section 6 includes the conclusion remark.

Mathematical Programming
The OSSP considered in this study includes n jobs to be
processed on at most m machines. We extend the math-
ematical model proposed by Low and Yeh (2008) by
changing it to a bi-objective model with sequence-
dependent setup times.

Problem assumptions
The main assumptions of the presented model are as
follows.

� Each job is to be processed on at most m machines.
� The processing sequence of each job is immaterial.
� A job is not processed by more than one machine

simultaneously.
� Each machine processes at most one operation at a

time.
� All jobs are available at time 0.
� No preemption is allowed.
� Machine-dependent and sequence-dependent setup

times are considered for each operation.

Notations
The indices, parameters and decision variables used to
formulate the mathematical model are introduced
below.

Indices

N Set of jobs to be processed, N= 1; 2; . . . ; nf g; Nj j ¼ n
L Set of machines, L ¼ 1; 2; . . . ;mf g; Lj j ¼ m.
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i,k,g Job indices, (i,k,g= 0,1,. . .,n),where job 0 is a
dummy job.
j,h Machine indices, (j,h=1,2,. . .,m).

Parameters

M A large positive number.
Oij Operation of job i on machine j ;8i 2 N ;8j 2 L.
Skij Setup time of job i on machine j immediately after
job k.
pij Processing time of job i on machine j.
di Due date of job i.
Hj Dependent set up time matrix of machine j.

012 . . . n

Hj ¼

0
1
2
. . .
n

� S01j S02j . . . S0nj
� � S12j . . . S1nj
� S21j � . . . S2nj
⋮ ⋮ ⋮ ⋱ ⋮
� Sn1j Sn2j ⋯ �

2
66664

3
77775:

Decision variables

Tsij Starting time of a setup task for operation Oij.
Ti Tardiness of job i.
Cmax Makespan.

Yijh ¼
1 if 0ij precedes 0ih for jobi

0 Otherwise

�
8i 2 N ; 8j; h 2 L; j 6¼ h

Xkij ¼
1 if 0kj precedes 0ij on machine j

Otherwise

�
8k 2 N [ 0f g; 8i 2 N ; i 6¼ k; 8j 2 L

Zkij ¼
1 if 0kj precedes 0ij on machine j

0 Otherwise

�
8k 2 N [ 0f g; 8i 2 N ; i 6¼ k; 8j 2 L

Mathematical model
As mentioned at the beginning of Section 2, the model
designed in this paper is developed by extending and
modifying the mathematical model proposed by Low
and Yeh (2008). In this new model, the sequence-
dependent setup time is used instead of the sequence-
independent setup time considered in the traditional
model. The makespan is added to the model as an-
other criterion along with the total tardiness for the
minimization purpose. According to these changes and
for the validity of the extended model, all of the exist-
ing constraints are changed and four new constraints
are added to the model. Thus, the bi-objective MILP
(BOMILP) model is formulated. It should be noted
that S0ij is the setup time of job i on machine j when
i is the first job on machine j. Moreover, if job i is the
first job on machine j, then Z0ij = 1. The proposed
model is as follows:

Min Z1 ¼
X
i¼1

Ti ð1Þ

Min Z2 ¼ Cmax ð2Þ
s.t.

Tsij þ
Xn

k¼0;k 6¼i

ðSkij � ZkijÞþ pij≤Cmax ; 8i 2 N ; 8j 2 L

ð3Þ

Tsij þ
Xn

k¼0;k 6¼0

ðSkij � ZkijÞ þ pij �Mð1� Yijh≤TsihÞ;

8i 2 N ;8j; h 2 L; j 6¼ h ð4Þ

Tsih þ
Xn

k¼0;k 6¼i

ðSkih � ZkihÞ þ pih �M � Yijh≤Tsij;

8i 2 N ; 8j; h 2 L; j 6¼ h ð5Þ

Tsij þ
Xn

k¼0;k 6¼i 6¼g

ðSkij � ZkijÞ þ pij �Mð1� XigjÞ≤Tsgj;

8i; g 2 N ; i 6¼ g; 8j 2 L ð6Þ

Tsgj þ
Xn

k¼0;k 6¼i 6¼g

ðSkij � ZkijÞ þ pgj �M � Xigj≤Tsij;

8i; g 2 N ; i 6¼ g; 8j 2 L ð7Þ

Tsij þ
Xn

k¼0;k 6¼i

ðSkij � ZkijÞ þ pij � Ti;8i 2 N ;8j 2 L

ð8Þ

Yijh þ Yihj ¼ 1 ; 8i 2 N ; 8j; h 2 L; j 6¼ h ð9Þ

Xigj þ Xgij ¼ 1;8i; g 2 N ; i 6¼ g; 8j 2 L ð10Þ

Xkij � Zkij≥0 ; 8k 2 N [ 0f g; 8i 2 N ; i 6¼ k; 8j 2 L

ð11Þ

Xkij þ Zikj≤1 ; 8i; k 2 N ; i 6¼ k; 8j 2 L ð12Þ

Xn
i¼1;i 6¼k

Zkij≤1 ; 8k 2 N [ 0f g; 8j 2 L ð13Þ

Xn
k¼0;k 6¼i

Zkij ¼ 1 ; 8i 2 N ;8j 2 L ð14Þ

Tsij ≥ 0 ; 8i 2 N ;8j 2 L ð15Þ
Ti ≥ 0;Cmax≥0 ; 8i 2 N ð16Þ
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Xkij;Zkij 2 0; 1f g; 8k 2 N [ 0f g;8i 2 N ; i 6¼ k; 8j 2 L

