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a b s t r a c t

In this survey, we review the copula-based input models that are well suited to provide multivariate
input-modeling support for stochastic simulations with dependent inputs. Specifically, we consider the
situation in which the dependence between pairs of simulation input random variables is measured
by tail dependence (i.e., the amount of dependence in the tails of a bivariate distribution) and review
the techniques to construct copula-based input models representing positive tail dependencies. We
complement the review with the parameter estimation from multivariate input data and the random-
vector generation from the estimated input model with the purpose of driving the simulation.

© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

An important step in the design of a stochastic simulation
is input modeling; i.e., choosing a probability distribution to

∗ Corresponding author.
E-mail address: billerb@andrew.cmu.edu (B. Biller).

represent the inputs of the system being studied. Input modeling
is easily performed when the system inputs can be represented
as a sequence of independent and identically distributed random
variables. Reviews of such input models are available in [1–3].

The focus of this survey is on stochastic simulations with
dependent inputs that require the use of flexiblemultivariate input
models to capture their joint distributional properties. Examples

1876-7354/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
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of dependent inputs in need of multivariate input-modeling
support include the processing times of workpieces across work
centers [4], the inter-arrival times of file accesses in computer
systems [5–7], the medical characteristics of organ-transplant
donors and recipients [8], arrival and service processes of Web
servers [9], the inter-arrival times of customers in call centers [10],
and the product demands and exchange rates of global supply
chains [11]. Choosing correlation as the dependence measure,
Ghosh and Squillante [9] show that ignoring the correlation
between the inter-arrival and service times of Web server queues
leads to a 25% overestimation of thewaiting times, while assuming
independent and identically distributed inter-arrival times leads
to the underestimation of the expected waiting times by a factor
of four. Clearly, the independence assumption can lead to very
poor estimates of the performancemeasureswhen there is actually
correlation present, and the consequences of ignoring correlation
can be severe. A comprehensive review of the multivariate input
models measuring dependence by correlation is available in [12].
Patton [13], on the other hand, demonstrates the need for an
input model that captures not only the correlation but also the
dependence in the tails of the exchange rate processes. What
distinguishes our survey from others is its focus on this measure of
dependence, which is known as the tail dependence and defined as
the amount of dependence in the tails of a joint distribution. Other
applications with focus on tail dependence include Corbett and
Rajaram [14], Wagner et al. [15], and Tehrani et al. [16], and they
demonstrate that it is imperative to develop multivariate input
models that can capture stochastic tail dependencies among the
input random variables of stochastic systems.

A close look at the existing literature reveals that multivariate
input models can be classified into two types: random vectors and
multivariate time series. Specifically, a random vector X = (X1,
X2, . . . , Xk)

′ denotes a collection of k random components, each
of which is a real-valued random variable, and it is described
by its joint distribution function. A k-dimensional time series Xt =

{(X1,t , X2,t , . . . , Xk,t)
′
; t = 1, 2, . . .}, on the other hand, denotes a

sequence of random vectors observed at times t = 1, 2, . . . . In this
survey, we focus on random vectors and refer the reader to Biller
and Ghosh [12] for a comprehensive review of the time-series pro-
cesses for stochastic simulations. More specifically, we consider
multi-dimensional copula-based inputmodels that have the ability
to capture a wide variety of dependence structures by describing
dependence in a more general manner than correlation. The use of
correlation as the measure of dependence in the simulation input-
modeling research has been justified by the fact that making it
possible for simulation users to incorporate dependence via corre-
lation, while limited, is substantially better than the practice of ig-
noring dependence. However, when the simulation inputs are not
jointly elliptically distributed and require the use of a joint prob-
ability distribution with positive dependence in the tails, correla-
tion is no longer sufficient to describe the dependence structure
of these simulation inputs. Therefore, in this survey we go beyond
the use of correlation as a dependence measure and present the
application of copula theory to multivariate input modeling with
the purpose of constructing flexible density models that represent
a wide variety of dependence structures. Additionally, we consider
the problems of estimating the parameters of the copula-based in-
put models from multivariate data and generating random vec-
tors with the pre-specifiedmarginal distributions and dependence
structures to drive stochastic simulations. We refer the reader to
Craney and White [17] for input modeling techniques when no
data are available.

We organize the remainder of the paper as follows. In Section 2,
we introduce correlation and tail dependence as the twomeasures
of dependence that are used for multivariate input modeling with
focus on the limitations of correlation as the dependence measure.

In Section 3, we present copula-based input models with the
ability to measure tail dependence; Section 3.1 reviews copula
theory, Section 3.2 focuses on two-dimensional input models, and
Section 3.3 extends the discussion to multivariate input models
with three or more component random variables. In Section 4,
we describe how to estimate the parameters of the copula-based
input models from multivariate data via automated algorithms.
We present the goodness-of-fit tests specifically designed for
copula-based input models in Section 5. In Section 6, we provide
the sampling algorithms that generate random vectors from
the copula-based input models quickly and accurately to drive
stochastic simulations. We conclude our review with a discussion
of promising research areas in Section 7.

2. Two measures of dependence: correlation and tail depen-
dence

Dependent random vectors are often specified partially in
terms of the marginal distributions of their component random
variables and pair-wise measures of dependence summarizing
how these components interact with each other. Although this
may not uniquely or even correctly specify the joint distribution
of the random vector, the hope is to find a useful specification
for the dependence structure among the components, while
sparing the simulation practitioner the task of trying to estimate
the full joint distribution. In Section 2.1, we review product-
moment correlation and rank correlation as the dependence
measures that are often used for this purpose in simulation
input modeling. In Section 2.2, we introduce tail dependence and
motivate its consideration in this survey as a measure of the
dependence captured by neither product-moment correlation nor
rank correlation. The dependence measures we consider in each
of these sections are pair-wise measures, in that they are used to
quantify the dependence between the pairs of random variables.
It is important to note that, despite the focus of this survey,
correlation and tail dependence are not the onlymeans tomeasure
dependence; we refer the reader to Nelsen [18] for a discussion of
alternative measures.

2.1. Correlation

The product-moment correlation and the rank correlation are
the two widely used measures of dependence in applications
of stochastic simulations. Specifically, the rank correlation r(i, j)
between random variables Xi and Xj is defined by

r(i, j) =
E

Fi(Xi)Fj(Xj)


− E (Fi(Xi)) E


Fj(Xj)


Var (Fi(Xi))Var


Fj(Xj)

 ,

where Fi is the cumulative distribution function (cdf) of Xi [19]. The
product-moment correlation ρX(i, j) between Xi and Xj with finite
variances Var(Xi) and Var(Xj) is, on the other hand, given by

ρX(i, j) =
Cov


Xi, Xj


Var (Xi)Var


Xj
 = E


XiXj


− E (Xi) E


Xj


Var (Xi)Var

Xj
 ,

where Cov(Xi, Xj) is the product-moment covariance between
Xi and Xj [20]. Thus, a correlation of 1 is the maximum possi-
ble for bivariate normal random variables Φ−1(Fi(Xi)) (≡Zi) and
Φ−1(Fj(Xj)) (≡Zj), where Φ is the cdf of a standard normal ran-
dom variable. Therefore, taking Cov(Zi, Zj) = 1 is equivalent (in
distribution) to setting Zi ← Φ−1(U) and Zj ← Φ−1(U), where U
is a uniform random variable in the interval (0, 1) [21]. This def-
inition of Zi and Zj implies that Xi ← F−1i (U) and Xj ← F−1j (U),
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Fig. 1. Input models with standard normal marginals, but with different dependence structures.

from which it follows that ρX(i, j) takes on its maximum magni-
tude. Similarly, taking Cov(Zi, Zj) = −1 is equivalent (in distribu-
tion) to setting Xi ← F−1i (U) and Xj ← F−1j (1− U), in which case
the correlation ρX(i, j) assumes the minimum possible value for
the random variables Xi and Xj. Furthermore, in the special case of
jointly normal input random variables, the product-moment cor-
relation ρX(i, j) relates to the rank correlation r(i, j) by ρX(i, j) =
2 sin(πr(i, j)/6) [22].

Despite its wide use, the product-moment correlation suf-
fers from several limitations that have motivated simulation
practitioners to look for alternative measures of dependence
(e.g., [23,12]):

(1) The product-moment correlation cannot capture the nonlinear
dependence between random variables. Consequently, it
fails to model the non-zero dependence in the tails of a
bivariate distribution. As an example, Fig. 1 shows 10000
bivariate realizations sampled from twodifferent inputmodels
constructed for the random vector X = (Xi, Xj)

′. In both of
these models, Xi and Xj have standard normal marginal
distributions and the product-moment correlation ρX(i, j) is
0.8, but with different dependence structures: The first model
has the bivariate normal distribution, while the second model
has the Gumbel distribution with parameter θ that takes the
value of 3.8 (Section 3.2). More specifically, the dependence
in the tails of the joint distribution is zero in the first
model, while extreme positive realizations have a tendency
to occur together in the second model. Thus, the structure of
dependence in the two models cannot be distinguished on the
grounds of product-moment correlation alone.

(2) A product-moment correlation of zero between two random
variables does not guarantee their independence. For example,
the correlation ρX(i, j) is zero between Xi and Xj that are
uniformly distributed on the unit circle, but Xi and Xj are
dependent as X2

i + X2
j = 1.

(3) A weak product-moment correlation does not imply low
dependence. For example, the minimum product-moment
correlation between two lognormal random variables with
zero means and standard deviations of 1 and σ 2 is the
correlation between eZ and e−σZ , while the maximum
product-moment correlation between these two random
variables is the correlation between eZ and eσZ , where Z is a
standard normal random variable [23]. Although both of these
correlations tend to zero with increasing values of σ , they are
highly dependent.

(4) It follows from the definition of the product-moment correla-
tion that ρX(i, j) takes values between−1 and 1, but the actual
values ρX(i, j) can assume depends on the marginal distribu-
tions of the input random variables Xi and Xj [24]. For example,
the attainable interval for the product-moment correlation of
two lognormal random variables with zero means and stan-
dard deviations of 1 and 2 is [−0.090, 0.666]; i.e., it is not pos-
sible to find a bivariate distribution with these marginals and
a product-moment correlation of 0.7.

(5) Product-moment correlation is not invariant under transfor-
mations of the input random variables. For example, the
product-moment correlation between log(Xi) and log(Xj) is not
the same as the product-moment correlation between Xi and Xj
unless they are independent.

(6) Product-moment correlation is only defined when the vari-
ances of the random variables are finite. Therefore, it is not an
appropriate dependence measure for heavy-tailed inputs with
infinite variances.

The use of the rank correlation as the dependence measure
avoids the theoretical deficiencies in 3, 4, 5, and 6. It further
provides a natural way to separate the characterization of the
component distribution functions Fi(Xi) and Fj(Xj) from that of
the correlation between Xi and Xj. Danaher and Smith [25] use
the rank correlation to study the interaction between the length
of customer visit to an online store and the purchase amount.
A bivariate plot of the visit duration of a customer against the
total amount spent by this customer shows that the marginal
distributions are far from being normal and the product-moment
correlation between the visit duration and the purchase amount
is 0.08, indicating a weak relationship. However, Danaher and
Smith compute a stronger dependence via rank correlation with
a value of 0.26. A comprehensive review of similar monotone
and transformation-invariant measures of dependence like rank
correlation can be found in [18]. However, as in the case of
product-moment correlation, the dependence structures of the
input models in Fig. 1 cannot be distinguished on the grounds of
rank correlation alone, and deficiencies in 1 and 2 remain.

2.2. Tail dependence

Motivated by the pitfalls of correlation, focus on the recent
multivariate input-modeling research has been finding alternative
ways to understand and model dependence by moving away
from simple measures of dependence. An alternative measure of
dependence, which has been of interest in recent years, is tail
dependence; i.e., the amount of dependence in the tails of a joint
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Fig. 2. Examples of bivariate input models with standard normal marginals and positive tail dependencies.

distribution [26]. Specifically, the positive lower-tail dependence
νL(i, j) between random variables Xi and Xj is the amount of
dependence in the lower-quadrant tail of the joint distribution
of Xi and Xj and thus, it is given by limℓ↓0 Pr(Xi ≤ F−1i (ℓ)|Xj ≤

F−1j (ℓ)). The positive upper-tail dependence νU(i, j) is, on the
other hand, the amount of dependence in the upper-quadrant
tail of the joint distribution of Xi and Xj and thus, it is given by
limℓ↑1 Pr(Xi ≥ F−1i (ℓ)|Xj ≥ F−1j (ℓ)). Fig. 2 provides examples of
dependence structures for bivariate input models with standard
normal marginals, but different positive tail dependencies [27].
The plots of the first, second, and third columns of this illustration
are obtained for product-moment correlations of 0.2, 0.5, and 0.8,
respectively. However, the first-row (second-row) plots exhibit
greater dependence in the joint lower (upper) tail than in the joint
upper (lower) tail; i.e., νL(i, j) > 0 and νU(i, j) = 0 (νU(i, j) > 0
and νL(i, j) = 0). More specifically, the first-row (second-row)
plots are obtained from a Clayton (Gumbel) distribution with
parameters 0.43 (1.18) for the first column, 1.00 (1.71) for the
second column, and 3.11 (3.80) for the third column (Section 2).
The plots of Fig. 2 also coincide with the plots of Burr–Pareto-
Logistic family proposed by Cook and Johnson [28,29]. However,
mostmultivariate inputmodels, including themultivariate normal
distribution [30], multivariate Johnson translation system [31],
and the Normal-To-Anything (NORTA) distribution [32], measure
the dependence between simulation inputs using correlation;
therefore, they fail to capture the types of dependence structures
illustrated in Fig. 2.

The need for input models with asymmetric dependence struc-
tures arises in situations where extreme positive realizations have
a tendency to occur together. For example, Fortin and Kuzmics [33]
show that the stock-return pairs of financial markets exhibit high
dependence in the lower tail as well as low dependence in the
upper tail of their joint distribution. Similar empirical evidence

for the need to measure tail dependence is provided in [34–36].
Patton [13], on the other hand, studies the dependence between
mark–dollar and Yen–dollar exchange rates and shows that they
are more dependent when they are depreciating than when they
are appreciating. Thus, the asymmetric dependence structure of
these exchange-rate processes cannot be adequately modeled by
thewidely usedmultivariate inputmodels of the simulation input-
modeling literature.

Despite our focus on copula-based input models represent-
ing positive tail dependencies, it is important to note that
the notion of negative tail dependence has been introduced
by Zhang [37]. Specifically, the negative upper-tail dependence,
which is called the lower–upper tail dependence in [37], is defined
by limℓ↓0 Pr(Xi ≤ F−1i (ℓ)|Xj ≥ F−1j (ℓ)), while the negative lower-
tail dependence, which is also known as the upper–lower tail de-
pendence, is given by limℓ↑1 Pr(Xi ≥ F−1i (ℓ)|Xj ≤ F−1j (ℓ)). Copula
theory reviewed in this paper for positive tail dependence read-
ily extends to these definitions of negative tail dependence. How-
ever, most of the available empirical evidence has been for positive
tail dependence. Although Sun and Wu [38] provide empirical ev-
idence for the existence of negative tail dependence between the
returns of the S&P 500 index and the returns of the Market Volatil-
ity Index, the negative tail dependence is rarely mentioned. There-
fore, we restrict the focus of this survey to the representation of
positive tail dependence. In the next section, we describe how to
utilize copula theory to developmultivariate inputmodelswith the
ability to capture asymmetric dependence structures, which are
characterized by the positive tail dependencies among the simu-
lation input random variables.

3. Copula-based input modeling

Copulas have been used extensively for a variety of financial
applications including Value-at-Risk calculations [39–41], option
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pricing [42–46], credit risk modeling [47,48], and portfolio opti-
mization [49,50]. For a comprehensive review of the applications
of copulas in finance, we refer the reader to Patton [51]. However,
copulas are not used only for solving financial problems; they are
also used for decision and risk analysis [52], aggregation of expert
opinions [53], estimation of joint crop yield distributions [54], dis-
ruptive event modeling in project management [55], analysis of
accident precursors [56,57], and modeling travel behavior by ac-
commodating self-selection effects [58]. Recently, copulas have
also been used in marketing to model the purchase behavior of
customers [25], and in operations management to model retailer
demands [14], supplier defaults [15], and supply disruptions in
supply chains [16]. We provide the basics of copula theory in Sec-
tion 3.1, review bivariate copulamodels in Section 3.2, and present
multivariate copula models with three or more component ran-
dom variables in Section 3.3.

3.1. Fundamentals of copula theory

Away of modeling the dependence among the components of a
k-dimensional random vector that avoids the pitfalls of correlation
is to use a k-dimensional copula [18, Definition 2.10.6]:

Definition 1. A k-dimensional copula is a function Ck : [0, 1]k →
[0, 1] with the following properties: (1) For every u = (u1, u2,
. . . , uk) in [0, 1]k, Ck(u) = 0 if at least one coordinate of u is 0;
and if all coordinates of u are 1 except uℓ, then Ck(u) = uℓ for ℓ =
1, 2, . . . , k. (2) For every a = (a1, a2, . . . , ak) and b = (b1, b2,
. . . , bk) in [0, 1]k such that a ≤ b; i.e., aℓ ≤ bℓ, ℓ = 1, 2, . . . , k,
and for every k-box [a, b]; i.e., [a1, b1] × [a2, b2] × · · · × [ak, bk],
theCk-volumegiven by∆b

aCk (t) = ∆
bk
ak∆

bk−1
ak−1 · · ·∆

b2
a2∆

b1
a1Ck (t)with

∆
bℓ
aℓCk (t) = Ck(t1, . . . , tℓ−1, bℓ, tℓ+1, . . . , tk)− Ck(t1, . . . , tℓ−1, aℓ,

tℓ+1, . . . , tk) is≥ 0.

The first condition of this definition provides the lower bound on
the joint distribution function and insures that the marginal dis-
tributions of the copula are uniform. The second condition insures
that the probability of observing a point in a k-box is nonnegative.
Thus, a k-dimensional copula is simply a k-dimensional distribu-
tion function with uniform marginals.

It is important to note that copulas are not the only means to
obtain joint distribution functions from uniform marginals. There
exist useful families of multivariate uniform distributions that
could be the basis for multivariate input modeling: Multivariate
Burr distribution [59], multivariate Pareto distribution [60], and
multivariate logistic distribution [61] are essentially obtained by
transforming uniformmarginal distributions to arbitrary marginal
distributions. Similarly, Plackett’s distribution [62] is obtained by
transforming bivariate uniform marginal distributions to arbi-
trarymarginal distributions, whileMorgenstern’s distribution [63]
with uniform marginals is generalized to have arbitrary marginal
distributions in [64]. We refer the reader to Chapter 9 and Chap-
ter 10 of Johnson [65] for a detailed discussion on obtaining mul-
tivariate distributions with arbitrary marginals from multivariate
uniform distributions. This survey, however, focuses on tail depen-
dence and therefore, describes the use of copulas to obtain mul-
tivariate distributions with arbitrary marginals and positive tail
dependencies.

The use of a copula for representing the joint distribution
of a random vector has been studied extensively for the last
two decades [66,67,26,68,18]. The name ‘‘copula’’ emphasizes
the manner in which a k-dimensional distribution function is
‘‘coupled’’ to its k (one-dimensional) marginal distributions; this
property is formally stated in Sklar’s theorem [18, Theorem2.10.9]:

Theorem 1. Let F be a k-dimensional distribution function with
marginals Fi, i = 1, 2, . . . , k. Then, there exists a k-dimensional
copula Ck such that for all xi, i = 1, 2, . . . , k in domainℜk,

F (x1, x2, . . . , xk) = Ck (F1(x1), F2(x2), . . . , Fk(xk)) .

If Fi, i = 1, 2, . . . , k are all continuous, then Ck is unique; otherwise,
Ck is uniquely determined onRanF1×RanF2×· · ·×RanFk. Conversely,
if Ck is a k-dimensional copula and Fi, i = 1, 2, . . . , k are distribution
functions, then the function F is a k-dimensional distribution function
with marginals Fi, i = 1, 2, . . . , k.

The major implication of this theorem is that copula Ck is the
joint distribution function of Ui ≡ Fi(Xi), i = 1, 2, . . . , k, where
the random variables Ui, i = 1, 2, . . . , k are the probability inte-
gral transforms of Xi, i = 1, 2, . . . , k. Thus, each of the random
variables Ui, i = 1, 2, . . . , k follows a uniform distribution in
[0, 1], regardless of the distributions of the component random
variables Xi, i = 1, 2, . . . , k. Moreover, Ck can be uniquely deter-
mined when the marginal cdfs Fi, i = 1, 2, . . . , k are all contin-
uous. If the marginal cdfs Fi, i = 1, 2, . . . , k are all discrete, then
Ck is uniquely determined on RanF1× RanF2× · · · × RanFk, where
RanFi is the range of the cdf Fi. In any case, the copula Ck captures
the dependence structure of the joint cdf F and it can be written
as Ck(u1, u2, . . . , uk) = F(F−11 (u1), F−12 (u2), . . . , F−1k (uk)), where
F−1i is the generalized inverse of the marginal cdf Fi [18, Corollary
2.10.10].

The practical premise of Sklar’s theorem in multivariate input
modeling is that the joint distribution F can be constructed by
choosing the marginal distributions Fi, i = 1, 2, . . . , k and the
copula density function ck separately. More specifically, any joint
probability density function (pdf) f can be written as a product of
its marginal pdfs fi, i = 1, 2, . . . , k and copula density function ck
for differentiable cdfs Fi, i = 1, 2, . . . , k and differentiable copula
Ck; i.e.,

f (x1, x2, . . . , xk) = ck

F1(x1), F2(x2), . . . , Fk(xk)


·

k
i=1

fi(xi).

The marginal pdf fi is obtained from ∂Fi(xi)/∂xi, while ∂kCk(u1,
u2, . . . , uk)/(∂u1∂u2 · · · ∂uk) provides the k-dimensional copula
density function ck, encoding all of the information about the de-
pendencies among the random variables Xi, i = 1, 2, . . . , k. Thus,
ck takes the value of 1 when Xi, i = 1, 2, . . . , k are independent,
and the joint density function reduces to the product of only the
marginal pdfs.

There are numerous parametric families of copulas proposed
in the literature, emphasizing different distributional properties.
In this survey, we distinguish these copulas on the grounds of the
tail dependence they capture; i.e., some copulas assign the value of
zero to the tail dependence, while others represent positive lower-
tail dependence and/or positive upper-tail dependence. Next, we
present a copula-based definition of the tail dependence for a
bivariate input model with copula C2 [26]:

Definition 2. If a two-dimensional copula C2 is such that limu↓0 C2
(u, u)/u = νL exists, then C2 has lower-tail dependence if νL ∈

(0, 1] and no lower-tail dependence if νL = 0. Similarly, if
limu↑1(1−2u+C2(u, u))/(1−u) = νU exists, thenC2 has upper-tail
dependence if νU ∈ (0, 1] and no upper-tail dependence if νU = 0.

A close look at the existing literature reveals that one of
the widely used copulas for bivariate input modeling is the
two-dimensional normal distribution. The application of Def-
inition 2 with the two-dimensional copula C2 replaced by
the two-dimensional standard normal cdf having correlation
ρ(1, 2) ∈ (−1, 1) between random variables Z1 (≡Φ−1(F1(X1)))
and Z2 (≡Φ−1(F2(X2))) results in the computation of zero for both
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Table 1
Bivariate copulas and their tail-dependence functions.

Copula Parameter νL νU

Elliptically symmetric
Normal −1 < ρ < 1 0 0

t −1 < ρ < 1, 0 < d <∞ 2td+1


(d+1)(1−ρ)

(1+ρ)


2td+1


(d+1)(1−ρ)

(1+ρ)


Archimedean
Clayton θ ≥ 0 2−1/θ 0
Gumbel θ ≥ 1 0 2− 21/θ

θ ≥ 1 2−1/θ 2− 21/θ

θ1 > 0, θ2 ≥ 1 2−1/(θ1θ2) 2− 21/θ2

Max-infinitely divisible θ1 ≥ 0, θ2 ≥ 1 2−1/θ1 2− 21/θ2

the lower-tail dependence (νL(1, 2) = 0) and the upper-tail de-
pendence (νU(1, 2) = 0) between random variables X1 and X2.
Thus, regardless of the correlation ρ(1, 2) ∈ (−1, 1) we choose,
extreme events appear to occur independently in X1 and X2 when
we go far enough into the tails. This explains why a bivariate input
model building on the normal distribution fails to represent posi-
tive tail dependencies.

This discussion readily extends to the multi-dimensional set-
ting with k ≥ 2. A well known multivariate input model building
also on the normal distribution is the NORTA random vector in-
troduced by Cario and Nelson [32]. The goal of this input model is
to match the pre-specified properties of the random vector X =
(X1, X2, . . . , Xk)

′, i.e., the marginal distributions Fi, i = 1, 2, . . . , k
and the input correlations ρX(i, j), i, j = 1, 2, . . . , k, so as to drive
the simulation with random vectors that have these properties.
Therefore, the construction of the NORTA random vector builds
on (1) applying the probability integral transform Fi to the input
random variable Xi, which results in the uniform random variable
Ui (i.e., Fi(Xi) = Ui); and (2) applying the inverse cdf Φ−1 to Ui
from which the standard normal random variable Zi is obtained
(i.e., Zi = Φ−1(Fi(Xi))). Consequently, we obtain the joint cdf F
of the NORTA random vector X as follows:
F (x1, x2, . . . , xk)
= Pr (Xi ≤ xi; i = 1, 2, . . . , k)
= Pr (Fi(Xi) ≤ Fi(xi); i = 1, 2, . . . , k)
= Pr (Ui ≤ ui; i = 1, 2, . . . , k)
= Pr


Φ−1(Ui) ≤ Φ−1(ui); i = 1, 2, . . . , k


= Pr


Zi ≤ Φ−1(ui); i = 1, 2, . . . , k


= Φk


Φ−1(u1), Φ−1(u2), . . . , Φ−1(uk);6k


= Φk


Φ−1(F1(x1)), Φ−1(F2(x2)), . . . , Φ−1(Fk(xk));6k


.

In this representation, Φk(·;6k) is the joint cdf of the standard
normal random vector Z = (Z1, Z2, . . . , Zk)′ with the correlation
matrix 6k ≡ [ρ(i, j); i, j = 1, 2, . . . , k], where ρ(i, j) is the
correlation between the random variables Zi and Zj. The function
Φk(·;6k), which is simply the k-dimensional normal copula, cou-
ples the arbitrary marginal cdfs Fi, i = 1, 2, . . . , k with the cor-
relation matrix 6k to obtain the joint distribution function F . Thus,
the dependence structure of the k-dimensional NORTAdistribution
is represented by the k-dimensional normal copula, explaining the
failure of the NORTA distribution to represent non-zero tail depen-
dencies. This result further extends to themultivariate normal dis-
tribution and the multivariate Johnson translation system, which
are the special cases of the NORTA distribution. Specifically, we ob-
tain the multivariate normal distribution by allowing each of the
NORTA components to have a univariate normal distribution; we
obtain the multivariate Johnson translation system by letting each
component of the NORTA randomvector have a univariate Johnson
distribution [69].

A solution to the problem of capturing asymmetric dependence
structures with positive tail dependencies is to replace the k-
dimensional normal copula of the NORTA random vector Xwith a

k-dimensional copula having the ability tomatch the pre-specified
values of lower-tail dependencies νL(i, j), i, j = 1, 2, . . . , k and
upper-tail dependencies νU(i, j), i, j = 1, 2, . . . , k. Section 3.2 re-
views the bivariate copulamodels that can be used for this purpose
along with their tail dependence properties (i.e., k = 2). Focusing
on random vectors with three or more components (i.e., k ≥ 3),
Section 3.3 considers the representation of tail dependencies by
multivariate input models.

3.2. Bivariate copula models

The existing literature contains numerous parametric families
of bivariate copulas, emphasizing different distributional proper-
ties [26,68,18]. In this survey, we consider the property of tail de-
pendence. Table 1 provides the bivariate copulas that can be used
for capturing this measure of dependence between any pair of ran-
dom variables.

3.2.1. Elliptically symmetric copulas
Both the normal copula and the t copula fall into the class of

elliptically symmetric copulas, which are introduced in [70] and
discussed comprehensively in [71] as the generalizations of the
normal copula to those with elliptically symmetric contours. Thus,
the elliptically symmetric copulas inherit many of the tractable
properties of the normal copula and maintain the advantage of
being easy to sample. Specifically, the bivariate normal copulawith
the dependence parameter ρ ∈ (−1, 1) is given by

C2(u1, u2; ρ) =

 Φ−1(u1)

−∞

 Φ−1(u2)

−∞

1

2π

1− ρ2

× exp

−

z21 − 2ρz1z2 + z22
2(1− ρ2)


dz1dz2,

while the bivariate t copula with the degrees of freedom d ∈
(0,∞) is given by

C2(u1, u2; ρ, d) =
 t−1d (u1)

−∞

 t−1d (u2)

−∞

1

2π

1− ρ2

×


1+

z21 − 2ρz1z2 + z22
d(1− ρ2)

−(d+2)/2

dz1dz2,

where the parameter ρ corresponds to a dependence parameter
when d > 2. An important distinction between these two cop-
ulas is that the normal copula assigns the value of zero to the
tail dependencies, while both the lower-tail dependence and the
upper-tail dependence captured by the t copula are given by
2td+1(

√
d+ 1

√
1− ρ/

√
1+ ρ), where td denotes the univariate

t distribution function with d degrees of freedom [23]. Thus, the t
copula assumes positive tail dependence even for ρ = 0, but the
symmetry in the dependence structure (i.e., the equivalence be-
tween the lower-tail dependence and the upper-tail dependence)
restricts its use for bivariate input modeling; i.e., a property that is
shared by all elliptically symmetric copulas.
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3.2.2. Archimedean copulas
A family of non-elliptical copulas with the ability to capture

asymmetric dependence structures (i.e., different values for lower-
tail and upper-tail dependencies) is the class of Archimedean copu-
las. These copulas are analytically tractable in the sense that many
of their properties can be derived using elementary calculus [66].
Specifically, an Archimedean copula with parameter θ is of the
form C2(u1, u2; θ) = φ−1(φ(u1; θ)+φ(u2; θ); θ), where φ−1(·; θ)
is the pseudo-inverse of φ(·; θ) : [0, 1] → [0,∞], which is
a continuous, strictly decreasing, and convex generator function
satisfying φ(1; θ) = 0. Different generator functions lead to dif-
ferent types of Archimedean copulas. For instance, the generator
φ(t; θ) = (t−θ

−1)/θ produces the Clayton copula C2(u1, u2; θ) =
(u−θ

1 + u−θ
2 − 1)−1/θ with 0 ≤ θ <∞, leading to a lower-tail de-

pendence of νL(1, 2) = 2−1/θ between random variables X1 and
X2 [72]. This is the copula function used for obtaining the first-row
plots of Fig. 2, while the second-row plots are obtained from the
generator function φ(t; θ) = (− log t)θ , which leads to the Gum-
bel copula C2(u1, u2; θ) = exp(−((− log u1)

θ
+ (− log u2)

θ )1/θ ),
1 ≤ θ < ∞ with an upper-tail dependence of νU(1, 2) = 2 −
21/θ [73]. Thus, neither the Clayton copula nor the Gumbel cop-
ula can simultaneously represent positive lower-tail and upper-
tail dependencies. The generator function defined as φ(t; θ) =
(t−1− 1)θ , however, captures both the lower-tail dependence and
the upper-tail dependence. More specifically, it produces the cop-
ula C2(u1, u2; θ) = (1 + ((u−11 − 1)θ + (u−12 − 1)θ )1/θ )−1 with
θ ≥ 1, leading to a lower-tail dependence of νL(1, 2) = 2−1/θ and
an upper-tail dependence of νU(1, 2) = 2 − 21/θ [18]. However,
the values νL(1, 2) and νU(1, 2) can take are limited by the copula
parameter θ .

A way to overcome this limitation of a single-parameter cop-
ula is to construct a two-parameter Archimedean copula. This
can be done by using a composite generator function of the form
φ(t; θ1, θ2) = (φ(tθ1))θ2 . For example, defining the composite
generator functionφ(t; θ1, θ2) as (t−θ1−1)θ2 with θ1 > 0 and θ2 ≥
1 leads to the two-parameter Archimedean copula C2(u1, u2; θ) =

(((uθ1
1 − 1)θ2 + (uθ1

2 − 1)θ2)1/θ1 + 1)−1/θ1 with a lower-tail de-
pendence of νL(1, 2) = 2−1/(θ1θ2) and an upper-tail dependence
of νU(1, 2) = 2 − 21/θ2 . The upper-tail dependence νU(1, 2) can
take any value between 0 and 1, providingmore flexibility than the
single-parameter Archimedean copula in modeling the amount of
dependence in the upper-quadrant tail of the underlying joint dis-
tribution function. However, the value the lower-tail dependence
νL(1, 2) can assume is restricted by the value of the upper-tail de-
pendence νU(1, 2). This modeling challenge is overcome by the
max-infinitely divisible copulas introduced in the next section.

3.2.3. Max-infinitely divisible copulas
The lower-tail dependence νL(1, 2) ∈ (0, 1] and the upper-

tail dependence νU(1, 2) ∈ (0, 1] between random variables X1
and X2 can be jointly represented by using a family of copulas of
the form C2(u1, u2) = Θ(− log K(e−Θ−1(u1), e−Θ−1(u2))), where
Θ is a Laplace transformation and K is a max-infinitely divisible
bivariate copula between random variables U1 = F1(X1) and
U2 = F2(X2). Specifically, the distribution function K is max-
infinitely divisible if Kα is a distribution function for every α >
0 [74]. Furthermore, if K is an Archimedean copula, then C2
is an Archimedean copula. For example, letting K be the one-
parameter Clayton copula with parameter θ1 ≥ 0 and allowing
Θ to be the Laplace transformation satisfying Θ(t) = 1 − (1 −
e−t)1/θ2 with parameter θ2 ≥ 1 results in the two-parameter
copula of the form C2(u1, u2; θ1, θ2) = φ−1(φ(u1; θ1, θ2) +
φ(u2; θ1, θ2); θ1, θ2), where φ(t; θ1, θ2) = (1 − (1 − t)θ2)−θ1 −

1 [26]. The application of Definition 2 to this copula function results

in the lower-tail dependence νL(1, 2) = 2−1/θ1 and the upper-
tail dependence νU(1, 2) = 2 − 21/θ2 . Thus, parameter θ1 (θ2)
is used only for adjusting the lower-tail (upper-tail) dependence
νL(1, 2) (νU(1, 2)); i.e., the use of this two-parameter Archimedean
copula for bivariate input modeling allows both the lower-tail
dependence and the upper-tail dependence to assume arbitrary
values in [0, 1]. Further discussion on two-parameter bivariate
copulas can be found in [26].

3.3. Multivariate copula models

In this section, we discuss the extension of the bivariate cop-
ula models presented in Section 3.2 to three or more random
variables. Specifically, Section 3.3.1 reviews the multivariate ellip-
tical copulas; Section 3.3.2 presents the exchangeable multivari-
ate Archimedean copulas; Section 3.3.3 provides the mixtures of
max-infinitely divisible copulas; and finally Section 3.3.4 reviews
the vine specifications that are known to be the most flexible mul-
tivariate copula models with the ability to represent asymmetric
dependence structures with positive tail dependencies.

3.3.1. Multivariate elliptical copulas
Twowidely used copulas for representing the joint distribution

of three or more input random variables are the normal copula
associated with the multivariate normal distribution and the t
copula associated with the multivariate t distribution. Each of
these copulas is a member of the elliptical copula family that is
particularly easy to use for driving stochastic simulations with
multiple inputs. Specifically, the multivariate normal copula with
the positive definite correlation matrix 6k ≡ [ρ(i, j); i, j = 1, 2,
. . . , k] is given by

Ck(u1, u2, . . . , uk;6k)

= Φk

Φ−1(u1), Φ−1(u2), . . . , Φ−1(uk);6k


,

=

 Φ−1(u1)

−∞

. . .

 Φ−1(uk)

−∞

1
(2π)k/2|6k|

1/2

× exp

−

1
2
z′6−1k z


dz1 . . . dzk,

where z denotes the vector (z1, z2, . . . , zk)′. The limitation of
this multivariate copula in representing positive tail dependence
becomes apparent in modeling investor’s default risk [75,76]. For
further discussion on the limitations of the multivariate normal
copula, we refer the reader to Lipton and Rennie [77], Donnelly and
Embrechts [78] and Brigo et al. [79].

The multivariate t copula with the parameters 6k ≡ [ρ(i, j);
i, j = 1, 2, . . . , k] and d ∈ (0,∞) is given by

Ck(u1, u2, . . . , uk;6k, d)
= t


t−1d (u1), t−1d (u2), . . . , t−1d (uk);6k, d


,

=

 t−1d (u1)

−∞

. . .

 t−1d (uk)

−∞

Γ
 d+k

2


|6k|

−1/2

Γ
 d
2


(dπ)k/2

×


1+

1
d
z′6−1k z

− d+k
2

dz1 . . . dzk.

Even for ρ(i, j) = 0, the multivariate t copula represents sym-
metric tail dependencies νL(i, j) = νU(i, j) = 2td+1(−

√
d+ 1√

1− ρ(i, j)/
√
1+ ρ(i, j)), as can be deduced from Table 1 by fo-

cusing on the interaction between random variables Xi and Xj.
Thus, the multivariate t copula fails to capture asymmetric depen-
dence structures with different values for lower-tail and upper-
tail dependencies. In the following section, this limitation of the
multivariate t copula is overcome by using the exchangeable
Archimedean copula for multivariate input modeling.
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We conclude this section by noting that the class of the ellipti-
cally symmetric copulas includes the logistic copula [71], the ex-
ponential power copula [80], and the generalized t copula [81,82].
However, not all generalized t copulas are elliptically symmetric;
they allow for different degrees of freedom and different types of
dependencies among the components of the random vector. We
refer the reader to Mendes and Arslan [82] for the characterization
of the tail dependencies that can be captured by the generalized t
copulas.