ð17Þ

Yijh 2 0; 1f g; 8i 2 N ; 8j; h 2 L; j 6¼ h ð18Þ

Two objective functions (i.e., total tardiness and make-
span) are shown by Eqs. (1) and (2).Constraint (3)
describes the makespan. Constraints (4) and (5) express
the relationship between two operations of job i that do
not require being consecutive. The starting time for
setup task of operation Oih is greater than or equal to
the completion time of operation Oij. Constraints (6)
and (7) state the operational sequence of the operations
which are processed on the same machine and do not
require to be consecutive. The setup task of operation
Ogj cannot be started until machine j has finished the
processing task of operation Oij. Constraint (8) describes
the tardiness for job i. Constraint (9) expresses the order
of any two operations of a job; if Yijh = 1 then Yihj = 0;
otherwise, Yijh = 0 and Yihj = 1. Constraint (10)expresses
the order of any operation pairs (Oij ,Ogj) on the same
machine j; if Xigj = 1 then Xgij = 0, otherwise, Xigj = 0
and Xgij = 1. Constraints (11) and (12) describe the rela-
tionship between Xkij and Zkij; if Xkij = 1, then Zkij = 1 or
0; otherwise, Xkij = 0 and Zkij = 0, by considering the
dummy job 0. If Xkij = 1 then Zikj = 0; otherwise, Xkij = 0
and Zikj = 1 or 0; in this case, the dummy job 0 is not
considered. Because the dummy job cannot be located
after any job, it is only used for characterizing the first
job on each machine to apply the corresponding rela-
tive setup time. Constraint (13) indicates that there is
at most one job which can be processed immediately
after job k on machine j. if job k is the last job on
machine j, then Zkij = 0. Constraint (14) indicates that
there is only one job that can be processed immedi-
ately before job i on machine j by considering the
dummy job 0. Constraint (15) expresses that all jobs
should be available for scheduling at time 0.Constraints
(16) to (18) define the continuous and binary decision
variables, respectively.

Interactive MODM Approach
To solve the original bi-objective decision making
(BODM) problem, an interactive fuzzy programming
solution method, called the TH method proposed by
Torabi and Hassini (2008), is used. This method is
applied to achieve the Pareto-optimal solutions of the
presented bi-objective crisp model. Torabi and Hassini
(2008) proved that the TH method obtains efficient solu-
tions for the original multi-objective model. According
to the characteristics of the given problems, the steps of
the TH method are as follows.
Algorithm1: TH method
Step 1
Calculate the positive ideal solution (PIS) and the nega-
tive ideal solution (NIS) for each objective function by
solving the corresponding MILP model given below.

ZPIS
1 ¼ min

Xn
i¼1

Ti s:t: X 2 FðxÞ ð19Þ

ZNIS
1 ¼ max

Xn
i¼1

Ti s:t: X 2 FðxÞ ð20Þ

ZPIS
2 ¼ minCmax s:t: X 2 FðxÞ ð21Þ

ZNIS
2 ¼ maxCmax s:t: X 2 FðxÞ ð22Þ

where X is a feasible solution vector consists of all of the
continuous and binary variables in the original model
and F(x)denotes the feasible area consists of Constraints
(3) to (18).
Obtainment of the above ideal solutions requires solv-

ing four mixed-integer linear programs. In order to re-
duce the computational time and complexity, we can
calculate the PIS for each objective function by solving
the corresponding MILP models given in Eqs. (19) and
(21). Then, the negative ideal solutions can be deter-
mined by the use of the following heuristic rule:

ZNIS
h ¼ MaxðZhðx�kÞÞ; h ¼ 1; 2; k ¼ 1; 2 ð23Þ

It is noted that x�h and Zhðx�hÞ denote the decision
vector associated with the PIS of the h-th objective func-
tion and the corresponding value of the h-th objective
function, respectively (Torabi and Hassini, 2008). The
related results are shown in Table 1.

Step 2
For each objective function, determine a linear member-
ship function by:

μZ1
ðXÞ ¼

1; Z1 < ZPIS
1

ZNIS
1 � Z1

ZNis
1 � ZPIS

1
; ZPIS

1 ≤ Z1 ≤ ZNIS
1

0; Z1 > ZNIS
1

8>><
>>: ð24Þ

μZ2
ðXÞ ¼

1; Z2 < ZPIS
2

ZNIS
2 � Z2

ZNis
2 � ZPIS

2
; ZPIS

2 ≤ Z2 ≤ ZNIS
2

0; Z2 > ZNIS
2

8>><
>>: ð25Þ

Figure 1 illustrates the graph of these membership
functions.



Table 1 Payoff results

Z1 Z2

χ�1 ZPIS1 ZNIS2

χ�2 ZNIS1 ZPIS2
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Step 3
Transform the BOMILP model into an equivalent
single-objective MILP using the following auxiliary
formulation.

Max λðXÞ ¼ γλ0 þ ð1� γÞ
X

hθhμZh
ðXÞ ð26Þ

s.t.

λ0 ≤ μZh
ðXÞ; h ¼ 1; 2 ð27Þ

X 2 FðXÞ ð28Þ

λ0;γ 2 ½0; 1� ð29Þ

According to the two objective functions considered in
the problem, Constraint (27) can be written by:

ZNIS
1 �

Xn
i¼1

Ti ≥ λ0ðZNIS
1 � ZPIS

1 Þ ð30Þ

ZNIS
2 � Cmax ≥ λ0ðZNIS

2 � ZPIS
2 Þ ð31Þ

where μZh
ðXÞis the satisfaction degree of the h-th object-

ive function and λ0 ¼ minh μZh
ðXÞ� �

is the minimum
satisfaction degree of objectives. Also, θh denotes the im-
portance level of the h-th objective function such thatP

hθh ¼ 1; θh > 0 . The θh parameters are determined
linguistically by the decision maker based on her prefer-
ence. Moreover, γ is the coefficient of compensation. By
changing the values of this parameter in the interval
[0,1], the TH method can obtain both unbalanced and
balanced compromised solutions. It means that for
higher values of γ, the solution method results bigger
1

Figure 1 Linear membership function for Z1 (Z2).
lower bound for the satisfaction degrees of objectives
(λ0) for a given sample example. These solutions are
balanced compromised solutions. These kinds of solu-
tion can be more appropriate when the importance
levels of all objective functions are equal. On the other
hand, for lower values of γ, the solution method result-
ing solutions with bigger satisfaction degrees for some
objectives with higher importance levels than others.
These solutions are unbalanced compromised solutions.
These kinds of solutions can be more appropriate when
the importance levels of the objective functions are
different.
Step 4: Solve equivalent single-objective MILP model

using the given coefficients (θh,γ). If the decision maker
is satisfied with obtained efficient compromised solution,
then stop; otherwise, change the value of some control-
lable parameters and then go to Step 2.
A set of non-dominated solutions as the Pareto-

optimal solutions can be obtained for the BOMILP
model by changing the values of controllable parameters
of the MILP model given in Eqs. (26) to (31). As men-
tioned at the beginning of Section 3, it is proved that the
TH method achieves efficient solutions for multi-
objective optimization problems. It means that each op-
timal solution of the single-objective model given in Eqs.
(26) to (31) is a Pareto-optimal solution of the original
BOMILP model.
Proposed Method
The OSSP studied in this paper is the NP-hard problem.
Thus, to solve medium to large-sized problems considered
in this paper, an improved non-dominated sorting genetic
algorithm II (NSGA-II) is proposed. Noori-Darvish and
Tavakkoli-Moghaddam (2011) used the original NSGA-II
for an OSSP. NSGA-II belongs to a class of multi-objective
evolutionary algorithms (MOEAs). In most problems, it is
able to find much better spread of solutions and better con-
vergence near the true Pareto-optimal front compared to
two other elitist MOEAs, namely Pareto-archived evolution
strategy (PAES) and strength-Pareto evolutionary algorithm
(SPEA), which pay special attention to creating a diverse
Pareto-optimal front (Deb et al., 2002).
Solution Representation
In our proposed method, a chromosome is an ope-
ration-based array or permutation list that has been a
typical solution representation studied in OSSPs. As illu-
strated in Figure 2, the permutation list is a single-row
array consisting of n×m operations. By using this encod-
ing scheme, the basic assumptions of OSSPs are satis-
fied, in which the processing sequence of each job is
immaterial and a job is not processed more than once
by one machine. In this representation, operations are



p=n×m…p=4p=3p=2p=1

Oij…O11O34O24O53

Figure 2 Operation-based representation/permutation list.

p=n×m………..p=k’………..p=k……….

Oij……….O”ij……….O’ij……..

Figure 4 Swap of two non-adjacent operations.

Noori-Darvish and Tavakkoli-Moghaddam Journal of Industrial Engineering International 2012, 8:25 Page 6 of 13
http://www.jiei-tsb.com/content/8/1/25
listed in the relative order by which they are scheduled.
p denotes the position of an operation in the list.
To decode the list presented in Figure 2 and obtain its

equivalent solution in the solution space, we start from
the beginning of the list and schedule the first operation.
Then, according to the corresponding order of opera-
tions in the list, we schedule other operations one by
one. It means, job 5 is first scheduled on machine 3.
Then, job 2 is scheduled on machine 4 and so on.
According to the rule that each operation is scheduled
at the earliest time, there are two variables, namely 1)
Max {Cij} for all i as the maximum completion time of
jobs on machine j and 2) Max {Cij} for all j as the max-
imum completion time of job i. The starting time and
completion time of each operation are computed by:

Tsij ¼ Maxf0;Max
8i

fCijg;Max
8j

fCijgg ð32Þ

Cij ¼ Tsij þ
Xn

k¼0;k 6¼i

ðSkij � ZkijÞ þ pij ð33Þ

Initialization
A good initial population can help an evolutionary algo-
rithm to start multi-objective optimization from good
solutions in the solution space and have a better per-
formance that will be discussed in the next section. In
our algorithm, a heuristic method is applied to generate
the initial set of solutions or population. It first con-
structs a set of random sequences of operations as chro-
mosomes (as many as the population size). By using the
swapping of two adjacent or non-adjacent operations
(see Figures 3 and 4), it generates all the feasible
sequences in the neighborhood of each permutation list.
For each chromosome, the best feasible solution
obtained by these neighborhood searches is a member of
the initial population. According to the dominance con-
cept, the best solution is an efficient solution of the
Pareto-optimal frontier. The set of Pareto-optimal solu-
tions dominate any other solutions in the feasible area
and improve all the objective functions simultaneously.
p=n×m……….p=k+1p=k………

Oij……...O”ijO’ij……..