3.3.2. Exchangeable multivariate Archimedean copulas
The extension of the Archimedean copula introduced in

Section 3.2 for bivariate input modeling is the k-dimensional
Archimedean copula of the following form:
Ck(u1, u2, . . . , uk; θ)

= φ−1 (φ(u1; θ)+ φ(u2; θ)+ · · · + φ(uk; θ); θ) .

φ(·; θ) : [0, 1] → [0,∞) is a continuous, strictly decreasing
function that satisfies φ(0; θ) = ∞ and φ(1; θ) = 0. Additionally,
φ−1(·; θ) is a completely monotonic function on [0,∞) (i.e.,
(−1)ℓ∂ℓφ−1(t; θ)/∂tℓ ≥ 0 for all t ∈ (0,∞) and ℓ = 0, 1,
. . . ,∞) [83]. This is a necessary and sufficient condition for the
function Ck(·; θ) to define a copula, and this condition is satisfied
by both the k-dimensional Clayton copula and the k-dimensional
Gumbel copula.

Specifically, the pseudo-inverse of the generator function of
the Clayton copula; i.e., φ−1(t; θ) = (1 + t)−1/θ is completely
monotonic on [0,∞). Therefore, the k-dimensional Clayton copula
with θ > 0 is given by

Ck(u1, u2, . . . , uk; θ) =

u−θ
1 + u−θ

2 + · · · + u−θ
k − k+ 1

−1/θ
.

Due to its ability to represent the joint probability of compo-
nent random variables taking very small values together, Tehrani
et al. [16] use this copula function to model dependent disruptions
in supply chains caused by catastrophic events. Wagner et al. [15],
on the other hand, use the multivariate Clayton copula for inves-
tigating the impact of positive default dependencies on the de-
sign of supplier portfolios. However, the k-dimensional Clayton
copula assumes a lower-tail dependence of 2−1/θ and an upper-
tail dependence of zero between all pairs of its components (i.e.,
νL(i, j) = 2−1/θ and νU(i, j) = 0 for i = 1, 2, . . . , k and j = i, i+1,
. . . , k), limiting its ability to perform flexible dependence model-
ing.

Similarly, the pseudo-inverse of the generator function of the
Gumbel copula; i.e., φ−1(t; θ) = exp(−t1/θ ) is completely mono-
tonic on [0,∞). Thus, the two-dimensional Gumbel copula of Sec-
tion 3.2 is generalized to the following k-dimensional copula with
θ ≥ 1:
Ck(u1, u2, . . . , uk; θ)

= exp

−

(− log u1)

θ
+ (− log u2)

θ
+ · · · + (− log uk)

θ
1/θ

.

The functional form of this copula leads to the tail dependencies of
νL(i, j) = 0 and νU(i, j) = 2 − 21/θ for i = 1, 2, . . . , k and j = i,
i+ 1, . . . , k.

The bivariate two-parameter Archimedean copulas can also
be generalized to be the k-dimensional Archimedean copulas.
As an example, we consider the composite generator function
φ(t; θ1, θ2) = (t−θ1 − 1)θ2 with θ1 > 0 and θ2 ≥ 1. Since the
pseudo-inverse of this generator function is completelymonotonic
on [0,∞), we obtain the following k-dimensional copula:
Ck(u1, u2, . . . , uk; θ1, θ2)

=


(u−θ1

1 − 1)θ2 + (u−θ1
2 − 1)θ2 + · · · + (u−θ1

k − 1)θ2
1/θ2
+ 1

−1/θ1
.

Therefore, the tail dependencies νL(i, j) and νU(i, j) are, respec-
tively, identified as 2−1/(θ1θ2) and 2− 21/θ2 for i = 1, 2, . . . , k and
j = i, i+ 1, . . . , k.

3.3.3. Mixtures of max-infinitely divisible copulas
A flexible bivariate copula with the ability to represent any

pair of lower-tail and upper-tail dependencies is themax-infinitely
divisible bivariate copula (Section 3.2). Thus, a natural question
to ask is whether it is possible to build on the mixtures of
max-infinitely divisible bivariate copulas so as to construct a
k-dimensional copula that would match arbitrary values of
νL(i, j) > 0 and νU(i, j) > 0 for i = 1, 2, . . . , k and j = i, i + 1,
. . . , k. While the answer to this question is no, there exists a
multivariate copula function, Ck(F1(x1), F2(x2), . . . , Fk(xk)) from
the family of extreme value copulas, which captures arbitrary
values for the positive upper-tail dependencies among the random
variables X1, X2, . . . , Xk, while modeling the positive lower-tail
dependencies with limited flexibility:

Θ


−

k
i=1

k
j>i

log Ki,j(e−Θ−1(Fi(xi))/(ϑi+k−1),

e−Θ−1(Fj(xj))/(ϑj+k−1))+

k
i=1

ϑi

ϑi + k− 1
Θ−1(Fi(xi))


.

For this representation, Joe [26] provides the interpretation that
Laplace transformation Θ represents a minimal level of pair-
wise global dependence, bivariate copula Ki,j adds individual pair-
wise dependence beyond the global dependence, and parameters
ϑi, i = 1, 2, . . . , k lead to bivariate and multivariate asymme-
try. Usually, the ϑi, i = 1, 2, . . . , k are nonnegative, although
they can be negative if some of the copulas Ki,j correspond to inde-
pendence. What is important to recognize here is that the Laplace
transformation Θ limits our ability to represent arbitrary values
for νL(i, j) > 0 and νU(i, j) > 0. This can be shown by selecting the
Galambos copula for Ki,j; i.e.,

Ki,j(ui, uj; θi,j)

= uiuj exp


(− log ui)
−θi,j + (− log uj)

−θi,j
−1/θi,j

with 0 ≤ θi,j < ∞ [84], and by choosing the Laplace transforma-
tion Θ as gamma type; i.e., Θ(s) = (1 + s)−1/δ with parameter
δ ≥ 0. In this case, we obtain an upper-tail dependence of

νU(i, j) =

(ϑi + k− 1)θi,j +


ϑj + k− 1

θi,j−1/θi,j
and a lower-tail dependence of

νL(i, j) =

2−


(ϑi + k− 1)θi,j +


ϑj + k− 1

θi,j−1/θi,j−1/δ
for i = 1, 2, . . . , k and j = i, i + 1, . . . , k. The parameter θi,j
is specific to the joint distribution of random variables Xi and
Xj, while global parameter δ is shared among all k components
Xi, i = 1, 2, . . . , k. Therefore, we can represent any arbitrary value
of upper-tail dependence between any pair of component random
variables, but the global parameter δ limits our ability to have the
same level of flexibility in representing lower-tail dependence.

To conclude, the use of mixtures of max-infinitely divisible
copulas as well as multivariate Archimedean copulas for input
modeling allows the representation of both the lower-tail depen-
dence and the upper-tail dependence among the components of
the random vector. However, the dependence structures captured
by these copula families are restricted by the use of insufficient
number of copula parameters. Although this particular limitation
is overcome by the vine copulawe present in the following section,
the copula-vinemethod characterizes the dependence structure of
the random vector using a mix of bivariate tail dependencies and
bivariate conditional tail dependencies. Thus, in low-dimensional
settings the simulation practitioner, who is interested in generat-
ing random vectors with pre-specified (unconditional) pair-wise
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lower-tail and upper-tail dependencies, might find the use of the
mixtures of max-infinitely divisible copulas of this section more
convenient than the vines of the following section.

3.3.4. Vines
A vine is a graphical model introduced in [85], studied

extensively in [86–89], and described comprehensively in [90] for
constructingmultivariate distributions using amix of bivariate and
conditional bivariate distributions of uniform random variables.
Specifically, a k-dimensional vine is a nested set of k− 1 spanning
trees where the edges of tree j are the nodes of tree j+ 1, starting
with a tree on a graph whose nodes are the k component random
variables Xi, i = 1, 2, . . . , k. A regular vine is, on the other hand, a
vine in which two edges in tree j are joined by an edge in tree j+ 1
only if they share a common node [90, Section 4.4].

Fig. 3 presents a four-dimensional vine, which is a nested set
of three spanning trees. Specifically, the first tree of this regular
vine is the collection of three bivariate distributions; i.e., the
joint distribution of the component random variables X1 and X2,
the joint distribution of X2 and X3, and the joint distribution of
X3 and X4. Since the solid line between X1 and X2 links these
random variables, we associate this solid line with the joint
distribution of X1 and X2, and label it as ‘‘1, 2’’, implying the
copula density function c2(F1(x1), F2(x2)). Similarly, we denote
the solid line between X2 and X3 by ‘‘2, 3’’ associated with the
copula density function c2(F2(x2), F3(x3)), anduse ‘‘3, 4’’ for the line
between X3 and X4 to correspond to the copula density function
c2(F3(x3), F4(x4)). The second tree, on the other hand, contains
two bivariate distributions, which are the joint distribution of
X1|X2 and X3|X2 and the joint distribution of X2|X3 and X4|X3 with
the respective copula density functions c2(F1|2(x1|x2), F3|2(x3|x2))
and c2(F2|3(x2|x3), F4|3(x4|x3)). Therefore, in Fig. 3 we mark the
lines ‘‘. . . ’’ of the second tree by ‘‘1, 3|2’’ and ‘‘2, 4|3’’. Finally,
the third tree corresponds to the joint distribution of X1|X2, X3
and X4|X2, X3 represented by the line ‘‘–..–’’, which is further
labeled by ‘‘1, 4|2, 3’’ implying the copula density function
c2(F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)).

The two edges of a tree in Fig. 3 are joined only if they share
a common component random variable to obtain an edge of the
following tree. For example, the edges ‘‘1, 2’’ and ‘‘2, 3’’ of the
first tree share the node associated with the random variable X2
and they are combined for the edge ‘‘1, 3|2’’ of the second tree,
while the edge ‘‘2, 4|3’’ of the second tree is obtained from the
edges ‘‘2, 3’’ and ‘‘3, 4’’ sharing the node of the random variable X3.
Similarly, the edges ‘‘1, 3|2’’ and ‘‘2, 4|3’’, which share the nodes
associated with the random variables X2 and X3 in the second tree,
are joined by the edge ‘‘1, 4|2, 3’’ of the third tree in a manner that
is consistent with the definition of a regular vine.

More specifically, the regular vine in Fig. 3 is known as the
drawable vine (D-vine). Its use for multivariate input modeling
allows the four-dimensional copula density function to be
represented by the product of the six bivariate linking copulas
illustrated in Fig. 3; i.e.,

c4 (F1(x1), F2(x2), F3(x3), F4(x4))
= c2 (F1(x1), F2(x2))× c2 (F2(x2), F3(x3))
× c2 (F3(x3), F4(x4))× c2


F1|2(x1|x2), F3|2(x3|x2)


× c2


F2|3(x2|x3), F4|3(x4|x3)


× c2


F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)


.

The bivariate linking copulas of the first row appear in the first
tree of Fig. 3, while the bivariate linking copulas of the next
two rows come from the second and third trees. Furthermore,
this characterization of the four-dimensional random vector is
easily generalized to a k-dimensional random vector; i.e., the joint

Fig. 3. A D-vine specification on four dependent random variables.

Fig. 4. A C-vine specification on four dependent random variables.

Fig. 5. An example of a non-regular vine on four dependent random variables.

density function of the k-dimensional D-vine copula is obtained
as a factorization of the univariate marginal density functionsk

i=1 fi(xi) and the product of the bivariate (unconditional) linking
copulas

k−1
i=1

c2 (Fi(xi), Fi+1(xi+1))

of the first tree and the bivariate (conditional) linking copulas

k−1
j=2

k−j
i=1

c2(Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1),

Fi+j|i+1,...,i+j−1(xi+j|xi+1, . . . , xi+j−1))

of the remaining k − 2 trees. Representing the dependence
structure of the k-dimensional random vector via these (k−1)(k−
2) bivariate copulas instead of a single k-dimensional copula leads
to computational tractability in the development of data-fitting
algorithms in Section 4, goodness-of-fit tests in Section 5, and
sampling procedures in Section 6 for copula-based multivariate
input modeling.

Nevertheless, no unique regular vine exists for representing the
dependence structure of a random vector. Fig. 4 presents another
type of four-dimensional regular vine, the canonical vine (C-vine),
which is often used for multivariate input modeling. Fig. 5, on
the other hand, provides an example of a four-dimensional non-
regular vine. The comparison of this vine to the regular vines in
Figs. 3 and 4 shows that the dependence structure of the regular
vine is represented in terms of unconditional and conditional
dependence measures that are algebraically independent of each
other; i.e., they do not need to satisfy any algebraic constraints for
positive definiteness. Therefore, all assignments of the numbers
between −1 and 1 to the edges of the regular vine are consistent
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in the sense that there is a joint distribution realizing these
dependence measures.

A close look at the existing literature on vines reveals C-vine and
D-vine to be the widely used regular vines for multi-dimensional
dependence modeling. In recent years, the theory on vines has
advanced considerably, accompanied by the development of
several packages released by R software. In particular, we refer
the reader to the recently released software packages CDVine,
Vines, and Copula for statistical inference, distribution function
evaluation, and simulation of C-vine and D-vine copulas. However,
even if we narrow our choice of copulas to a C-vine and a D-vine, it
is not clear which one of these vine structures would best capture
the underlying dependence structure. Fortunately, this modeling
challenge can be overcome by using the lattice-based algorithm
of Maugis and Guegan [91] to find the vine copula representation
that best models the dependence structure of the random vector
of interest.

Joe et al. [92] show that vine copulas can cover a wide range
of tail dependencies by choosing the bivariate linking copulas
appropriately. However, the information set used to construct a
vine copula is composed of a mix of unconditional bivariate tail
dependencies and conditional bivariate tail dependencies. This
raises the question of what the implied unconditional bivariate
tail dependencies are for the given conditional tail dependencies.
To explain this issue in detail, we consider the use of vines for
constructing a three-dimensional randomvectorwith components
X1, X2, and X3. If we are given bivariate joint cdfs F(X1, X2)
and F(X2, X3) and the two-dimensional copula C2 measuring the
amount of conditional dependence between X1|X2 and X3|X2, then
we first obtain the conditional marginal distributions F1|2 and
F3|2 of the random variables X1|X2 and X3|X2, respectively, from
∂F(x1, x2)/∂x2 and ∂F(x2, x3)/∂x2. Then, we use these conditional
marginal distributions and the copula C2 together with the
marginal distribution F2 of the random variable X2 to build the
three-dimensional distribution

F(x1, x2, x3) =
 x2

−∞

C2(F1|2(x1|x), F3|2(x3|x))dF2(x).

While the tail dependence parameters are explicitly chosen for
the bivariate copulas, which link the random variables X1 and
X2, the random variables X2 and X3, and the conditional random
variables X1|X2 and X3|X2, the tail dependence between random
variables X1 and X3 are not explicitly defined, even though it can be
obtained from the joint cdf F . Under certain regularity conditions,
Joe [26] proves the existence of an upper-tail dependence between
X1 and X3 when both the bivariate copula linking X1 and X2 and the
bivariate copula linking X2 and X3 have upper-tail dependencies.
This result is further shown to hold for a k-dimensional random
vector [92].

An alternative to the representation of the dependence
structure of a multivariate random vector in terms of bivariate
tail dependencies is to measure the multivariate tail dependence.
Joe et al. [92] define the lower-tail dependence of the k-
dimensional copula Ck as limu↓0 Ck(u, u, . . . , u)/u and the upper-
tail dependence as limu↓0 C̄k(1 − u, 1 − u, . . . , 1 − u)/u with C̄k
the survival function of Ck. It is shown that the multivariate tail
dependence function of a vine copula can be expressed recursively
by the tail dependence and conditional tail dependence functions
of lower-dimensional margins. Also, a vine copula is identified as
tail dependent if all the bivariate linking copulas associated with
the first tree of the vine (i.e., baseline copulas) are tail dependent.
More specifically, if the baseline copulas are all lower-tail (upper-
tail) dependent, then the vine copula is lower-tail (upper-tail)
dependent provided that [0, 1]2 is the support of the bivariate
linking copulas. However, if some of the baseline copulas are tail
independent, then the vine copula is tail independent.

4. Fitting methods

In this section, we assume the availability of multivariate
input data and review the methods of parameter estimation for
the copulas of Section 3. Specifically, Section 4.1 discusses the
use of frequentist methods (i.e., the methods that only rely on
the available input data), while Section 4.2 reviews the limited
literature on Bayesian methods (i.e., the methods that combine
the input data with the prior information available about the joint
distribution parameters) for copula-parameter estimation.

4.1. Frequentist method

This section reviews the methods of Maximum Likelihood
Estimation (MLE) and the Inference For Margins (IFM) to estimate
the parameters of the copula-based input models.

The application of the MLE method for parameter estimation
requires the maximization of the joint likelihood function of the
available input data xi,t , i = 1, 2, . . . , k, t = 1, 2, . . . , n of length
n with respect to the parameters of the joint density function. The
utilization of Sklar’s marginal-copula representation for the joint
density function of the k-dimensional random vector X = (X1, X2,
. . . , Xk)

′ with marginal-distribution parameter vectors 9i, i = 1,
2, . . . , k and the copula parameter vector ϒ leads to the following
log-likelihood function, where x denotes the vector of the available
input data:

L(91, 92, . . . , 9k, ϒ|x) =
k

i=1

n
t=1

log fi(xi,t;9i)

+

n
t=1

log ck(F1(x1,t;91),

F2(x2,t;92), . . . , Fk(xk,t;9k);ϒ).

The maximum likelihood estimators 9̃
MLE
i , i = 1, 2, . . . , k, and

ϒ̃
MLE

are obtained from the maximization of this log-likelihood
function; i.e.,
9̃

MLE
1 , 9̃

MLE
2 , . . . , 9̃

MLE
k , ϒ̃

MLE
′

= argmax
91,92,...,9k,ϒ

L(91, 92, . . . , 9k, ϒ|x).

Under the regularity conditions of the asymptotic likelihood the-
ory [93], 9̃

MLE
i , i = 1, 2, . . . , k, and ϒ̃

MLE
are strongly consistent

and asymptotically normal; i.e., as n→∞, the random vec-
tor
√
n((9̃

MLE
1 , 9̃

MLE
2 , . . . , 9̃

MLE
k , ϒ̃

MLE
)′ − (9∗1, 9∗2, . . . , 9∗k , ϒ∗)′)

converges to be normally distributed with the zero mean vec-
tor and the variance–covariance matrix τ−1(9∗1, 9∗2, . . . , 9∗k , ϒ∗),
where 9∗i , i = 1, 2, . . . , k, and ϒ∗ are the true marginal-distribu-
tion and copula parameter vectors and τ(9∗1, 9∗2, . . . , 9∗k , ϒ∗) is
the Fisher’s information matrix [94].