Figure 3 Swap of two adjacent operations in a permutation.
It should be noted that k,k' = 1,2,. . ., n×m, as shown in
Figures 3 and 4.
Crossover
A procedure proposed by Low and Yeh (2008) is used
for the crossover operator.
Algorithm 2: Crossover operator

Step 1 Select two cut points randomly along the
positions of the strings for each pair of parent
strings (A and B). So, each permutation list is
divided into three sections, called substring 1,
substring 2 and substring 3.

Step 2 Exchange substring 1 of parent string A and
substring 3 of parent string B. Similarly,
exchange substring 3 of parent string A and
substring 1 of parent string B. Do not change
the elements of substring 2 of each parent string.
Therefore, two proto-children are generated
which are named A0 and B0.

Step 3 Legalize two generated offsprings A0 and B0. In
order to do this, remove the elements of
substring 1 and substring 3 of offspring string
A0, which are the same as substring 2, and then
replace them with corresponding elements of
substring 2 of offspring string B0. Also, do the
same procedure for offspring string B0. Thus,
two offspring strings (i.e., A0 and B0) are
produced.
Mutation
As depicted in Figure 5, the insertion operator is applied
for the mutation operator. In the permutation shown in
this figure, k,k’= 1,2,. . ..,n×m.
p=n×m………..p=k’………..p=k……….

Oij……….O”ij……….O’ij……..

Shift

Figure 5 Insertion operator for mutation.



Table 2 Parameters of the NSGA-II

Population
size

Maximum number
of generations

Crossover
rate

Mutation
rate

100 300 0.95 0.02

Table 4 Values of parameters for numerical instances

Numerical instances R T

a 1 0.8

b 0.6 0.6

c 0.2 0.4
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Elitism and selection operator
Deb et al. (2002) designed an elitist NSGA including
“Fast non-dominated sorting approach” and “Diversity
Preservation” for solving multi-objective problems. In
order to rank solutions (individuals) and sort them into
different non-dominated frontiers, an approach called
“Fast non-dominated sorting” is applied. By the use of
this approach, a domination count (np) is calculated for
each solution to specify its non-dominated frontier. The
domination count of all solutions in the first non-
dominated frontier (irank=1) is equal to zero. At the end
of the multi-objective optimization process, solutions
with np=0, dominate all other solutions in the solution
space. It means they are the best global solutions. This
approach results better convergence near the true
Pareto-optimal frontier.
Along with the convergence to the Pareto-optimal set,

it is also desired that an EA maintains a good spread of
solutions in the obtained set of solutions (Deb et al.,
2002). An operator called crowded-comparison operator
is proposed for “Diversity Preservation”. By considering
the value of crowding distance of each solution (idistance)
in its frontier, this operator guides the selection process
at the various stages of the algorithm toward a uniformly
spread-out Pareto-optimal frontier. When the improved
NSGA-II is iterated as many as the pre-specified iterations
(i.e., maximum number of generations), the multi-objective
optimization process is terminated (Noori-Darvish and
Tavakkoli-Moghaddam, 2011).
Table 5 Values of positive and negative ideal solutions

Z2 Z1 Sample

NIS PIS NIS PIS example

119 95 193 130 4×3-a
Results and discussion
Several numerical examples in small to large sizes are
generated randomly by the use of a classic approach of
the literature in order to examine and analyze the valid-
ity and efficiency of the mathematical model presented
in Section 2, the TH method presented in Section 3,
and the performance of the improved NSGA-II pre-
sented in Section 4. The small-sized problems are
solved exactly by the use of the Lingo 9 software and
the results of the TH method are analyzed. If the num-
ber of jobs and the number of machines are more than
4, the sizes of the problems are medium to large. In
Table 3 Parameters of the SPEA-II

Population
size

Maximum number
of generations

Selection
rate

Crossover
rate

Mutation
rate

100 400 0.8 0.8 0.2
these conditions, even after several hours of running,
Lingo cannot yield an optimal solution in a reasonable
time. Thus, the improved NSGA-II is applied to solve
these kinds of problems. Finally, the efficiency of this
algorithm is first compared with the efficiency of a
well-known multi-objective genetic algorithm, namely
SPEA-II, by using the design of experiments (DOE).
Then, the proposed algorithm is compared with the
traditional NSGA-II. These algorithms are coded in
Turbo C++4.5 on a PC (Main board P4, CPU E5200
2.5GHz, 6M Cache, RAM 2GB BUS 800).