Despite the wide use of the MLE method for parameter esti-
mation, the simultaneous estimation of the marginal-distribution
parameters and the copula parameters gets computationally de-
manding with k, the number of component random variables.
Fortunately, the log-likelihood function L(91, 92, . . . , 9k, ϒ|x)
can be partitioned into terms that separately relate to the
component marginal density functions and the copula density
function. This makes it possible to estimate the marginal distri-
bution parameters and the copula parameters in two stages. The
resulting method of parameter estimation is known as the IFM
method [26, Chapter 10]. First, we independently estimate the
marginal distribution parameters 9̃

IFM
i , i = 1, 2, . . . , k from the

log-likelihood functions associatedwith themarginal distributions
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Li(9i|xi) =
n

t=1 log fi(xi,t;9i), i = 1, 2, . . . , k; i.e., 9̃
IFM
i =

argmax9i
Li(9i|xi) for i = 1, 2, . . . , k. Then, we estimate the cop-

ula parameter vector ϒ̃
IFM

from the part of the log-likelihood func-
tion that is associated with the copula density function; i.e.,

Lc(ϒ|91, 92, . . . , 9k, x)

=

n
t=1

log ck

F1(x1,t;91), F2(x2,t;92), . . . , Fk(xk,t;9k);ϒ


,

by using the marginal distribution parameter estimates 9̃
IFM
i ,

i = 1, 2, . . . , k obtained in the first stage; i.e., ϒ̃
IFM
= argmaxϒ Lc

(ϒ|9̃
IFM
1 , 9̃

IFM
2 , . . . , 9̃

IFM
k , x). However, the use of a copula-vine

specification to construct a k-dimensional input model as a nested
set of k − 1 spanning trees further decomposes the estimation of
the copula parameter vector into k− 1 stages.

The IFM estimators 9̃
IFM
i , i = 1, 2, . . . , k, and ϒ̃

IFM
are gener-

ally not equivalent to the MLE estimators 9̃
MLE
i , i = 1, 2, . . . , k,

and ϒ̃
MLE

except for the normal copula with the normally dis-
tributed marginal distributions. Nevertheless, Joe [26] proves that
the IFM estimators are also strongly consistent and asymptotically
normal under certain regularity conditions; i.e.,

√
n((9̃

IFM
1 , 9̃

IFM
2 ,

. . . , 9̃
IFM
k , ϒ̃

IFM
)′ − (9∗1, 9∗2, . . . , 9∗k , ϒ∗)′) → N(0,G−1(9∗1, 9∗2,

. . . , 9∗k , ϒ∗)) with G(91, 92, . . . , 9k, ϒ) the Godambe informa-
tion matrix. If we define S(91, 92, . . . , 9k, ϒ) as a vector whose
transpose is the collection of ▽9i

Li(9i|xi), i = 1, 2, . . . , k, and
▽ϒ Lc(ϒ|91, 92, . . . , 9k, x), then the Godambe information ma-
trix G(91, 92, . . . , 9k, ϒ) is given by D−1V(D−1)′, where D =
E(▽S(91, 92, . . . , 9k, ϒ)/ ▽ (91, 92, . . . , 9k, ϒ)) and V = E(S
(91, 92, . . . , 9k, ϒ)S(91, 92, . . . , 9k, ϒ)′) [44]. However, it is
well known that the estimators obtained from the entire log-
likelihood function are the most efficient estimators, in that they
attain theminimum asymptotic variance bound, while the estima-
tors obtained from the multi-stage maximum-likelihood estima-
tion do not attain this bound. Furthermore, an inappropriate choice
of models for the marginal distributions may have detrimental ef-
fects on the estimation of the copula parameter vector [95]. There-
fore, the IFM estimators 9̃

IFM
i , i = 1, 2, . . . , k, and ϒ̃

IFM
pro-

vide good starting points for obtainingmore efficient estimators by
solving L(91, 92, . . . , 9k, ϒ|x) for both themarginal-distribution
parameter vectors 9i, i = 1, 2, . . . , k and the copula parameter
vector ϒ in a single stage.

4.2. Bayesian method

An alternative method to the use of the frequentist MLE
and IFM methods for parameter estimation is the Bayesian
method. The Bayesian method starts with the determination
of a joint prior density function that quantifies the initial
uncertainty about the multivariate distribution parameters. Then,
the joint prior distribution is updated with the joint likelihood
function of the available historical data, and we obtain the joint
posterior distribution that captures the uncertainty associated
with the multivariate distribution parameters. The derivation of
the posterior density function generally requires the computation
of high-dimensional integrals, limiting the use of the Bayesian
method for parameter estimation in multi-dimensional settings.
However, the advancement of the Markov Chain Monte Carlo
(MCMC) method in recent years has made it possible to estimate
distribution parameters with any posterior density function. In
this section, we review Bayesian estimation using the MCMC
method to obtain parameter estimates for three copula models:
the multivariate normal copula, the multivariate t copula, and

the D-vine built on bivariate t copulas. Although the multivariate
normal copula does not capture any tail dependence, we describe
a Bayesian estimation for this copula due to its relation to the
multivariate t copula.

Dalla Valle [96] builds a Bayesian model to estimate the
correlation matrix 6k of the k-dimensional normal copula density
function with a likelihood function of the following form, where
xt is the vector of input data xi,t , i = 1, 2, . . . , k and Ik is the k-
dimensional identity matrix:

|6k|
−n/2 exp


−

1
2

n
t=1

x′t

6−1k − Ik


xt


.

Dalla Valle [96] uses the Inverse Wishart density function as
the conjugate prior for the correlation matrix 6k; i.e., 6k ∼

Inverse Wishart(α, B) [97]. The parameters of this conjugate prior
are chosen as α ≡ k + 1 and B ≡ [diag(γi); i = 1, 2, . . . , k],
where γi is the gamma random variable whose scale and shape
parameters are 0.001 to minimize the impact of the prior density
function on the posterior density function. Therefore, the posterior
density function is identified as the Inverse Wishart with param-
eters n/2 + α and B +

n
t=1 xtx

′
t/2. Dalla Valle [96] obtains an

estimate of 6k from this posterior density function via the use of
a Gibbs sampler algorithm, which is a widely used MCMC method
that requires the sampling of6k from its conditional posterior den-
sity function. The key idea behind anyMCMCmethod is to simulate
a randomwalk on the entire parameter space that converges to the
joint posterior density function of the parameters [98]. Then, the
parameters sampled in each replication of the Gibbs sampler algo-
rithm are averaged to estimate the copula parameters.

Another distribution Dalla Valle [96] considers is the k-
dimensional t copula with a likelihood function given by
Γ


d+ k
2

n 
Γ


d+ 1
2

−kn 
Γ


d
2

n(k−1)

× |6k|
−n/2

n
t=1


1+

x′t6
−1
k xt
d

− d+k
2 n

t=1

k
i=1


1+

x2it
d

 d+1
2

.

Similar to the selection of a joint prior density function for the
normal copula parameters, Dalla Valle chooses the InverseWishart
priorwith parametersα andB for6k of the k-dimensional t copula.
Additionally, the truncated Poisson distribution with parameter
h is selected as a prior for d. Consequently, the posterior density
function of 6k is obtained as

|6k|
−

n
2−α+ k+1

2

n
t=1


1+

x′t6
−1
k xt
d

− d+k
2

exp

−tr(B6−1k )


,

while the posterior density function of d is given by
Γ


d+ k
2

n 
Γ


d+ 1
2

−kn 
Γ


d
2

n(k−1)

×

n
t=1


1+

x′t6
−1
k xt
d

 d+k
2 n

t=1

k
i=1


1+

x2it
d

 d+1
2 hd

d!
.

Both of these posterior density functions are in non-standard
forms; therefore, Dalla Valle [96] resorts to the use of an
MCMC method known as the Metropolis Hastings algorithm for
estimating 6k and d. The implementation details of this algorithm
can be found in [98].

Czado and Min [99], on the other hand, consider the Bayesian
estimation of the parameters of a D-vine built on bivariate
t copulas with the following key assumption: The degrees of
freedom parameter, the dependence parameters of the baseline
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copulas, and the conditional dependence parameters of the
conditional bivariate linking copulas are independent. Czado and
Min use a uniform prior in the interval (1, 100) for the degrees of
freedom parameter and a uniform prior in the interval (−1, 1) for
each of the dependence parameters. However, the resulting joint
posterior density function of the copula parameters does not have
awell-defined form; therefore, the authors also use theMetropolis
Hastings algorithm for estimating the vine copula parameters.
Details of implementing this algorithm for the D-vine are available
in [99].

5. Goodness-of-fit tests

The next step in multivariate input modeling is to assess the
goodness of the estimated copula parameters in capturing the joint
distributional characteristics of the available input data. A close
look at the existing literature reveals several goodness-of-fit tests
that have been built specifically for copulas; we refer the reader to
Berg [100] and Genest et al. [101] for a comprehensive review as
well as a comparison of these tests. In this section, we review only
two of these tests; i.e., a test that is based on the empirical copula
and a test proposed by Genest et al. [101] building on a variation of
Rosenblatt’s transformation. The reason for considering only these
tests in our survey is that they work for any copula function and
they are not sensitive to the grouping of the data. Genest et al. [101]
call the tests with such characteristics the ‘‘blanket’’ tests. Among
all blanket tests considered in [101], the ones that are reviewed
here standout as the best blanket tests that have been developed
for copula models.

To focus our presentation on the fit of the copula itself and avoid
any distributional assumptions about the component marginal
distributions, we consider the ranks of the historical data in this
section and denote them by bi,t , i = 1, 2, . . . , k, t = 1, 2, . . . ,
n. Therefore, we define a pseudo-observation, ui,t by bi,t/(n + 1).
The pseudo-observations ui,t , i = 1, 2, . . . , k, t = 1, 2, . . . , n
can be interpreted as a sample from the underlying k-dimensional
copula Ck, whose empirical counterpart Ck,n(u) with u = (u1, u2,
. . . , uk)

′
∈ [0, 1]k is given by

Ck,n(u) =
1
n

n
t=1

I(u1,t ≤ u1, u2,t ≤ u2, . . . , uk,t ≤ uk),

where I represents the indicator function that equals 1 if its
argument is true, and 0 otherwise [102]. It is important to note
that the pseudo-observations are not mutually independent and
they are only approximately uniform on [0, 1]. Any inference
procedure based on the pseudo-observations should take these
features into account. A detailed discussion about the significance
of these properties of the pseudo-observations on the performance
of the goodness-of-fit tests is available in [101].

Building on the empirical copula Ck,n, Genest and Rémil-
lard [103] propose the use of the rank-based version of Cramér von
Mises test statistic,

Sn =

[0,1]k

n

Ck,n(u)− Ck(u; ϒ̂n)

2
dCk,n(u)

and the rank-based version of the Kolmogorov–Smirnov test
statistic,

Tn = sup
u∈[0,1]k

√n

Ck,n(u)− Ck(u; ϒ̂n)

 ,
where Ck(·; ϒ̂n) denotes the k-dimensional copula with the
dependence parameter vector ϒ̂n estimated from multivariate
data of length n. Small values of Sn and Tn indicate the goodness
of the copula fit. The approximate p values of these tests can be
obtained from their limiting distributions. However, in practice

the limiting distributions of Sn and Tn depend on the copula
family of interest and the unknown dependence parameter vector
ϒ. Therefore, the common practice is to obtain the asymptotic
distribution of these tests and the approximate p values via Monte
Carlo methods [101]. A parametric bootstrap procedure, which
can be used for this purpose, is available in Appendix A of Genest
et al. [101], while the consistency and the asymptotic convergence
of these tests are proven in [103].

The second goodness-of-fit test we present for copula-based
input modeling is based on Rosenblatt’s transformation [104],
which is a general procedure used in simulation for decompos-
ing a random vector with a given distribution into mutually inde-
pendent components that are uniformly distributed on the unit in-
terval. Specifically, Rosenblatt [104] transforms the random vector
U = (U1,U2, . . . ,Uk)

′
∈ [0, 1]k to the random vector R(U) =

(Y1, Y2, . . . , Yk)
′
∈ [0, 1]k with Y1 = U1 and

Yi =


∂ i−1Ck (U1,U2, . . . ,Ui−1,Ui, 1, . . . , 1;ϒ)


/ (∂U1∂U2 · · · ∂Ui−1)

∂ i−1Ck (U1,U2, . . . ,Ui−1, 1, 1, . . . , 1;ϒ)

/ (∂U1∂U2 · · · ∂Ui−1)

for i = 2, 3, . . . , k. The use of this probability integral transform of
the k-dimensional copula Ck(·;ϒ) for measuring the goodness of a
copula fit leads to the interpretation that the pseudo-observations
yt = (y1,t , y2,t , . . . , yk,t)′, t = 1, 2, . . . , n, which are obtained
from R(ut), t = 1, 2, . . . , n with ut = (u1,t , u2,t , . . . , uk,t)

′,
correspond to a sample from the independence copula C⊥(u) (i.e.,
C⊥(u1, u2, . . . , uk) = u1u2 · · · uk) [101].

Building on this result, Genest et al. [101] devise two tests that
are based on the empirical distribution function

Dk,n(u) =
1
n

n
t=1

I(yt ≤ u)

associated with the pseudo-observations yt , t = 1, 2, . . . , n. Any
discrepancy between this empirical copula (Dk,n(u)) and the inde-
pendence copula (C⊥(u)) is interpreted as an indication of a lack
of fit. The statistics of the resulting Cramér von Mises tests are as
follows:

S(B)
n = n


[0,1]k


Dk,n(u)− C⊥(u)

2 du,

=
n
3k
−

1
2k−1

n
t=1

k
i=1

(1− y2i,t)

+
1
n

n
s=1

n
t=1

k
i=1

(1−max(yi,s, yi,t)).

S(C)
n = n


[0,1]k


Dk,n(u)− C⊥(u)

2 dDk,n(u),

=

n
t=1


Dk,n(yt)− C⊥(yt)

2
.

We refer the reader to Appendix D of Genest et al. [101] for a para-
metric bootstrap procedure using the test statistics S(B)

n and S(C)
n to

measure the goodness of a copula fit.
A comprehensive experimental study conducted by Genest

et al. [101] shows that the test statistics based on the Cramér–von
Mises distance perform better than the test statistics based on
the Kolmogorov–Smirnov distance; i.e., the test statistics Sn, S

(B)
n ,

and S(C)
n outperform the test statistic Tn. Furthermore, among the

test statistics based on Cramér–von Mises distance, Sn and S(B)
n are

the most promising tests for various copula models including the
normal copula, the t copula, the Clayton copula, and the Gumbel
copula. Recent applications of these test statistics to financial data
can be found in [105].
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6. Sampling

We discuss the well known methods of generating random
vectors frommultivariate normal and t copulas in Section 6.1, from
Archimedean copulas via conditional sampling in Section 6.2, and
from C-vine and D-vine specifications in Section 6.3.

6.1. Sampling from the normal copula and the t copula

The well known approach to the sampling of a uniform ran-
dom vector (U1,U2, . . . ,Uk)

′ from the k-dimensional normal cop-
ula with correlation matrix 6k is based on using the Cholesky
decomposition for variate generation [106]. Specifically, we first
find the Cholesky decomposition of the correlation matrix 6k;
i.e., 6k = AA′. Then, we generate k independent standard nor-
mal random variates zi, i = 1, 2, . . . , k; construct vector z =
(z1, z2, . . . , zk)′; and set x = (x1, x2, . . . , xk)′ to Az. Finally, we ap-
ply the transformation ui = Φ(xi) for i = 1, 2, . . . , k.

We can similarly sample a uniform random vector from the k-
dimensional t copula with parameters 6k and d. First, we obtain
the vector x as described above for the k-dimensional normal
copula. Then, we generate a random variate s from a chi-square
distribution with d degrees of freedom and set m =

√
(d/s)x.

Finally, we obtain ui, i = 1, 2, . . . , k from the transformation
td(mi), i = 1, 2, . . . , k.

6.2. Sampling from the Archimedean copulas

The generation of a two-dimensional random vector of the
form (u1, u2)

′ from the copula C2 starts with the sampling of two
independent uniform random variates u1 and w. Then, we ob-
tain the uniform random variate u2 from the quasi-inverse func-
tion of the conditional distribution Pr(U2 ≤ u2|U1 = u1); i.e.,
u2 = C−12|1 (w|u1). Specifically, we obtain the conditional copula
C2|1(u2|u1) from ∂C2(u1, u2)/∂u1. In the case of a k-dimensional
setting with k ≥ 3, we similarly generate k independent uni-
form random variates, u1, w1, w2, . . . , wk−1, and obtain the ran-
dom variates u2, u3, . . . , uk by

u2 = C−12|1 (w1|u1),

u3 = C−13|1,2(w2|u1, u2),

...

uk = C−1k|1,2,...,k−1(wk−1|u1, u2, . . . , uk−1),

where Ck|1,2,...,k−1(uk|u1, u2, . . . , uk−1) = Pr(Uk ≤ uk|U1 =

u1,U2 = u2, . . . ,Uk−1 = uk−1) is given by
∂k−1Ck (u1, u2, . . . , uk)


/ (∂u1 . . . ∂uk−1)

∂k−1Ck−1 (u1, u2, . . . , uk−1)

/ (∂u1 . . . ∂uk−1)

.

The functional form of the conditional copula for the k-
dimensional Archimedean copula reduces to the following repre-
sentation, where φ−1(i)(·; θ) stands for the ith-order derivative of
the pseudo-inverse of the generator function φ(·; θ) [44]:

Ci|1,2,...,i−1(ui|u1, u2, . . . , ui−1; θ)

=
φ−1(i−1)(φ(u1; θ)+ φ(u2; θ)+ · · · + φ(ui; θ); θ)

φ−1(i−1)(φ(u1; θ)+ φ(u2; θ)+ · · · + φ(ui−1; θ); θ)
,

i = 2, 3, . . . , k.

Therefore, we can sample from the k-dimensional Clayton copula
with

φ−1(i)(t; θ) = (−1)i
(θ + 1)(θ + 2) . . . (θ + i− 1)

θ i
(t + 1)−1/θ−i

as follows: First, we generate k independent, uniformly distributed
random variates wi, i = 1, 2, . . . , k. Then, we set u1 = w1 and
w2 = C2|1(u2|w1) with c1 = φ(u1; θ) = u−θ

1 − 1, c2 = φ(u1; θ)+

φ(u2; θ) = u−θ
1 +u

−θ
2 −2, andC2|1(u2|w1) = φ−1(1)(c2)/φ−1(1)(c1).

Therefore, we obtain w2 = ((u−θ
1 + u−θ

2 − 1)/u−θ
1 )−1/θ−1, which

leads to u2 = ((w−θ
1 (w

−θ/(θ+1)
2 − 1)) + 1)−1/θ . Similarly, we set

w3 = C3|1,2(u3|u1, u2) = φ−1(2)(c3)/φ−1(2)(c2) = ((u−θ
1 + u−θ

2 +

u−θ
3 − 2)/(u−θ

1 + u−θ
2 − 1))−1/θ−2, which results in

u3 =


w
−θ/(1+2θ)

3


w−θ

1 + w−θ
2 − 1


− w−θ

1 − w−θ
2 + 2

−1/θ
.