SPEA-II
The strength Pareto evolutionary algorithm II (SPEA-II)
proposed by Zitzler, et al. (2001) is specially designed for
multi-objective optimization problems. This algorithm
includes some special features (i.e., fitness assignment
strategy) considering a number of solutions that domin-
ate each individual and a number of solutions that each
individual dominates the “nearest neighbor density esti-
mation technique” that yields a density value for each
solution, and the “archive truncation method” that pre-
serves a specified number of solutions in the external
non-dominated archive.
In our SPEAII, the solution representation is the per-

mutation list and the initial population is generated ran-
domly. Moreover, the binary tournament selection
procedure is applied. When the SPEA-II is iterated as
many as the pre-specified number of iterations (i.e.,
maximum number of generations), the multi-objective
optimization process is terminated.

Generating numerical examples
In this section, we use a classical approach in the lit-
erature proposed by Loukil et al. (2005) to generate
several numerical examples of small to large sizes
103 99 114 107 4×3-b

112 104 52 26 4×3-c

141 119 383 283 4×4-a

151 146 310 196 4×4-b

145 135 249 136 4×4-c
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146

147

148

149

150

151

152

0 50 100 150 200 250 300 350

Z 2

Z1

Ideal point 1

Ideal point 2

Test problem

Figure 6 Pareto-optimal frontier of example 4×4-b.
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randomly. The processing times and due dates are uni-
formly distributed in the intervals [0,100] and
P 1� T � R

2

� �
; P 1� T þ R

2

� �� �
, respectively.

where P ¼ ðmþ n� 1Þ�P and �P ¼ Pn
i¼1

Pm
j¼1pij=ðn�mÞ

which is the mean values of the processing times. Para-
meters R and T take their values in the sets {0.2,0.6,1},
{0.4,0.6,0.8},respectively. Also, the setup times are ran-
dom variables between 10 and 50.

Parameter setting
Various sets of controllable parameters and different
sizes of problems are considered. Then, many experi-
ments are designed and run by using them. The effective
values in terms of solution quality are determined. The
parameter of the TH method are as follows. Parameter γ
takes its values in the set {0,0.1,. . .,1}. Also, it is assumed
that the preference information corresponding to the
importance levels of the objective functions are specified
linguistically by the decision maker as: θ1= θ2 and θ1>
θ2. So, the values of these parameters in the first condi-
tion are θ1=θ2=0.5, and in the second condition are
θ1=0.8 and θ2=0.2. It should be mentioned that the
values of controllable parameters (i.e., R and T) of the
generating instances approach are given in the following
subsections. Tables 2 and 3 depict the values are set for
the parameters of the NSGA-II and SPEA-II, respect-
ively. Moreover, each example is solved 10 times
independently.

Solving small-sized problems
Two kinds of sample examples in small sizes with 4 jobs
and 3 machines (i.e., 4×3), and 4 jobs and 4 machines
(i.e., 4×4) are considered. For each type of these examples,
three numerical instances are generated randomly.
Tables 4 and 5 represent the values of controllable
Table 6 Computational results of example 4×4-b

θ1= 0.8 , θ2= 0.2 θ1= 0.5 , θ2= 0.5 γ

μZ2 μZ1 Z2 Z1 μZ2 μZ1 Z2 Z1

0.4000 0.9298 149 204 0.4000 0.9298 149 204 0

0.4000 0.9298 149 204 0.6000 0.5614 148 246 0.1

0.4000 0.9298 149 204 0.6000 0.5614 148 246 0.2

0.4000 0.9298 149 204 0.6000 0.5614 148 246 0.3

0.4000 0.9298 149 204 0.6000 0.5614 148 246 0.4

0.6000 0.5614 148 246 0.6000 0.5614 148 246 0.5

0.6000 0.5614 148 246 0.6000 0.5614 148 246 0.6

0.6000 0.5614 148 246 0.6000 0.5614 148 246 0.7

0.6000 0.5614 148 246 0.6000 0.5614 148 246 0.8

0.6000 0.5614 148 246 0.6000 0.5614 148 246 0.9

0.6000 0.5614 148 246 0.6000 0.5614 148 246 1

T= 0.6 R= 0.6
parameters and the values of positive ideal solutions
(ZPIS

i ) and negative ideal solutions (ZNIS
i ) for each

numerical instances, respectively. Using the obtained
values of the PIS and the NIS of each objective func-
tion, the final MILP model is exactly solved for each
numerical instances by the Lingo 9 software. Table 6
illustrates the results of example 4×4-b.
The obtained resuts are analyzed as follows.

� In more cases with different importance levels of
objective functions, the TH method performs
correctly and efficiently. It means according to the
importance levels , the solutions found by this
method are unbalanced compromised solutions.
However, in some cases, the TH method does not
perform well and the satisfaction degree of the
objective function with lower importance is more
than that of the objective function with higher
importance.

� When the importance levels are equal, the
satisfaction degrees of objective functions are very
close to each other, in some cases. Thus, the
method approximately finds balanced compromised
solutions.

� According to the discussion in Section 3, each
optimal solution of the final MILP model is an
efficient solution to the BOMILP model. Thus, in all
cases, by changing the values of controllable
parameters (i.e. γ and θ) two Pareto-optimal
solutions are found by the TH method. Figure 6
indicates the Pareto-optimal frontier of example
4×4-b.
Table 7 Characteristic of medium to large-sized examples

Number of
machines

Number
of jobs

Representation Sample
example

5 10 10×5 1

7 14 14×7 2

9 20 20×9 3



Table 8 Computational results of the quality metric

Sample Improved NSGAII SPEAII

examples 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

10×5-a 3 4 5 3 5 3 4 4 4 3 3 3 2 3 2 1 3 2 3 0

10×5-b 4 4 4 3 3 5 5 4 3 2 2 1 3 2 4 2 3 3 0 3

10×5-c 5 3 5 5 1 2 2 4 4 5 1 3 3 2 2 0 1 1 4 2

14×7-a 5 5 6 4 7 5 6 4 5 6 4 1 2 3 1 4 5 0 3 3

14×7-b 6 4 1 2 6 5 5 4 6 7 1 1 4 5 2 3 1 3 4 4

14×7-c 4 4 7 7 6 4 4 1 3 3 0 4 6 5 2 4 3 1 1 5

20×9-a 7 8 6 6 8 4 4 3 5 5 5 5 4 5 2 2 1 2 6 7

20×9-b 1 5 4 4 6 8 3 4 3 6 2 1 3 2 3 5 4 4 1 5

20×9-c 6 8 5 7 7 4 5 8 6 5 5 6 2 2 3 5 1 4 4 1
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Solving medium to large-sized problems
In this section, three types of sample examples in
medium to large sizes with different combinations of
jobs and machines are designed. For each kind of
these examples, three numerical instances are gener-
ated randomly. The values of controllable parameters
for each instance are considered as shown in Table 4
and the characteristic of sample examples are pre-
sented in Table 7. All of these instances are solved in-
dependently by the proposed improved NSGA-II with
the features described in Section 4 and SPEA-II. The
performance of the improved NSGA-II is compared
with the performance of the SPEA-II by using the de-
sign of experiments (DOE) based on three comparison
metrics. Meanwhile, the instance 20×9-c is solved by
traditional NSGA-II in order to compare the efficiency
of the improved NSGA-II with the efficiency of the
traditional NSGA-II.
Performance evaluation metrics
There are various metrics in the literature for evaluating
the performance of multi-objective metaheuristics. Here
we use three common and valid metrics to evaluate the
performance of the improved NSGA-II, traditional
Table 9 Computational results of the diversity metric

Sample Improved NSGA-II

examples 1 2 3 4 5 6 7 8 9

10×5-a 342.1 200.2 95.2 109.4 287.3 311.5 364 215.1 390.6 3

10×5-b 312.2 422.8 255 361.7 288.7 346.3 342.9 476.5 400.8 3

10×5-c 488.8 405.6 346.1 369 287 241.3 211.9 247.3 376.9 3

14×7-a 412.1 532.3 574 316.6 348.9 499 296.5 488.7 366.6 5

14×7-b 546.8 569 346.1 310.2 445.5 563.1 549.9 411 343.3 4

14×7-c 455.2 512.2 414.4 326 263.9 343.7 417.3 501.1 333.3 4

20×9-a 512.2 479.4 585.5 568.7 385.8 531.4 473.8 508.2 434.9 6

20×9-b 612.5 418.7 565.5 673.8 597.9 507.2 659.3 677.2 510.1 5

20×9-c 491.6 638.4 594.7 736.8 500.3 595.4 670.6 617.2 644.6 5
NSGA-II and SPEA-II. These comparison metrics are
defined as follows:

� Quality Metric (QM): This kind of the metric was
applied by Schaffer (1985). According to this metric,
each algorithm that finds more Pareto solutions is
considered to have a higher quality. However, some
Pareto solutions of an algorithm may dominate
those of another algorithm. Thus, a number of the
final non-dominated solutions found by each
algorithm are counted.

� Diversity Metric (DM): This metric was applied by
Zitzler (1999). To calculate the spread of the
solutions in the final Pareto frontier found by each
algorithm, the diversity metric is used and
computed by:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

maxðxi � yi;! x;! y 2 FÞ
s

ð34Þ

where, F is the set of obtained Pareto solutions, �x
and �y are two solution vectors of Pareto frontier,
and n denotes the dimension of the solution space
that is equal to the number of objective functions. In
this paper, n is equal to 2.
SPEA-II

10 1 2 3 4 5 6 7 8 9 10

73.8 105.4 125.8 67.3 258.3 304.1 111.5 279.9 299.4 178.2 214.9

12.4 222.8 315.4 321.1 213.3 223.1 85.7 301 158.9 400.1 112

98.6 223 302.8 210.9 117.3 241.8 92.1 355 403.6 323.3 398.9

05.8 528.1 398.1 145.6 503.3 202.9 403.8 365.5 244.3 307.1 413.2

06.3 401.3 321.8 303.9 286 442.2 431.1 514.6 102.8 536.4 432.3

70.8 378.9 225.3 328.5 312.5 436.1 337.1 203.3 220 241.1 236.7

21.5 474.2 99.1 333.3 326.2 344.5 228.9 466.1 389 371.4 352.1

64 569.3 347.5 512.9 319 546.1 463.9 564.1 385.7 236.8 510.9

91.4 533.3 358.4 478.1 419.3 516.4 320.2 596.9 488.4 349.1 573.6



Table 10 Computational results of the spacing metric

Sample Improved NSGA-II SPEA-II

examples 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

10×5-a 0.25 0.04 1.33 2.01 3 0.90 0.41 3 0.64 1.88 0.95 1.85 0.95 3 2 0.63 1.44 0.72 1.76 3