As a result of using this recursion, we obtain

wk = Ck|1,2,...,k−1(uk|u1, u2, . . . , uk−1)

=


u−θ
1 + u−θ

2 + · · · + u−θ
k − k+ 1

u−θ
1 + u−θ

2 + · · · + u−θ
k−1 − k+ 2

−1/θ−k+1
and thus,

uk = ((u−θ
1 + u−θ

2 + · · · + u−θ
k−1 − k+ 2)

× (w
θ/(θ(1−k)−1)
k − 1)+ 1)−1/θ .

The generation of k random variates from the k-dimensional
Gumbel copula also starts with the sampling of k independent,
uniformly distributed random variates wi, i = 1, 2, . . . , k. Then,
we set u1 = w1 and w2 = C2|1(u2|w1) = φ−1(1)(c2)/φ−1(1)(c1)
with c1 = φ(u1; θ) = (− log(u1))

θ and c2 = φ(u1; θ) +
φ(u2; θ) = (− log(u1))

θ
+ (− log(u2))

θ , and solve the resulting
equation for u2. We obtain u3, u4, . . . , uk in a similar manner
by setting wi = Ci|1,2,...,i−1 (ui|u1, u2, . . . , ui−1) = φ−1(i−1)

(ci; θ)/φ−1(i−1)(ci−1) and solving this equation for ui, i = 3, 4,
. . . , k. Thus, unlike the Clayton copula, there is no recursive
formula for the inverse of the generator function of the k-
dimensional Gumbel copula. Nevertheless, we can easily obtain
u1, u2, . . . , uk via the use of numerical search procedures.

Another way of sampling a k-dimensional Gumbel copula is
to use the Marshall and Olkin generation method [107] with the
(1/θ)-stable randomvariable γ and the Laplace transformΘ(γ ) =
exp(−γ 1/θ )4. Specifically, we first generate a random variable γ
from the Stable (1, 0, 0) distribution with parameter 1/θ . We
do this by sampling a uniform random variable r on the interval
(−π/2, π/2) and an exponential random variable ξ with mean 1,
and setting

γ =
sin(r/θ)

(cos(r))θ


cos((1− 1/θ)r)

ξ

(1−1/θ)/(1/θ)

.

Then, independent of the previous step,we generate k independent
uniform random variates wi, i = 1, 2, . . . , k and apply the trans-
formation ui = Θ(− log(wi)/γ ) for i = 1, 2, . . . , k. Similarly, the
Marshall and Olkin generation method can be used for sampling
from a k-dimensional Clayton copula with γ defined as a gamma
random variable having shape parameter 1 and scale parameter
1/θ and the Laplace transform Θ(γ ) defined by (1+ γ )−1/θ [108].

6.3. Sampling from the C-vine and D-vine specifications

The sampling of a random vector with a copula-vine specifi-
cation starts with the generation of k independent uniform ran-
dom variates wi, i = 1, 2, . . . , k; proceeds by traversing the
regular vine of interest in a specific order; and applying succes-
sive inversions of the conditional distributions derived from the
two-dimensional copulas of each edge. Specifically, the sampling
algorithm associated with a C-vine specification is based on the
graphical representation of the k-dimensional distribution with
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(conditional) tail dependencies assigned to the following edges of
the vine:

1, 2 1, 3 1, 4 · · · 1, k
2, 3|1 2, 4|1 · · · 2, k|1

3, 4|1, 2 · · · 3, k|1, 2
. . .

...

k− 1, k|1, 2, . . . , k− 2

In particular, ‘‘1, k’’ refers to the edge between the (unconditional)
random variables X1 and Xk, while ‘‘k − 1, k|1, 2, . . . , k − 2’’
represents the edge associated with the conditional random
variables Xk−1|X1, X2, . . . , Xk−2 and Xk|X1, X2, . . . , Xk−2. Thus, we
sample the uniform random vector (U1,U2, . . . ,Uk)

′ with a k-
dimensional distribution function represented by a C-vine as
follows:

u1 ← w1.

u2 ← C−12|1 (w2|u1) .

u3 ← C−13|1


C−13|2:1 (w3|u2) |u1


.

u4 ← C−14|1


C−14|2:1


C−14|3:1,2 (w4|u3) |u2


|u1

.

...

uk ← C−1k|1 (C−1k|2:1(C
−1
k|3:1,2(· · · (C

−1
k|k−1:1,2,...,k−2

(wk|uk−1)|uk−2) · · ·)|u3)|u2)|u1).

In this sampling algorithm, Ci|j is the conditional distribution
associated with the bivariate copula between random variables
Ui and Uj (i.e., Ci|j(ui|uj) = ∂C2(ui, uj)/∂uj), while Ci|j:1,2,...,j−1 is
the conditional distribution associatedwith the conditional copula
Ci,j|1,2,...,j−1 between the random variables Ui|U1,U2, . . . ,Uj−1 and
Uj|U1,U2, . . . ,Uj−1; i.e.,

Ci|j:1,2,...,j−1(ui|uj) =
∂C2(ui, uj|u1, u2, . . . , uj−1)

∂uj
.

The uniform random variates w1, w2, . . . , wk are generated inde-
pendently and u1, u2, . . . , uk are obtained by applying successive
inverse cdfs. Furthermore, the first four rows of this sampling al-
gorithm describe the generation of random variates u1, u2, u3, and
u4 from the four-dimensional C-vine illustrated in Fig. 4.

When the joint distribution function of the random variables
U1,U2, . . . ,Uk is specified by a D-vine, which is illustrated
in Fig. 3 for a four-dimensional random vector, the graphical
representation is obtained in terms of the dependence measures
associated with the following edges of the vine:

1,
2

1, 3|2 1, 4|2, 3 · · · 1, k|2, . . . , k− 1

2, 3 2, 4|3 · · · 2, k|3, . . . , k− 1
3, 4 · · · 3, k|4, . . . , k− 1

. . .
...

k− 2, k|k− 1
k− 1, k

Therefore, we first generate k independent uniform random vari-
ates w1, w2, . . . , wk and then sample the uniform random vector
(U1,U2, . . . ,Uk)

′ represented with the D-vine by calculating

u1 ← w1,

u2 ← C−12|1 (w2|u1) ,

u3 ← C−13|2


C−13|1,2


w3|C1|2(u1|u2)


|u2

,

u4

← C−14|3


C−14|2,3


C−14|1,2,3


w4|C1|2,3(u1|u2, u3)


|C2|3(u2|u3)


|u3

,

...

uk ← C−1k|k−1(C
−1
k|k−2,k−1(· · · C

−1
k|1,2,...,k−1(wk|C1|2,3,...,k−1

(u1|u2, u3, . . . , uk−1)) · · · |Ck−2|k−1(uk−2|uk−1))|uk−1).

Thus, the sampling procedure for D-vine uses both conditional
distributions and inverse conditional distributions. The first four
rows of this sampling procedure further describe the sampling of a
uniform random vector from the four-dimensional D-vine in Fig. 3.

7. Conclusion

As large-scale stochastic simulation becomes a tool that is
used routinely for the design and analysis of complex systems,
it is important to develop multivariate input models that are
flexible enough to capture the joint distributional properties of the
system inputs. A close look at the existing literature shows that
the development of a large number of multivariate input models
builds on the use of the normal copula for dependence modeling.
However, the normal copula fails to represent the dependence
structures with tail dependencies that arise in the context of
extreme events.

In this survey, we reviewed the copula-based input models for
stochastic simulations with dependent inputs by focusing on the
tail dependence. First, we reviewed the bivariate copula models
along with their tail dependence properties and then extended
our discussion to the multivariate copula models with three or
more component randomvariables. Finally,wediscussedhow to fit
these copula models to the available historical data sets, and how
to generate random vectors from the resulting joint distributions.

The case of bivariate copulas with tail-dependence power has
been well studied, but these do not readily extend to multiple
dimensions. Recently, several multivariate parametric copulas
have been introduced, but the study of their tail-dependence
properties is still in its infancy.Webelieve that the study of the tail-
dependence characteristics of the existing multivariate copulas as
well as the development of new multivariate copulas that have
the ability to capture a wide variety of asymmetric dependence
structures are the promising research areas to enhance the field
of multivariate input modeling for stochastic simulations.
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[71] K. Fang, S. Kotz, K.W. Ng, Symmetric Multivariate and Related Distributions,
Chapman & Hall, London, 1987.

[72] G. Kimeldorf, A.R. Sampson, Uniform representations of bivariate distribu-
tions, Communications in Statistics 4 (1975) 617–627.

[73] E.J. Gumbel, Distributions des valeurs extrêmes en plusiers dimensions,
Publications de LiInstitute de Statistique 9 (1960) 171–173.

[74] A.A. Balkema, S.I. Resnick, Max-infinite divisibility, Journal of Applied
Probability 14 (1977) 309–319.

[75] D. MacKenzie, End-of-the-world trade, in: London Review of Books, Vol. 30,
2008, pp. 24–26.

[76] F. Salmon, Recipe for disaster: the formula that killed Wall Street, 2009.
Wired 02/23/2009.

[77] A. Lipton, A. Rennie, Credit Correlation: Life After Copulas, World Scientific
Publishing Co., Hackensack, NJ, 2007.

[78] C. Donnelly, P. Embrechts, The devil in the tails: actuarial mathematics and
the subprime mortgage crisis, ASTIN Bulletin 40 (2010) 1–33.

[79] D. Brigo, A. Pallavicini, R. Torresetti, Credit Models and the Crisis: A Journey
into CDOs, Copulas, Correlations, and DynamicModels, in: TheWiley Finance
Series, 2010.

[80] E. Gomeza, M.A. Gomez-Viilegasa, J.M. Marina, A multivariate generalization
of the power exponential family of distributions, Communications in
Statistics: Theory and Methods 27 (1998) 589–600.

[81] Z.M. Landsman, E.A. Valdez, Tail conditional expectations for elliptical
distributions, Technical Report N 02-04, 2002.

[82] B.V.M. Mendes, O. Arslan, Multivariate skew distributions based on the GT
copula, Brazilian Review of Econometrics 26 (2006) 235–255.

[83] C.H. Kimberling, A probabilistic interpretation of complete monotonicity,
Aequationes Mathematicae 10 (1974) 152–164.

[84] J. Galambos, Order statistics of samples from multivariate distributions,
Journal of American Statistical Association 70 (1975) 674–680.



84 B. Biller, C. Gunes Corlu / Surveys in Operations Research and Management Science 17 (2012) 69–84

[85] R. Cooke, Markov and entropy properties of tree and vines-dependent
variables, in: Proceedings of the ASA Section on Bayesian Statistical Science,
American Statistical Association, Alexanria, VA, 1997, pp. 166–175.

[86] T. Bedford, R.M. Cooke, Probability density decomposition for conditionally
dependent random variables modeled by vines, Annals of Mathematics and
Artificial Intelligence 32 (2001) 245–268.

[87] T. Bedford, R.M. Cooke, Vines—a new graphical model for dependent random
variables, The Annals of Statistics 30 (2002) 1031–1068.

[88] D. Kurowicka, R. Cooke, A parameterization of positive definite matrices in
terms of partial correlation vines, Linear Algebra and its Applications 372
(2003) 225–251.

[89] K. Aas, C. Czado, A. Frigessi, H. Bakken, Pair-copula constructions of multiple
dependence, Insurance: Mathematics and Economics 44 (2009) 182–198.

[90] D. Kurowicka, R. Cooke, Uncertainty Analysis with High Dimensional
Dependence Modeling, in: Wiley Series in Probability and Statistics, 2006.

[91] P.A. Maugis, D. Guegan, New prospects on vines, Insurance Markets and
Companies: Analysis and Actuarial Computations 1 (2010) 15–22.

[92] H. Joe, L. Haijun, A.K. Nikoloulopoulos, Tail dependence functions and vine
copulas, Journal of Multivariate Analysis 101 (2010) 252–270.

[93] R.J. Serfling, Approximation Theorems ofMathematical Statistics,Wiley, New
York, 1980.

[94] P. Billingsley, Statistical Inference for Markov Processes, University of
Chicago Press, Chicago, 1961.

[95] G. Kim, M.J. Silvapulle, P. Silvapulle, Comparison of semi-parametric and
parametric methods for estimating copulas, Communications in Statistics:
Simulation and Computation 51 (2007) 2836–2850.

[96] L. Dalla Valle, Bayesian copulae distributions, with application to operational
risk management, Methodology and Computing in Applied Probability 11
(2009) 95–115.

[97] P.E. Rossi, G.M. Allenby, R. McCulloch, Bayesian Statistics and Marketing,
in: Wiley Series in Probability and Statistics, 2006.

[98] W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Markov Chain Monte Carlo in
Practice, Chapman and Hall, London, UK, 1996.

[99] C. Czado, A. Min, Bayesian inference for D-vines: estimation and model
selection, in: D. Kurowicka, H. Joe (Eds.), Dependence Modeling: Vine Copula
Handbook, World Scientific Publishing Co., Singapore, 2011, pp. 249–264.

[100] D. Berg, Copula goodness-of-fit testing: an overview and power comparison,
The European Journal of Finance 15 (2009) 675–701.

[101] C. Genest, B. Rémillard, D. Beaudoin, Goodness-of-fit tests for copulas: a
review and a power study, Insurance:Mathematics and Economics 44 (2009)
199–213.

[102] P. Deheuvels, La fonction de dépendance empirique et ses propriétés: Un test
non paramétrique d’imdépendance, Académie Royale de Belgique: Bulletin
de la Classe des Sciences, 5e Série 65 (1979) 274–292.

[103] C. Genest, B. Rémillard, Validity of parametric bootstrap for goodness-of-
fit testing in semiparametric models, Annals of Henri Poincaré 44 (2008)
1096–1127.

[104] M. Rosenblatt, Remarks on a multivariate transformation, The Annals of
Mathematical Statistics 23 (1952) 470–472.

[105] G.N.F. Weiss, Are Copula-GoF tests of any practical use? empirical evidence
for stocks, commodities, and FX futures, The Quarterly Review of Economics
and Finance 51 (2011) 173–188.

[106] E.M. Scheuer, D.S. Stoller, On the generation of normal random vectors,
Technometrics 4 (1962) 278–281.

[107] A.W. Marshall, I. Olkin, Families of multivariate distributions, Journal of
American Statistical Association 83 (1988) 834–841.

[108] E.W. Frees, E. Valdez, Understanding relationships using copulas, North
American Actuarial Journal 2 (1998) 1–25.



Surveys in Operations Research and Management Science 17 (2012) 85–96

Contents lists available at SciVerse ScienceDirect

Surveys in Operations Research and Management Science

journal homepage: www.elsevier.com/locate/sorms

Review

A tutorial on fundamental model structures for railway timetable optimization
Steven S. Harrod ∗

University of Dayton, United States

a r t i c l e i n f o

Article history:
Received 22 June 2012
Accepted 8 August 2012

a b s t r a c t

This guide explains the role of railway timetables relative to all other railway scheduling activities, and
then presents four fundamental timetable formulations suitable for optimization. Timetabling models
may be classified according to whether they explicitly model the track structure, and whether the
timetable is intended to be periodic or not (aperiodic). The presentation ofmodels is organized to facilitate
the selection of a model by planning objective and available data, regardless of the specific traffic carried
or network size.

© 2012 Elsevier Ltd. All rights reserved.

Contents

1. Introduction........................................................................................................................................................................................................................ 85
1.1. Taxonomy of railway scheduling.......................................................................................................................................................................... 86
1.2. Prior references on railway scheduling ................................................................................................................................................................ 86
1.3. Primary model classifications and their origins .................................................................................................................................................. 87
1.4. Modeling significance of explicit track representation ....................................................................................................................................... 87

2. Mixed integer sequencing linear programs...................................................................................................................................................................... 88
3. Binary integer occupancy programs ................................................................................................................................................................................. 89

3.1. Path enumeration models ..................................................................................................................................................................................... 91
3.2. Alternative graph models ...................................................................................................................................................................................... 91

4. Hypergraph formulation.................................................................................................................................................................................................... 91
5. Periodic event scheduling problems................................................................................................................................................................................. 93
6. Summary and comment .................................................................................................................................................................................................... 94

References........................................................................................................................................................................................................................... 95

1. Introduction

Railway operations involve large sums of money both in
infrastructure and direct operating expenses, and their services
are valued by both the traveling public and primary industries. A
fully defined timetable specifies the paths that trains follow on a
railway network including track lines used, junctions or stations
traveled, connections between trains for passengers or freight, and
various interactions between trains necessary for safe operation,
with planned timings for all events. The quality of a timetable
determines the utilization of the railway network, the sustainable
flow, and the robustness of the service commitments to passengers
and freight recipients. For example, Netherlands Railways was the
subject of the 2008 Franz Edelman Award (INFORMS), for which
they documented a profit increase of e 40 million annually due to
improvements to a timetable of 5500 trains [1].

Operation by timetable is frequently confused with the North
American term ‘‘scheduled railroading’’, but North American

∗ Tel.: +1 937 312 9252.
E-mail address: steven.harrod@udayton.edu.

railroads have not compiled and followed timetables for over fifty
years. Instead, they attempt tomaintain a homogeneous flowalong
their networks and rely on experienced humandispatchers to issue
orders granting authority for moves directly to train crews. Freight
train timekeeping records are measured in hours. This practice,
‘‘timetable free’’ operation, is the result of a legacy of ‘‘tonnage’’
dispatching, where trains only departed when they reached full
length or tonnage. This in turn was the result of the elimination
of most North American passenger services by 1960 and the
simultaneous loss of priority or perishable freight traffic to road
carriage. Although increasing network congestion, introduction of
intermodal services, and re-introduction of passenger services are
apparent throughout North America, for the moment timetable
free operation remains standard practice.

Timetable optimization formulations are commonly labeled
according to their application: passenger or freight, single or
double track, and main lines or junctions. However, frequently
the same mathematical structures and capabilities can be found
spread amongst these different applications. This leads to a
lack of continuity between these conceptual developments and
sometimes a lack of recognition as well. From the user’s point
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of view, the originating application is irrelevant so long as the
formulation supports the objectives at hand, the available data, and
the available computing resources.

This paper addresses timetabling models by their structure and
capabilities rather than their prior application. The primary options
to consider in selecting a timetabling formulation are whether it
explicitly models the track structure, and whether the timetable is
intended to be periodic or aperiodic (without regularly sequenced
repeating train paths). The four models discussed in this paper
are aligned by these characteristics in Fig. 1. Timetables in Europe
are frequently periodic. For example, trains leave Manchester for
Birmingham, England at seven and twenty-seven minutes past
the hour daily, and an ICE train leaves Munich for Nurnberg at
sixteen minutes past the hour daily. This means that care is taken
to structure the timetable so that passengers may expect a specific
service to depart at the same time each hour or half hour. In the
United States, intercity or suburban rail passenger services are not
offered with periodic timetables, with few exceptions.

All models, regardless of their application, can be segregated
according to whether or not they explicitly represent the
limitations of the track network. Many managerial questions
concern the economic value of a segment of track, or seek
to prioritize a limited budget for track investment, and these
questions are more easily answered when the track is explicitly
considered in the model. The lack of explicit track representation
also limits the ability of the model to estimate or forecast line
capacity, where capacity is the volume of train paths supported.
This is not to be confused with the alternate measure of capacity
used in some circles, where capacity is measured as a function
of experienced delay or the makespan of trip times. Examples of
this measure can be found in the United States, where network
performance is frequently measured by the sum of hours of train
waiting time [2]. Models that do not explicitly represent the
track structure typically require that the initial problem data set
supports at least one feasible timetable containing all trains in
the data set, whereas models that consider the underlying track
resource may return solutions of some subset of the initial train
requests.

Note the lack of a entry in Fig. 1 at the intersection of periodic
and explicit track features. To date there are no efficient methods
of providing both of these features in the samemodel. It is possible
to dimension various aperiodic mixed-integer program models
with time scales that ‘‘wrap around’’ to form a periodic decision
space [3,4]. Harrod finds that similar problems are more difficult
to optimize in their periodic form than in their aperiodic form.

Many of these models may be extended to consider timetable
robustness (stability under stochastic delays or incidents), for
example using stochastic programming. This tutorial is limited to
deterministic timetable optimization, but some brief references
are offered here. Kroon et al. [5] determines an optimal periodic
timetable from a large sample of stochastic train operation
realizations. The objective minimizes a reduced set of ‘‘primary
disturbances’’. Liebchen et al. [6] constrains the feasible range of
decision variables to attain a more robust timetable solution in a
single optimization step. A significant body of literature describes
post analysis of timetable stability, and max-plus system theory
is a good starting point [7]. Goerigk and Schöbel [8] consider
what timetable robustness expectations are reasonable under two
distributions of network delay and four network delay response
policies.

1.1. Taxonomy of railway scheduling

Scheduling activities occur at all levels of railwaymanagement.
At the strategic level, scheduling may determine the frequency
of train operations or the origins and destinations served.

Fig. 1. Model feature distribution.

Interconnections are also a strategic scheduling task. In the case
of carload freight, ‘‘blocking’’ is the strategy of grouping cars
together to minimize the coupling and uncoupling of individual
cars at yards (which may then interact with the choice of route
and accumulated distance). For passengers, strategic scheduling
determines connections between trains at stations for both variety
in destinations served and passenger convenience. All of these
activities are frequently collected under the terms ‘‘service design’’,
‘‘network design’’, or ‘‘strategic operating plan’’ [9]. The planning of
locomotives, rolling stock, and crews also frequently appears under
the heading ‘‘scheduling’’ [10].

Timetables are a tactical scheduling activity. As previously
described, timetables determine the timings of trains at stations
or signal control points. They ensure that a train which departs
as scheduled will have a contiguous, conflict-free path to its
destination. Conflicts may include trains moving in the opposing
direction, slower trains in the same direction blocking the path, or
tracks out of service due to maintenance. An iterative cycle may
occur between the tactical and strategic scheduling activities. For
example, a desired service design may be infeasible at the tactical
level, and require either compromises in the service design or
changes to the infrastructure. Andersen [11] describes how the
Swiss Bahn 2000 service design required changes to the track
network in order to attain desired periodic timetables.

Operational scheduling activities include live dispatching of
established timetables, and network recovery from delays or
incidents. Recovery can take the form of attempting to return
trains to their original timetables, or generating new temporary
timetables for the remainder of their journeys. There is no
conceptual difference between operational and tactical scheduling
of trains. Only the solution quality expectations and available
processing time differ. Tactical timetable planning seeks a high
quality solution and hours or days of processing time are
acceptable. On the other hand, operational schedules must be
determined in minutes, sometimes seconds, and the first feasible
schedule returned may be acceptable.

1.2. Prior references on railway scheduling

A number of prior surveys can be recommended for further
reading in railway scheduling research. Lusby et al. [12] presents
a comprehensive technical reference to timetabling models
organized by track structure (single track, double track, or station
tracks). Caprara et al. [13] surveys passenger railway topics in
Europe, but specifically excludes freight service topics. Kroon
et al. [14] presents a detailed survey and exposition of periodic
timetabling, dominated by European literature, with particular
emphasis on the periodic event scheduling problem (PESP).
Törnquist [15] reviews a sample of 48 timetabling and dispatching
papers from both North American and European theaters over
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Fig. 2. Train headway times defined by leading train.

the period 1973 to 2005, and includes detailed comparisons by
network constraints, objective, solutionmethod, and problem size.

The most recent comprehensive survey of the North Amer-
ican operating plan literature, [16], encompasses many ap-
plications of optimization including blocking, scheduling, and
locomotive assignment. The research cited primarily represents
the advancement and application of mathematical programming.
In contrast, Leilich [17] focuses solely on simulation applications in
North America, with many line capacity examples. An additional
survey of commercial train performance and dispatch simulators
may be found in [18]. Bussieck et al. [19] surveys primarily Euro-
pean passenger railway scheduling problems, with an emphasis on
periodic scheduling and applications of the then very new formula-
tion of PESP. The introduction of Jovanović andHarker [20] includes
a lengthy review of computer applications in North American dis-
patching, notes the objective functions devised in each experience,
and discusses the components that should be considered in formu-
lating an objective. Awell knownpaper, Assad [21] presents a com-
prehensive review of North American research prior to 1979, with
especially rich coverage of the 1960s, including the topics of yard
(marshaling) operations, blocking, timetables, and dispatching. Fi-
nally, Yabe [22] presents an introduction to the relatively unknown
application of operations research to railwaymanagement in Japan
from the 1940s on.

1.3. Primary model classifications and their origins

This paper groups timetable generation models into four fun-
damental structures. Only formulations that offer the possibility
of attaining an optimal objective value as a function of the solved
timetable are considered. Published models which do not formu-
late a mathematical program and relevant objective, or which can-
not be solved to optimality on at least small problems, are not
discussed.

The oldest model of interest is the Mixed Integer Sequencing
Linear Program (MISLP), discussed in Section 2. This formulation
configures a decision space composed of binary variables that
establish the sequencing of pairs of trains, and real valued
variables that specify train timing at control points. It originates
from sponsored research at the Wharton School, University of
Pennsylvania in the late 1980s [23]. The sponsor was Burlington
Northern Railroad, at the time a major U.S. railroad operating in
the region bounded by Chicago, Dallas, and Seattle. The scheduling
research was intended to support a very early form of positive
train control, the Advanced Railroad Electronics System (ARES).
However, Burlington Northern’s interest in advanced scheduling
waned, partly because the model’s solution time of one hour on
a 17.9 MFlop computer was impractical for field applications, and
the project was canceled.

The next class of model is the Binary Integer Occupancy Program
(BIOP), discussed in Section 3. The focus of this formulation is the
explicit modeling of the track structure, through binary variables
which represent the assigned occupation of a controlled track
segment during a discrete time interval. This model originates
from [24], where it addresses the timetabling of heavy haul ore
trains on single track lines of the Pilbara region of Australia. Mees
was unable to resolve commercially relevant problems under its
specific formulation and available computing power, but later

derivations from other authors were capable of solving larger
problems.

The Hypergraph Formulation of Section 4 addresses a critical
omission in the BIOP structure by mapping binary decision
variables to contiguous pairs of track occupations. First appearing
in [25], the model is applied to the calculation of the absolute
capacity limit of a single track line traveled by trains of different
speeds. This study derives a complete timetable for a routewithout
any presumption of specific dispatch technique or artifact of an
initial feasible solution. The timetable is optimal with respect to
the defined objective.

The last model in this classification paradigm, the Periodic Event
Scheduling Program of Section 5 supports the specialized needs
of railway networks that operate a repeating schedule on a fixed
periodic time cycle. The application of PESP to timetable generation
originateswith [26] (see also [1]). That problem, and all subsequent
implementations of PESP, concerns the scheduling of passenger
trains on ‘‘clockface’’ schedules, typical of European services. To
bettermarket services to passengers, European railways frequently
advertise cyclical departures, such as an InterRegio train departing
Zurich for Luzern twice an hour, every hour, at four and thirty-five
minutes past the hour. Of the four model classifications presented
here, PESP enjoys the status of being the only timetable generation
model that is actually in regular commercial service (see for
example [27]).

1.4. Modeling significance of explicit track representation

The value of explicitly modeling track infrastructure in a
timetabling or dispatching formulation is best understood by
examining typical train path interactions. It is frequently believed
that an operating constraint based upon a fixed headway time
between trains is sufficient and equivalent to explicit modeling
of track constraints, but it will be demonstrated with these
examples that fixed headway time is a relaxation of the true
constraint. In both cases, the difficulty is that the true timed
headway between two trains is frequently a function of the
dispatch pattern of additional proximate train paths and the
routing of the train path, both of which are frequently decision
variables. A MISLP model addresses this dependency through its
sequencing variables. Alternatively, these constraints would have
to be nonlinear to accurately represent these conditions without
explicit track occupancy modeling.

Fig. 2 displays an examplewhere three trains are traveling in the
same direction along a signaled line with a typical red/yellow two
block separation between any two trains. A fixed headway time
constraint would establish minimum timed separations between
any pair of consecutive trains, but this timingwould be based upon
the independent performance of each train, without interference.
In the figure, two passenger trains, RE 103 and IC 208, are caught
behind a slower freight train, GV 09. The timed headway between
trains RE 103 and IC 208 would normally be a function of their
track speed, but in this case their headway must be lengthened
because train RE 103 is forced to travel at the slower speed of train
GV 09. Thus, the headway between any two trains is not only a
function of their joint performance, but the performance of any
preceding train. This limiting function in fleets of trains is called
‘‘signal wake’’, and is documented in [28].
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Fig. 3. Train headway times defined by siding selection.

Table 1
Variables, sets, and parameters of problem (MISLP).

Component Type Description

dr,i Real variable The time that train r departs from point i
ar,i Real variable The time that train r arrives at point i
Ir,r ′,i,j Binary variable An indicator which is true if trains r and r ′ interact, meet or pass, between points i and j
Fr,r ′,i,j Binary variable An indicator which is true if train r departs point i after train r ′ arrives at point i
Gr,r ′,i,j Binary variable An indicator which is true if train r ′ departs point j after train r arrives at point j

R Set The set of trains considered in the planning problem
B Set The set of control points or track segments, where Br is a subset of control points reachable by train r; Br ⊆ B

d∗

r,i Parameter The preferred departure time for train r from point i
a∗

r,i Parameter The preferred arrival time for train r at point i
sr,i,j Parameter The unimpeded travel time from point i to point j
fr,r ′,i,j Parameter The estimated delay that train r will incur if meeting or passing train r ′ between points i and j
βr,i Parameter The penalty coefficient for late departures by train r from point i
αr,i Parameter The penalty coefficient for late arrivals by train r at point i
φ Parameter A scale factor controlling the shape of the exponential penalty cost function
M Parameter A dominant large positive number

A second example of the limitations of fixed headway timing
is displayed in Fig. 3. In this example, train IC 208 is following GV
09. As well as train IC 208 just continuing to follow GV 09, there
is the option of train GV 09 taking the siding and allowing train IC
208 to pass. However, if GV 09 takes the siding, it must slow down
even further to negotiate the siding curvature and brake to a stop.
This will require an even longer headway time separation between
GV 09 and the following IC 208. In actual operation, this would
be enforced by yellow signal indications on the intervening track
blocks. For the timetabling model, this means that the headway
time is not fixed, but is instead a function of the ultimate train path
solution.

Substituting timed headways for physical headwaysmay be ac-
ceptable if the physical track network is sufficiently dense such
that it is possible to post process the solution and correct any train
path conflicts. Most of the timetabling implementations cited here
expect some review and adjustment of the timetable solutions,
usually by skilled railway dispatchers. As the physical track net-
work becomes less dense, and the siding and signaling resources
become sparse, it becomes less likely that post processing of a
timetabling solution may find a feasible operating plan. In oper-
ating scenarios such as Figs. 2 and 3, explicit modeling of the track
structure is necessary to more accurately represent the necessary
operating headways on lines with limited signaling and switching
resources, especially those typical of North America.

2. Mixed integer sequencing linear programs

The mixed integer sequencing linear program (MISLP) decom-
poses the scheduling decision into binary variables that decide the
sequencing of pairs of conflicting trains at control points (stations,
sidings, etc.) and real variables that determine the event times at
control points. An example of a basicmixed integer sequencing for-
mulation is presented below, abbreviated from [29]. The variables,
parameters, and sets of the formulation are provided in Table 1.
(MISLP)

min

r∈R
i∈Br

[βr,i|dr,i − d∗

r,i|
φ

+ αr,i|ar,i − a∗

r,i|
φ
] (1)

s.t.

dr,i ≥ ar,i ∀r ∈ R; i ∈ Br (2)

Ir,r ′,i,j + Fr,r ′,i,j + Gr,r ′,i,j = 1 ∀r, r ′
∈ R; i, j ∈ Br ∩ Br ′ (3)

ar,i − dr,j ≥ sr,i,j +

r′∈R

i,j∈Br∩Br′

fr,r ′,i,jIr,r ′,i,j ∀r ∈ R; i, j ∈ Br (4)

dr,i − ar ′,i ≥ M(Fr,r ′,i,j − 1) ∀r, r ′
∈ R; i, j ∈ Br ∩ Br ′

dr ′,j − ar,j ≥ M(Gr,r ′,i,j − 1) ∀r, r ′
∈ R; i, j ∈ Br ∩ Br ′

ar ′,i − dr,i ≥ M(Ir,r ′,i,j − 1) ∀r, r ′
∈ R; i, j ∈ Br ∩ Br ′

ar,j − dr ′,j ≥ M(Ir,r ′,i,j − 1) ∀r, r ′
∈ R; i, j ∈ Br ∩ Br ′ (5)

a, d ≥ 0 I, F ,G ∈ {0, 1}.

This particular example displays a nonlinear objective, but vari-
ations with linear objectives also appear in the literature. Eq. (1) is
a nonlinear cost function of delays at arrivals and departures, each
individually priced. The language implies a flow from arrival to de-
parture, so that at each control point a train is visualized as first
arriving and then departing. Constraint (2) enforces chronological
continuity in the decision variables, that is, a train cannot physi-
cally depart at a time earlier than its arrival at each control point.
Constraint (3) enforces a logical set of alternatives between a pair
of trains and a pair of control points; either the trainsmeet/pass, or
the trains pass control points in either direction such that they do
not interact between the stated pair of control points. Constraint
(4) enforces the necessary travel time between control points, in-
cluding estimated delays due to meets/passes. Finally, constraints
(5) enforce the necessary arrivals and departures at control points
according to the paired interaction selected by the indicator vari-
ables I, F , and G.

MISLP models are suitable for applications where the primary
managerial concern is adjustments to the timing of trains, within
a known feasible schedule. The input data set of trains must itself
have at least one feasible schedule solution. There is no provision
for the selection of a preferred subset of trains from the input
data set. The MISLP model is less suitable for network capacity
analysis, because it does not explicitly represent the track network.
Note also that the MISLP model perceives all train interactions as
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Fig. 4. Example of the meaning and encoding of indicator variables in the MISLP model.

pairwise events. Thus theMISLPmodel becomes significantlymore
complex when modeling complex junctions where more than two
trains may interact simultaneously.

For example, Fig. 4 demonstrates themeaning and values of the
indicator variables I, F , and G for a set of three train paths with
bothmeets and passes. The variables listed in the figure are all true
or = 1. Note that three indicator variables are defined for every
permutation of pairs of trains over each track segment, not merely
combinations of pairs of trains.

The invention of the MISLP model can be traced back to [30].
This was the first model to explicitly formulate the trainmeet/pass
problem as a linear program. The formulation and solution
algorithm was adopted from the job-shop problem of [31]. In
this formulation, instead of branching on key decision variables
(binary flags representing the sequencing of pairs of jobs or trains),
branching is accomplished by dynamically adding constraints
implied by the value of the branching decision variable, which
dramatically speeds the solution time of the problem at each
node of the solution tree. The decision variables remaining in the
formulation represent the real valued times at which trains pass
control points. This formulation is unique because it eliminates the
direct manipulation of integer variables, but at the cost of extreme
assumptions such as unlimited siding capacity.

The core of the MISLP formulation presented here is developed
in [23]. In its initial application, patented under the name ‘‘SCAN
I’’, no objective function was defined. The solution algorithm
sought feasibility only, and a second stage algorithm computed the
reliability statistic of the returned schedule. The reliability statistic
was defined as the proportion of schedule samples that remained
feasible after the free running times of the trains were perturbed
over a sample distribution. The feasible solution search algorithm
was derived from the branching algorithm of [32].

This model has been extended with a variety of objective
functions. Kraay et al. [33] formulates a nonlinear, but convex,
objective function for the minimization of fuel consumption. The
authors find that significant fuel savings can be achieved by
pacing trains at just the required speeds to conform to the master
schedule, while retaining an improved meet/pass plan. The MISLP
formulation presented here then appears in [29] as part of the
earlier described research at Burlington Northern. Based on the
SCAN engine, the objective considered train times, car connections,
and a very limited range of crew change decisions.

Mills et al. [34] formulate aMISLP problemwhere themeet/pass
plan (variables I, F , and G) is supplied as input data, and is not part
of the decision. The intended application is dynamic rescheduling,
or live dispatching. The nonlinear multi-objective of minimizing
fuel consumption and delay at the destination is manipulated by
managing the intermediate travel times. Mills et al. also present an
alternative discrete time formulation and a sequential scheduling
algorithm, which solves much faster while achieving a solution
value only a half of a percent less than the nonlinear formulation.
Cai and Goh [35] offer a greedy heuristic for this problem.

Carey and Lockwood [36] apply the MISLP model to a
typical British single direction, high speed passenger network.

The solution method is sequentially solved for the meet/pass
variables one train at a time. Carey [37] extend this application
to complex networks of junctions, multiple station platforms, and
alternate routes. Carey [38] extend the model again to two-way
traffic with the surprising conclusion that the two-way model
had a smaller solution space and faster solution than the one-
way model. Even so, the last model produced a very large MIP
formulation, and a problem containing only 4 trains and 6 track
links required days of computing time on a Sun 4 computer.

Higgins et al. [39,40] (original work in [41]) make a unique
application of MISLP to the location of sidings along a typical
Australian single track line. Using a method analogous to Bender’s
decomposition, the problem is split into sub-problems which are:
first, solve for optimal siding locations and train times while
holding the meet/pass plan fixed, and then second, solve for an
optimal meet/pass plan and schedule while holding track design
fixed. The examples presented found a siding track reduction of
45% from standard allocations for comparable performance on a
single track line.Higgins et al. [42] investigate the application of the
traditional Bender’s decomposition to this model with a nonlinear
objective and fixed track structure, and derives a lower bound for
the meet/pass plan train delay which assists in the branch and
bound node pruning.

More recently, Zhou and Zhong [43] apply MISLP to a double
track high-speed railway in China and develop a Pareto optimal
frontier for two distinct objectives: minimization of the variance
of interdeparture times and minimization of the total travel time.
Later, Zhou and Zhong [44] extend the same model to a single
track line and proposes a simple and computationally efficient
lower bound rule to estimate the total train delay due to resolving
existing crossing conflicts in a partial schedule. Wong et al. [45]
apply a MISLP formulation to an urban transit network with the
objective of minimizing the sum of passenger transfer waiting
times. Törnquist and Persson [46] address the live rescheduling of
trains already dispatched, and in [47] report that local optimization
over a rolling time horizon achieves desirable computational
results relative to optimization over the complete time horizon.
Aronsson et al. [48] reprise the MISLP model to consider complex
resources such as parallel tracks and compare three variations
of resource constraint formulation. Dollevoet et al. [49] combine
the sequencing elements of MISLP with assignment variables
(see Section 3) to enforce capacity limits in stations, and find
that formulation variations with explicit assignment variables are
easier to solve than those with aggregate capacity limits. Corman
et al. [50] formulate the sequencing variables as alternative arcs in
an alternative graph (see Section 3.2).