10×5-b 0.41 2 0.05 0.14 2 0.18 0.99 3 0.33 1.11 0.07 0.58 0.49 2.64 0.88 2 3 3 0.66 0.51

10×5-c 0.69 2 3 0.95 0.67 2.35 1.13 0.19 0.85 1.44 3 2.25 3 3 2 0.71 0.58 3 2.41 0.26

14×7-a 0.19 0.05 0.03 0.26 1.29 1.35 2 0.14 0.96 0.90 0.66 0.73 0.46 2.27 0.43 3 3 1.69 2 1.74

14×7-b 0.03 0.16 0.33 0.97 1.64 2.87 1.41 0.77 0.46 1.36 0.26 0.48 2.33 2.14 0.51 3 2 1.26 3 3

14×7-c 1.40 0.16 1.36 2 0.39 0.87 0.58 0.97 1.23 0.46 2.14 0.82 0.27 0.33 1.65 2 3 2 2.88 1.92

20×9-a 2.59 0.90 0.26 0.99 3 1.21 0.03 0.60 0.08 0.01 2.51 2.39 1.23 0.48 3 3 0.12 2 1.01 3

20×9-b 0.12 0.84 1.61 0.43 0.80 2.41 1.02 0.32 0.63 0.11 1.20 1.37 0.29 0.80 0.86 3 3 2 0.72 2.11

20×9-c 0.19 0.01 0.29 0.94 1.04 0 1.17 0.55 0.39 0.82 1.82 2 3 2 0.85 0.32 1.66 0.25 0.06 0.34

Ta

P-

0.0

0.0

0.7
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� Spacing Metric (SM): This kind of the metric was
applied by Srinivas and Deb (1994). This metric is
used for estimating the uniformity of the spread of
the points in the final Pareto solution frontier found
by each algorithm and is calculated by:

S ¼ ΣN�1
i¼1 di � �d



 


ðN � 1Þ�d ð35Þ

where, di represents the Euclidean distance between
the consecutive solutions of the obtained Pareto
solution set, �d is the mean value of all Euclidean
distances, and N denotes the number of the final
obtained Pareto solutions. For this metric, a higher
quality value is a lower value and, of course, the best
value is equal to 0.
2
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Comparative results of the improved NSGAII and SPEAII by
DOE
All of the medium to large-sized problems defined in
Tables 4 and 7 are solved by the improved NSGA-II and
the SPEA-II. In order to analyze the results, two-factor
factorial experiments are designed to examine the effect
of the two solution methods and nine test problems on
each of three comparison metrics with 10 times execu-
tions of each algorithm for each test problem. This
approach is similar to the approach given in, (Noori-
Darvish et al. 2011). The computational results of three
comparison metrics, which are calculated for the sets of
Pareto solutions obtained by the improved NSGA-II and
ble 11 ANOVA result for the quality metric

Value F0 MS SS DF Source of Variation

00 4.28 10.118 80.944 8 Test problem

00 62.45 147.606 147.606 1 Solution Method

14 0.67 1.593 12.744 8 Interaction

2.364 382.900 162 Error

624.194 179 Total
the SPEA-II in each time of running, are illustrated in
Tables 8, 9 to 10. The following statistical linear model
(Montgomery and Design and analysis of experiments,
2001) can represent the results of these tables.

yijk ¼ μþ τi þ βj þ ðτβÞij

þ Eijk
i ¼ 1; 2; . . . ; 9
j ¼ 1; 2
k ¼ 1; 2; . . . ; 10

8<
: ð36Þ

where μ is a common effect for the whole experiment, τi
is the effect of the i-th test problem, βj is the effect of
the j-th solution method, (τβ)ij is the interaction effect of
the i-th test problem and the j-th solution method, and
Eijk is the random error.
It should be noted that the adequacy of factorial designs

is checked formerly. The hypothesis tests are considered
as follows. The row treatment (i.e., test problems) effects
are equal to 0. The column treatment (i.e., solution meth-
ods) effects are equal to 0. The interactions are equal to
0
0.5

1
1.5

Improved NSGAII SPEAII

M
ea

solution methods
Figure 7 Main effect plot of the solution method for the
quality metric.



Table 12 ANOVA result for the diversity metric

P-Value F0 MS SS DF Source of Variation

0.000 19.86 200573 1604583 8 Test problem

0.000 56.35 568958 568958 1 Solution Method

0.455 0.99 10013 80101 8 Interaction

10097 1635771 162 Error

3889413 179 Total

Table 13 ANOVA result for the spacing metric

P-Value F0 MS SS DF Source of Variation

0.310 1.19 1.0399 8.319 8 Test problem

0.000 23.44 20.5436 20.544 1 Solution Method

0.976 0.26 0.2318 1.854 8 Interaction

0.8764 141.979 162 Error

172.696 179 Total
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0. In addition, the significance level (α) is set as 0.05.

H0 : τ1 ¼ τ2 ¼ ⋯ ¼ τ9 ¼ 0
H1 : at least one τi 6¼ 0

ð37Þ

H0 : β1 ¼ β2 ¼ 0
H1 : β1 6¼ β2

ð38Þ

H0 : ðτβÞij ¼ 0
H1 : at least one ðτβÞij 6¼ 0 ð39Þ

Table 11 depicts the ANOVA result for the QM. Con-
sidering the results, the p-value for the solution method
and the test problem main effects are less than α=0.05.
Thus, the effects of the solution method and the test
problem are significant. It means that there is a signifi-
cant difference between the mean values for the two so-
lution methods and there is a significant difference
between the mean values for the nine test problems.
However, the interaction is not significant. Figure 7 indi-
cates that more Pareto solutions are found by the
improved NSGA-II, and this method performs better
than the SPEA-II.
Table 12 shows the ANOVA result for the DM. Con-

sidering the results, the p-value for the main effects of
the solution method and the test problem are less than
α=0.05. Therefore, the method effects of the solution
0
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Figure 8 Main effect plot of the solution method for the
diversity metric.
method and the test problem are significant. However,
the interaction is not significant. The diversity of solu-
tions found by the improved NSGA-II is more than the
SPEAII. Thus, the improved NSGA-II method performs
better than the SPEA-II, as shown in Figure 8.
The ANOVA result for the SM, which are illustrated

in Table 13, shows that the p-value for the main effect of
the solution method is less than α=0.05. Therefore, the
effects of the solution method is significant. Moreover,
the main effect of the test problem and the interaction
are not significant. The spacing metric value for solu-
tions found by the improved NSGA-II is less than the
SPEA-II, as shown in Figure 9. Thus, the performance of
the improved NSGA-II is better than the SPEA-II.
Considering the above descriptions, all of the three hy-

pothesis tests indicate the significant effect and better
performance of the improved NSGA-II than the SPEA-II
based on three performance metrics.

Comparative results of the improved and the traditional
NSGAII
As discussed in Subsection 5.5, in order to examine if
our improved NSGA-II performs better than the original
NSGA-II, one of the large-sized instances (i.e., 20×9-c) is
solved for 10 times independently by using the original
NSGA-II. Then, three-mentioned comparison metrics
0
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Figure 9 Main effect plot of the solution method for the
spacing metric.



Table 14 Computational results of the QM, DM and SM of example 20×9-c solved by the improved NSGA-II

Comparison
metrics

Improved NSGA-II Mean value

1 2 3 4 5 6 7 8 9 10

QM 6 8 5 7 7 4 5 8 6 5 6.1

DM 491.6 638.4 594.7 736.8 500.3 595.4 670.6 617.2 644.6 591.4 608.1

SM 0.19 0.01 0.29 0.94 1.04 0 1.17 0.55 0.39 0.82 0.54
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(i.e., QM, DM and SM) are calculated based on the set of
Pareto solutions achieved by this algorithm in each time
of running. These results are compared with the results
of solving the instance 20×9-c by the improved NSGA-II,
as shown in Tables 8 to 10. The computational results
and the mean values of these three performance metrics
are illustrated in Tables 14 and 15.
According to the obtained results, the mean values of

the quality and diversity metrics calculated for the sets
of Pareto solutions, which are found by the improved
NSGA-II, are more than those of the original NSGA-II.
In addition, the mean value of the spacing metric calcu-
lated for the sets of Pareto solutions obtained by
improved NSGA-II are less than those of the traditional
NSGA-II. Therefore, considering the above descriptions,
all results indicate the better performance of the
improved NSGA-II than the traditional NSGAII based
on three performance metrics.
Conclusion
In this paper, an open shop scheduling problem with
sequence-dependent setup times was examined. A novel
bi-objective mathematical programming was designed in
order to minimize the total tardiness and the makespan.
An interactive multi-objective decision making (MODM)
approach proposed by Torabi and Hassini (2008) was ap-
plied for solving small-sized instances optimally and
obtaining Pareto-optimal solutions. Considering the
results in more cases, the TH method has performed well
according to the importance levels of the objective func-
tions, and two Pareto-optimal solutions have been found.
In order to achieve Pareto-optimal sets for medium to
large-sized problems, an improved non-dominated sorting
genetic algorithm II (NSGA-II) was presented by embed-
ding a heuristic method for obtaining the good initial
population. Finally, by using the design of experiments
(DOE), the efficiency of the proposed improved NSGA-II
Table 15 Computational results of the QM, DM and SM of exa

Comparison
metrics

Traditional

1 2 3 4 5

QM 6 5 7 7 6

DM 675.2 624.01 425.6 579.8 621.1

SM 0.28 0.39 0.26 0.47 0.31
was compared with the efficiency of the SPEA-II. More-
over, the performance of the improved NSGA-II was com-
pared with the performance of the traditional NSGA-II.
The results have indicated the better performance of the
improved NSGA-II based on three performance metrics.
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