3. Binary integer occupancy programs

Many train pathing problems are less concerned with the
exact timing of trains and more focused on the combinatorial
solution of many trains competing for a limited track network.
Example problems include the allocation of tracks in complex
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Table 2
Variables, sets, and parameters of problem (BIOP).

Component Type Description

xri,t Binary variable An indicator that is true if train r occupies block i during discrete time interval t

R Set The set of trains considered in the planning problem
Br Set of pairs The set of pairs of blocks (control points or track segments) and initial times that compose one or more feasible paths for train r ,

determined before consideration of conflicting trains
Φr

i,t Set of pairs The set of all time indexed blocks on which train r may continue its journey from block i at time t
Ωi,t Set of pairs The set of all time indexed blocks which will conflict with an occupancy of block i at time t

cri,t Parameter The cost coefficient associated with variable xri,t
or Parameter The block at which a train enters the line
dr Parameter The block at which a train leaves the line

stations, the mixing of disparate or contractually separate trains
on a shared network, and the valuation of infrastructure. These
problems are better served by a model that explicitly considers
the track network. The binary integer occupancy program (BIOP)
accomplishes this by expressing the finite occupancy of a segment
of track by a single train for a discrete time duration as a binary
variable. The feasible decision space is constructed from the
fundamental operating rule that only one train may occupy a
controlled track segment at any time. In somemodels the decision
space is further condensed by fully enumerating each of the
feasible paths for a train as binary decision variables and cross
referencing these variables to occupation constraints indexed by
controlled track segment and discrete time.

A generic example of a basic binary integer occupancy
formulation of the author is presented below. This example
presumes a simple single route line. The variables, parameters, and
sets of the formulation are provided in Table 2.
(BIOP)

min

r∈R

(i,t)∈Br

cri,tx
r
i,t (6)

s.t. 
(i,t)∈Br |i=or

xri,t = 1 ∀r ∈ R (7)

xri,t =


(k,l)∈Φr

i,t

xrk,l ∀r ∈ R; (i, t) ∈ Br
|i ≠ dr (8)


(i,t)∈Br |i=dr

xri,t = 1 ∀r ∈ R (9)


m∈R

(k,l)∈Bm∩(Ωi,t∪{(i,t)})

xmk,l ≤ 1 ∀(i, t) ∈


r∈R

Br (10)

x ∈ {0, 1}.

The objective is a linear cost function of each individual track
occupation, defined as is appropriate for individual circumstances
(cost of track, arrival or departure emphasis, etc.). It should be
apparent that penalties for delays can simply be assigned to each
variable that represents a delayed destination block and time.
A single commodity, unidirection flow, is defined by constraints
(7)–(9). Side constraints (10) define a multicommodity flow.

This decision variable structure originates with Mees [24],
which also is the first example of a time expanded graph represen-
tation of a railway track structure. The application addresses heavy
tonnage trains on long single track railways. A solution algorithm
is presented that loops through an ordered list of trains, reschedul-
ing one train at a time while holding the other trains fixed. Train
paths are valued according to Lagrangian multipliers assigned to
each arc (block indexed by time), which are updated at the begin-
ning of each pass through the list of trains. The algorithm obtains
locally optimal solutions, and continues until a full pass through

the list of trains is made without any objective improvement. Goh
andMees [51] extend this graph visualization to a nonlinearmodel
of the train acceleration dynamics, but find the model intractable
for practical problem sizes.

Bra̋nnlund et al. [52] enumerate complete paths for each train
and represent each path alternative as a binary decision variable.
Occupancy constraints are enumerated for each controlled track
segment in a time expanded graph, and decision variables are
grouped in cliques such that only one path variable may occupy
a track segment at a discrete time. Lagrangian relaxation is then
applied to the block occupancy constraints, and the market value
of track time is measured as the value of the assigned Lagrangian
multipliers. Individual train paths are enumerated sequentially in
pre-processing and the order of processing is discussed in detail in
[53]. The pathing approach is applied to live dispatching by [54],
where the paths represent simulated feasible options for recovery
from a network disruption.

Caprara et al. [55] model a single direction of dense traffic on
a main line, where there are no capacity limits at intermediate
stations. The track segments between stations are controlled, and
the occupancy constraints are indexed by pairs of incompatible
arcs (trains indexed by discrete time). The solution method again
is a sequential scheduling of trains, ranked by their profit as
determined by Lagrangianmultipliers. Extensions to limit capacity
at stations and other operating constraints are provided in [56].
Ahuja et al. [57] explicitly model occupancy constraints on both
the main line and within the stations or sidings by distinguishing
between occupancies while in motion and occupancies while
standing.

Borndörfer et al. [58] generalize the concept of clique sets of
incompatible occupancies further to generate timetables and train
paths for the Hannover–Kassel–Fulda network of 31 stations, 45
line segments, and 946 candidate trains, over a 6 h time horizon.
Timetables are generated repeatedly as part of a Parkes ‘‘i-bundle’’
auction of train paths. In this auction, the rail authority collects bids
from commercial operators for train paths, and then generates a
timetable selectively from the bids that maximizes bid revenue.
The selected bids are announced, and the commercial operators
have the option to make additional bids. The timetable generation
and bidding cycle is repeated until the revenue objective ceases to
improve.

Recent solution advances seek to simplify the large constraint
matrix of this problem. Fischer et al. [59] examine the Lagrangian
dual of the problem, relaxing the capacity and clique constraints.
Groups of trains in the relaxed solution are fixed to integer path
assignments by a rounding heuristic. The solution is repeated
with subsequent additional groups of trains fixed until a complete
timetable is rendered. Fischer and Helmburg [60] minimize the
memory required to solve the problem by only generating the
path time-space graph as alternative solutions require it. The initial
graph is limited to the earliest available departure path for each
train. Borndörfer et al. [61] describe a depth-first rapid branching
technique that rapidly fixes variables by progressively modifying
the coefficients of variables so that they converge to integer values
in successive solutions.
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3.1. Path enumeration models

A small group of models dispense with representing individual
track segments in the formulation altogether. Some argument
could be made for segregating these models into a fifth form
(perhaps ‘‘PATH’’), but they can be visualized as a simplification
of the BIOP model. These models enumerate each train path
alternative as a binary decision variable, and then every potentially
conflicting path alternative is enumerated. These conflicts are
then collected as clique sets which allow only one of the
path alternatives to be selected. The resulting model is a node
packing problem and is effectively a BIOP problem with the flow
conservation constraints simplified or removed. To date thismodel
has only been applied to railway junctions or stations, where the
distances and times are very short, but the paths are very complex.

Zwaneveld et al. [4] model a dense Dutch railway junction in
this manner and the objective seeks to maximize the quantity
of feasible timetable paths. Occupancy constraints are indexed
by cliques of incompatible paths. The problem is cast as a node
packing problem and solved with a branch and cut method. A
similar application is made to a French railway junction by [62,63]
and solved with constraint programming. Caimi et al. [64] present
an interesting reduction technique for a similar model where the
feasible path set is reduced by deleting paths that are dominated
by other alternatives. For example, within a set of paths with
equivalent endpoint timings, pathswith a higher conflict count are
deleted.

Limitations of this model are that the decisions made within
the optimization itself are very limited and the data preparation or
pre-processing task is very demanding. This model neither decides
timings nor constructs routeswithin its optimization process. Both
of these decisions must be determined prior in the input data. On
the other hand, there is no limit to the scenarios of conflict between
paths which may be modeled. More recently, Caimi et al. [65] start
from the pathing model perspective and then unwind the paths so
that once again individual track resources are explicitly considered.
Arranging track resources in ‘‘Resource Trees’’, Caimi et al. find
the formulation to be more compact and efficient at obtaining
solutions.

3.2. Alternative graph models

A large number of BIOP models appear in the literature that are
formulated as alternative graphs. An argument can be made that
they are conceptually identical, that only the preferred solution
method differs. However, there is a subtle and powerful difference:
the arc and node variables are no longer tied to a rigid discrete time
index. Train path alternatives can be freely defined in real time,
and the conflicts between them fully represented in the graph. Of
course, the graphs may yet be very large.

In alternative graph theory, the larger problem graph contains
subgraphs, each of which represents the feasible moves for an
individual train in time and space. The nodes or vertices of
these subgraphs are connected to any other nodes or vertices
that represent conflicting train paths. For example, nodes that
represent conflicting trains on a track segment are connected
together, and form a clique where only one nodemay be occupied.
The arcs connecting these clique members are ‘‘alternative’’
arcs, and any combinatorial solution to the flow on the graph
requires that one each from these cliques of alternative arcs be
selected. This is really not different than the resolution of path
or resource constraints in the binary integer occupancy models
already presented, only these authorsmight identify themselves as
graph theorists, and utilize flow determination algorithms instead
of linear programming.

Mascis and Pacciarelli [66] would appear to be the earliest
application of alternative graph theory to timetabling, or any sort

of railway scheduling. The authors approach the train timetabling
problem with a strong foundation in job-shop scheduling, where
the railway scenario is analogous to a shop with blocking and no-
waiting behavior. The authors demonstrate that traditional job-
shop algorithms are not appropriate for these conditions, and
present a better algorithm called Avoid Maximum Current Cmax
(AMCC). In short, this algorithm compares two alternative arcs,
determineswhich selectionwould result in theworst solution, and
avoids selecting that arc. Thus, it reduces the feasible solution set
by iteratively deleting undesirable slices of the feasible set, until
only one solution remains.

Mazzarello and Ottaviani [67] directly apply Mascis and Pac-
ciarelli’s formulation to dynamic rescheduling after delays on two
Netherlands Railways networks, Nieuw Vennep–Amsterdam Lely-
laan–Amsterdam Zuid WTC and Roosendaal–Willemsdorp–Breda.
A multi-objective of minimizing delays and minimizing fuel con-
sumption was formulated. The authors solve problems using a
rolling time horizon which they refer to as ‘‘schedule windows’’,
similar to Törnquist. D’Ariano et al. [68] also apply Mascis and
Pacciarelli’s model to a rescheduling problem on the Netherlands
Railways Schiphol rail network (see also [69]). The authors set a
benchmark calculation time of 120 s to reschedule an hourly cyclic
service of 54 trains. In order to meet this objective, the authors
enhanced the AMCC algorithm by enhancing the selection of al-
ternative arcs. The authors compiled sets of ‘‘static implications’’,
train path choices that are also implied by specific alternative arc
choices. Thus at each alternative arc selection, many other related
arcs are fixed. D’Ariano et al. [70] test the samemodel for dynamic
timetabling for dispatching support (see [71] for a thorough expo-
sition of this dispatching problem).

Corman et al. [50] demonstrate an alternative graph for-
mulation of the MISLP model (see Section 2). The alternative
arcs replace the sequencing variables of MISLP. The authors seek to
minimize delay propagation in a dynamic dispatch response to pri-
mary delays. The authors decompose the global scheduling prob-
lem into local scheduling problems centered ondispatch territories
and then compose a coordinating optimization problem for the ter-
ritory boundary.

4. Hypergraph formulation

The hypergraph model of train movements revises the decision
variables of the BIOP model so that they indicate the sequential
occupancy, or the transition, between two controlled track
segments, over an interval of one or more discrete time units.
The controlled track segments are individually indexed by discrete
time units over the planning horizon, and form nodes within a
time expanded graph. Additional nodes define zones of transition
conflict between adjacent track segments. The binary decision
variables are directed arcs on this graph that potentially enclose
multiple nodes. The removal of the identity that restricts an arc to
two graph nodes classifies this model as a hypergraph.

A hypergraph is a graph in which the definition of an edge is
expanded to include any non-empty subset of nodes (see [72] for
a formal definition). In the case of a railway line, a track segment
has frequently beenmodeled as an arc with nodes at the endpoints
of the track segment. However, occupation of a track segment
in practice may conflict with other adjacent track segments. A
discrete time graph model of the network likely will also require
a train movement decision variable to register the occupation
of multiple graph nodes each representing a labeled network
resource for a discrete time unit. Thus a hypergraph provides the
flexibility to encapsulate all of the variety of implied conflicts of a
train movement variable.

The hypergraph model originated to address a fatal flaw in the
BIOP model when applied to single track lines. In the BIOP model,
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Fig. 5. Example of operational infeasibility under simple occupational constraint.

because of the discrete time clock, train paths may pass each other
without triggering the occupancy constraint. An example of this
operationally infeasible move is depicted in Fig. 5. In this figure,
each square is an available track segment ({1, 2, 3}) over a discrete
time interval ({t, t +1, t +2, t +3}), and also in this case the track
is single track without any holding capacity or station at the track
endpoints. A standard BIOP constraint intends that only one train
path may occupy each track segment, and frequently also implies
that trains may not pass each other on this diagram. However, as
can be seen on the ‘‘Unintended Violation’’ portion of the diagram,
two trains will be scheduled to pass each (illegally) on this single
track because if phased selectively they will not be included in the
track occupancy constraint.

A hypergraph with its representative track network is shown
in Fig. 6. Hollow nodes are track segment occupancies, while
solid nodes represent potential transition conflicts between track
segments, and are only defined where paths represent separate
trains. Note the conflict between the two labeled arcs would not
register in a BIOP model, unless the paths were fully enumerated
and clique conflict sets determined in pre-processing.

An example of a hypergraph formulation is presented below,
abbreviated from [73]. The variables, parameters, and sets of the
formulation are provided in Tables 3 and 4.
(Hypergraph)

max

r∈R

(pro,j,u,v)∈Ψ r

(crp + cre (u − pre))x
r
pro,j,u,v

+


r∈R

(prd,er ,u,v)∈Ψ r

crl (p
r
l − v)xrprd,er ,u,v +


r∈R

(i,j,u,v)∈Ψ r |i=j

crs x
r
i,j,u,v. (11a)

Linear Network Constraints
(pro,j,u,v)∈Ψ r

xrpro,j,u,v ≤ 1 ∀r ∈ R (11b)


(a,i,u,t)∈Ψ r

xra,i,u,t =


(i,j,t,v)∈Ψ r

xri,j,t,v

∀r ∈ R, {i ∈ B|i ≠ pro}, t ∈ T (11c)
(prd,e

r ,u,v)∈Ψ r

xrprd,er ,u,v ≤ 1 ∀r ∈ R (11d)

x ∈ {0, 1}. (11e)

Side Constraints
r∈R

(i,j,u,v)∈Ψ r |u≤t<v

xri,j,u,v ≤ bit ∀i ∈ B, t ∈ T (12a)


r∈RN

v∈{t+1−ϵ,...,t+1+δ}

(i,j,u,v)∈Ψ r |j=a+1,j≠i

xri,j,u,v +


r∈RS

v∈{t+1−ϵ,...,t+1+δ}

(i,j,u,v)∈Ψ r |j=a,j≠i

xri,j,u,v ≤ υa
t

Fig. 6. Hypergraph of train paths, arcs x2,3,t+4,t+6 and x3,2,t+5,t+6 do not conflict in
block occupancy but do conflict in transition at cell (2, t + 5).

∀(a, t) ∈ Υ (12b)
r∈RN |hr≥1

a∈{i−h,...,i−1}
(a,j,u,v)∈Ψ r |u≤t<v,a≠j

xra,j,u,v +


r∈RN

(i,j,u,v)∈Ψ r |u≤t<v

xri,j,u,v ≤ bit

∀i ∈ B, t ∈ T (12c)
r∈RS |hr≥1

a∈{i+1,...,i+h}
(a,j,u,v)∈Ψ r |u≤t<v,a≠j

xra,j,u,v +


r∈RS

(i,j,u,v)∈Ψ r |u≤t<v

xra,j,u,v ≤ bit

∀i ∈ B, t ∈ T . (12d)

Objective and constraints (11) define a set of independent single
commodity flows. Side constraints (12) bind these flows together
and regulate them as a multicommodity flow. Constraint (11b)
enforces a single departure for each train, and because it is an
inequality also offers the option of removing the train from the
schedule if it is not productive, while constraint (11c) enforces
conservation of mass at the nodes (enforcing a single train path)
and sinking constraint (11d) ensures a single terminal arrival.

Side constraint (12a) enforces a common block occupancy limit,
but instead of enumerating every track segment with a capacity
of 1, parallel segments such as sidings or multiple through track
are defined as a single block with capacity bit ≥ 0. Other varia-
tions of this constraint, such as enumerating every track segment,
are possible. Constraint (12b) enforces the limits on transitions be-
tween track segments. The sensitivity of these limits are adjustable
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Table 3
Variables, parameters, and nodes of problem (P).

Component Type Description

xri,j,u,v Binary variable Occupancy arc representing the possession of node i at time u and the exit into node j at time v of train r

pro Parameter Origin of train r
prd Parameter Destination of train r
pre Parameter Earliest allowed time of origination of train r
prl Parameter Latest allowed time of termination of train r
er Artificial node Artificial sink node designating train r is off the network
crp Parameter Fixed value (or ‘‘profit’’) of train r completing its journey
cre Parameter Incentive per unit time for later origination of train r
crl Parameter Incentive per unit time for earlier termination of train r
crs Parameter Cost per unit time of enroute waiting (stopped) of train r
bit Parameter Capacity (count of trains) of block i at time t
υ i
t Parameter Capacity (count of trains) of cell i at time t

ϵ Parameter Dimension of leading transition window
δ Parameter Dimension of lagging transition window

Table 4
Sets of problem (P).

Set Description

T The discrete time horizon, ordered with starting value t = 1
R The set of all trains
B The set of all track blocks, ordered by a common reference direction of travel, such as ‘‘north’’ or ‘‘south’’
RN The set of trains, RN

⊂ R, traveling in the direction defined by increasing track block index
RS The set of trains, RS

⊂ R, traveling in the opposite direction of trains in set RN , RN
∪ RS

≡ R
Ψ r The set of feasible path arcs (i, j, u, v) for train r supplied from pre-processing
Υ The set of transition nodes between track segments

through the ‘‘window’’ parameters. Finally, constraints (12c) and
(12d) limit the headways or follow on spacing of trains. All of these
features are presented in detail in [73].

Harrod [25] applies this model to theoretical studies of the
capacity of single track lines under various siding configurations
and mixes of train speeds, and demonstrates that all traffic on a
single track line benefits when priority trains operate at higher
speeds.

5. Periodic event scheduling problems

Cyclical timetables are typical of passenger services in Europe.
These services require that most, if not all, train paths repeat
in time with period T . To accomplish this, the periodic event
scheduling problem labels train positions at control points as
events and defines span constraints between all potentially
conflicting events. Like MISLP, PESP consists of timing variables,
but unlikeMISLP, there are no sequencing variables. This difference
reflects the contrast in the motivating application of MISLP and
PESP. The European cyclical timetables exist primarily on networks
of multiple track main lines which are typically dispatched with
a single direction to each track, whereas the North American
MISLP examples are primarily single track with sidings. The timed
headways between trains in the European scenario are reliably
predictable, whereas in the single track meet/pass problem the
headways are a function of the dispatch solution (encoded in the
sequencing variables I, F , and G).

The span constraints are formulated as in (13), where the time
of periodically repeating event j, τj, follows the time of event
i, τi, by duration no less than lij and no greater than uij. This
is graphically presented in Fig. 7 where events i and j repeat
uniformly with period T . It is feasible to shift event j anywhere
within the interval [lij, uij], so long as the span between events i and
j remains identical over all cycles of period T . The span constraints
may also be compactly represented by the clockface chart in Fig. 8:

(τj − τi − lij) mod T ≤ uij − lij. (13)

Previous aperiodic network models perform poorly when
modified for periodic timetable modeling. For example, Harrod [3]

Fig. 7. Periodic span relationship between events j and i.

Fig. 8. Periodic span relationship between events j and i viewed as a clockface.

demonstrates that the hypergraph model is terribly difficult
to solve to optimality when modified to represent a cyclical
timetable. PESP, first proposed by [74], isolates the characteristic
cyclical pattern as a smaller, more manageable problem. However,
this functionality sacrifices the routing capability. The physical
assignment of trains to track routes must be included in the
input data set for PESP. Schrijver and Steenbeck [26] is widely
cited as the central component of CADANS, the central element
of Netherlands Railways’ timetable planning system; however this
reference is not available in English. CADANS is reported to apply
constraint generation to obtain feasible solutions, with some local
optimization capabilities.

Odijk [75] models the train paths through Arnhem CS station,
The Netherlands, as a PESP problem. The problem is formulated
as a graph of event time nodes connected by arcs representing
the span constraints. The algorithm presented either returns a
feasible timetable or proves infeasibility of the input data set.
Different timetables are obtained by modifying the algorithm
starting vector. The sample problem consisted of 12 trains and
54 spanning constraints over a period of T = 30 min. Timetable
generation time ranged from 82 to 225 ms.
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Table 5
Variables, sets, and parameters of problem (IP-PESP).

Component Type Description

xa Integer variable (arc) The periodic tension between two events, a = (i, j) ∈ A, as defined in Eq. (14)
z Integer variable (vector) A vector of the period bases for the cycles of the graph D. For each sequence of related train path events or cycle, this

determines how many periods, T , best encompass the cycle.

D Graph The graph composed of train events as nodes V and spans between events as arcs A
A Set The set of controlled pairs of events {(i, j)}
Γ Matrix The arc-cycle incidence matrix. Each element of the matrix asserts that a tension arc a ∈ A either has a forward/backward

direction in a cycle (1/ − 1) or is not contained in a cycle (0)
Z Set of integers

wa Parameter The cost coefficient associated with increasing periodic tension xa (increasing the time between events).
la Parameter The lower bound of the periodic tension xa
ua Parameter The upper bound of the periodic tension xa
T Parameter The duration of the periodic cycle
ν Parameter The cyclomatic number, ν = |A| − |V | + 1

Nachtigall and Voget [76] formulate and demonstrate a very
complex bi-criteria application of genetic algorithms and linear
programming in order to generate a Pareto-optimal frontier
of potential timetables with reduced passenger waiting times
at various levels of capital investment in infrastructure. The
linear program contains binary decision variables which represent
an available combination of infrastructure investments. A key
constraint limits the weighted sum of passenger waiting times
by a ceiling parameter. The program is too complex to solve
as required, but a lower bound is derived for the infrastructure
cost as a function of waiting time ceiling. Actual timetables for
a given level of investment are determined as genetic algorithm
solutions of a PESP formulation. Kroon and Peeters [77] devise a
PESP extension that provides for variable train movement times,
allowing the solution algorithm to adjust the train paths within
defined limits to resolve an initially infeasible input data set.

Liebchen [27] pursues direct optimization of the PESP instance
by integer programming. In this model the decision variables
are the periodic tension values of the event graph as in Eq. (14)
(see also [78]). This PESP variant is sometimes referred to in the
literature as the ‘‘Cyclic Periodicity Formulation’’:

xij := (τj − τi − lij) mod T + lij. (14)

The implemented integer programming formulation of [27] is
presented below (in matrix notation). In this model the objective
is to make the timings between events (typically passenger
connections between trains and idle train time) as short as
possible. The variables, parameters, and sets of the formulation are
provided in Table 5.
(IP-PESP)

min

a∈A

waxa (15)

s.t.

Γ T x = Tz (16)
l ≤ x ≤ u (17)

z ∈ Zν (18)

x ∈ Z|A|. (19)

Liebchen [27] produces an optimal operating timetable for
the Berlin U-bahn network with a period of 10 min. The bare
IP formulation alone, before the specification of ν and any other
bounds on z, is not suitable for solving practical problems. In
particular, the number of z variables can be exponential and as
initially unrestricted integer variables the problem is formidable.
Liebchen and Peeters [79] document that it is appropriate in this
problem to limit the dimension of z by the cyclomatic number, ν.
Next, additional box constraints and inequalities are derivedwhich

limit the search space (see also [80]). The problem is separated
first into a search for a minimal cycle basis z and then a solution
of Problem (IP-PESP). The determination of a minimal z is very
important, for it reduces the problem search space, reduces the
solution time, and improves the quality of the solution. Nachtigall
and Opitz [81] document a solution method that addresses the z
variables, the ‘‘modulo parameters’’, by minimizing periodic slack
with a modulo simplex algorithm.

Caimi [82] demonstrates a variant of PESP for cases where the
train paths are mixed periodic and aperiodic. Caimi et al. [83]
replace the tension variables with pairs of tensions representing
minimum and maximum time intervals, which better supports
solution feasibility at station stops (see also [84]).

6. Summary and comment

Timetable optimization models to date may be classified
according to whether they are periodic or not, and whether they
explicitly represent the constraints of the track structure. The
four model structures presented here, MISLP, BIOP, hypergraph,
and PESP, support these options as shown earlier in Fig. 1, but
note the absence of a model that explicitly represents the track
structure of a periodic network. Only Nachtigall and Voget [76]
investigate infrastructure investment within a periodic timetable,
but the computation is complex and the potential infrastructure
investments are suggested by the input data set, rather than
identified by the analysis.

MISLP, the oldest timetable optimization formulation, is
appropriate for real valued scheduling of single period schedules.
However, it is limited to pairwise train dispatching decisions,
the starting data set must be known feasible, and it does not
provide any direct analysis of the track infrastructure. Limiting
the solution to pairwise train interactions significantly reduces
the feasible solution set, as proven in [85], especially on single
track lines. On the other hand, BIOP specifically models the track
structure at discrete time intervals, and can self-select an optimal
group of trains from within a larger input set of trains. BIOP
is especially suited for the combinatorial packing of train paths
within a complex network or the economic valuation of a segment
of track.

The hypergraph model addresses a significant omission in the
constraint structure of BIOP. There are a number of likely train
operation scenarios that are infeasible that cannot be controlled
by the decision variable and constraint structure of BIOP. The
hypergraph model is capable of explicitly representing the track
structure and self-selecting the solution set of trains in the same
manner as the BIOP model, and thus it may replace and supersede
the BIOP model in many relevant applications.

PESP remains the only timetabling model in regular service.
Even the well-publicized aperiodic dispatching tool of [32] in the
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United States has been out of service for many years. Practical
applications of PESP have had the most measurable effect on
railway operations in Europe. It is ideally suited for the solution of
periodic timetables withmany interrelated passenger connections
between trains. It does, however, share the characteristic of MISLP
in that it cannot resolve data sets where a feasible timetable does
not exist. Other algorithms or user intervention are necessary to
remove trains from thedata set ormake other adjustments to allow
PESP to resolve the timetable.

Timetabling and dynamic dispatching of trains remains a
challenging problem, but there is no doubt that even an imperfect
timetabling, rescheduling, or dispatching tool is preferable over
no tool at all, or relying on manual dispatching skill. This has
been demonstrated over and over again in the literature, including
[86,32,68,87,27,88]. It should be apparent to all that mathematical
programming software and computing power have advanced
dramatically in twenty years. Many of the older implementations
in the literature which were discarded as too computationally
demanding may warrant a fresh evaluation.

Finally, one of the motivations here in presenting these mod-
els by structure rather than by application is to stimulate ideas for
alternative applications of these models. Dramatic changes to the
fundamental infrastructure and train control systems are under-
way in North America. Electro-pneumatic braking is currently in
operation on selected freight trains [89], and is expected to dra-
matically reduce stopping distances and speed the handling of
‘‘drag’’ freight. The Railway Safety Improvement Act of 2008 re-
quires implementation of positive train control by December 31,
2015 [90].Why not apply PESP to the timetabling of unit coal trains
in Wyoming?
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1. Introduction

A Mixed-Integer Nonlinear Program (MINLP) is a problem of the
following form:

min

f 0(x, y) : f j(x, y) ≤ 0 (j = 1, . . . ,m), x ∈ Zn1

+ , y ∈ Rn2
+


,
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where n1 is the number of integer-constrained variables, n2 is the
number of continuous variables, m is the number of constraints,
and f j(x, y) for j = 0, 1, . . . ,m are arbitrary functions mapping
Zn1

+ × Rn2
+ to the reals.

MINLPs constitute a very general class of problems, containing
as special cases both Mixed-Integer Linear Programs or MILPs (ob-
tained when the functions f 0, . . . , f m are all linear) and Nonlinear
Programs or NLPs (obtained when n1 = 0). This generality enables
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one tomodel a verywide range of problems, but it comes at a price:
even very special kinds of MINLP usually turn out to be N P -hard.

It is useful to make a distinction between two kinds of MINLP.
If the functions f 0, . . . , f m are all convex, the MINLP is itself called
convex; otherwise it is called non-convex. Although both kinds of
MINLP are N P -hard in general, convexMINLPs are much easier to
solve than non-convex ones, in both theory and practice.

To see why, consider the continuous relaxation of an MINLP,
which is obtained by relaxing the integrality condition from x ∈

Zn
+

to x ∈ Rn
+
. In the convex case, the continuous relaxation is

itself convex, and therefore likely to be tractable, at least in theory.
A variety of quite effective exact solution methods for convex
MINLPs have been devised based on this fact. Examples include
generalized Benders’ decomposition [1], branch-and-bound [2],
outer approximation [3], LP/NLP-based branch-and-bound [4], the
extended cutting-plane method [5], branch-and-cut [6], and the
hybrid methods described in [7,8]. These methods are capable of
solving instances with hundreds or even thousands of variables.

By contrast, the continuous relaxation of a non-convex MINLP
is itself a global optimization problem, and therefore likely to be
N P -hard (see, e.g., [9,10]). In fact, the situation is worse than
this. Several simple cases of non-convex MINLPs, including the
case in which all functions are quadratic, all variables are integer
constrained, and the number of variables is fixed, are known to be
not only N P -hard, but even undecidable [11]. We refer the reader
to the excellent surveys [12,13] for details.

As it happens, all of the proofs that non-convex MINLPs can
be undecidable involve instances with an unbounded feasible
region. Fortunately, in practice, the feasible region is usually
bounded, either explicitly or implicitly. Nevertheless, the fact
remains that some relatively small non-convex MINLPs, with just
tens of variables, can cause existing methods to run into serious
difficulties.

Several good surveys on MINLPs are available, e.g., [14–17,
12,18]. They all cover the convex case, and some cover the
non-convex case. There is even research on the pseudo-convex
case [19], involving non-convex functions that nevertheless have
convex level sets. In this survey, on the other hand, we concentrate
on the non-convex case. Moreover, we pay particular attention to
a special case that has attracted a great deal of attention recently,
andwhich is also of interest to ourselves: namely, the case inwhich
all of the nonlinear functions involved are quadratic. We note that
the quadratic case actually subsumes the case when all functions
f j are polynomials, although there may be substantial overhead
when expressing a polynomial program as a quadratic one (see the
beginning of Section 5 for details).

The paper is structured as follows. In Section 2, we review
some applications of non-convex MINLPs. In Section 3, we review
the key ingredients of most exact methods, including convex
under-estimating functions, separable functions, factorization of
non-separable functions, and standard branching versus spatial
branching. In Section 4, we then show how these ingredients have
been used in a variety of exact and heuristic methods for general
non-convex MINLPs. Next, in Section 5, we cover the literature
on the quadratic and polynomial cases. In Section 6, we list some
of the available software packages, and, in Section 7, we end the
surveywith a fewbrief conclusions and topics of current and future
research.

2. Applications

Many important practical problems are naturally modeled as
non-convex MINLPs. We list a few examples here and recommend
the references provided for further details and even more
applications.

The field of chemical engineering gives rise to a plethora of
non-convex MINLPs. Indeed, some of the first and most influential

research in MINLPs has occurred in this field. For example,
Grossmann and Sargent [20] discuss the design of chemical plants
that use the same equipment ‘‘in differentways at different times’’.
Misener and Floudas [21] survey the so-called pooling problem,
which investigates how best to blend raw ingredients in pools
to form the desired output. Luyben and Floudas [22] analyze
the simultaneous design and control of a process, and Yee and
Grossmann [23] examine heat exchanger networks in which heat
from one process is used by another. See Floudas [24] and Misener
and Floudas [25] for comprehensive lists of references of MINLPs
arising in chemical engineering.

Another important source of non-convex MINLPs is network
design. This includes, for example, water [26], gas [27], energy [28],
and transportation [29] networks.

Non-convex MINLPs arise in other areas of engineering as
well. These include avoiding trim-loss in the paper industry [30],
airplane boarding [31], oil-spill response planning [32], ethanol
supply chains [33], concrete structure design [34], and load-
bearing thermal insulation systems [35]. There are also medical
applications, such as seizure prediction [36].

Adams and Sherali [37] and Freire et al. [38] discuss applications
of MINLPs with non-convex bilinear objective functions in
production planning, facility location, distribution, and marketing.

Finally, many standard and well-studied optimization prob-
lems, each with its own selection of applications, can also be
viewed quite naturally as non-convex MINLPs. These include,
for example, maximum cut (or binary quadratic programming
(QP)) and its variants [39–41], clustering [42], non-convex QP
with binary variables [43], quadratically constrained QP [44], the
quadratic traveling salesman problem (TSP) [45], TSP with neigh-
borhoods [46], and polynomial optimization [47].

3. Key concepts

In this section, some key concepts are presented, which
together form themain ingredients of all existing exact algorithms
(and some heuristics) for non-convex MINLPs.

3.1. Under- and over-estimators

As mentioned above, even solving the continuous relaxation
of a non-convex MINLP is unlikely to be easy. For this reason, a
further relaxation step is usual. One way to do this is to replace
each non-convex function f j(x, y) with a convex under-estimating
function, i.e., a convex function g j(x, y) such that g j(x, y) ≤ f j(x, y)
for all (x, y) in the domain of interest. Another way is to define
a new variable, say z j, which acts as a place holder for f j(x, y),
and to add constraints which force z j to be approximately equal
to f j(x, y). In this latter approach, one adds constraints of the form
z j ≥ g j(x, y), where g j(x, y) is again a convex under-estimator.
One can also add constraints of the form z j ≤ hj(x, y), where
hj(x, y) is a concave over-estimating function. If one wishes to solve
the convex relaxation using an LP solver, rather than a general
convex programming solver, one must use linear under- and over-
estimators.

For some specific functions, and some specific domains, one can
characterize the so-called convex and concave envelopes, which are
the tightest possible convex under-estimator and concave over-
estimator. A classical example, due to McCormick [48], concerns
the quadratic function y1y2, over the rectangular domain defined
by ℓ1 ≤ y1 ≤ u1 and ℓ2 ≤ y2 ≤ u2. If z denotes the
additional variable, the convex envelope is defined by the two
linear inequalities z ≥ ℓ2y1 + ℓ1y2 − ℓ1ℓ2 and z ≥ u2y1 + u1y2 −

u1u2, and the concave envelope by z ≤ u2y1 + ℓ1y2 − ℓ1u2 and
z ≤ ℓ2y1 + u1y2 − u1ℓ2. In this case, both envelopes are defined
using only linear constraints.



S. Burer, A.N. Letchford / Surveys in Operations Research and Management Science 17 (2012) 97–106 99

Many other examples of under- and over-estimating functions,
and convex and concave envelopes, have appeared in the literature.
See the books by Horst and Tuy [49] and Tawarmalani and
Sahinidis [10] for details.

We mention another important paper, that of Androulakis
et al. [50]. Their approach constructs convex under-estimators of
general, twice-differentiable, non-convex functionswhose domain
is a box (also known as a hyper-rectangle). The basic idea is to add
a convex quadratic term that takes the value zero on the corners
of the box, and the choice of the quadratic term is governed by a
vector α ≥ 0. For example, suppose the function f (x) is defined
on B := {x : 0 ≤ x ≤ e}, where e is the all ones vector, and let
Diag(α) be the diagonal matrix having α as its diagonal. Then f (x)
is under-estimated by

fα(x) := f (x) + xTDiag(α)x − αT x,

since xTDiag(α)x−αT x ≤ 0 for all x ∈ B (and in fact equals zero on
the corners of B). If α is chosen large, then fα(x) will also be convex
because its Hessian will be dominated by Diag(α). On the other
hand, as α increases, the quality of the resulting under-estimation
by fα(x) worsens, so the choice of α is critical.

3.2. Separable functions

A function f (x, y) is said to be separable if there exist functions
g(xi) for i = 1, . . . , n1 and functions h(yi) for i = 1, . . . , n2 such
that

f (x, y) =

n1
i=1

g(xi) +

n2
i=1

h(yi).

Separable functions are relatively easy to handle in two ways.
First, if one has a useful convex under-estimator for each of the
individual functions g(xi) and h(yi), the sum of those individual
under-estimators is an under-estimator for f (x, y). The same
applies to concave over-estimators. Second, even if one does not
have useful under- or over-estimators, one can use the following
approach, due to Beale [51] and Tomlin [52].

1. Approximate each of the functions g(xi) and h(yi) with a piece-
wise linear function.

2. Introduce new continuous variables, gi and hi, representing the
values of these functions.

3. Add one binary variable for each ‘piece’ of each piece-wise
linear function.

4. Add further binary variables, along with linear constraints, to
ensure that the variables gi and hi take the correct values.

In this way, any non-convex MINLP with separable functions can
be approximated by an MILP.

3.3. Factorization

If anMINLP is not separable, and it contains functions for which
good under- or over-estimators are not available, one can often
apply a process called factorization, also due to McCormick [48].
Factorization involves the introduction of additional variables and
constraints, in such a way that the resulting MINLP involves
functions of a simpler form.

Rather than presenting a formal definition, we give an example
(see [53] for more details). Suppose an MINLP contains the (non-
linear and non-convex) function f (y1, y2, y3) = exp

√
y1y2 + y3


,

where y1, y2, y3 are continuous and non-negative variables. If
one introduces new variables w1, w2, and w3, along with the
constraints w1 =

√
w2, w2 = w3 + y3, and w3 = y1y2, one can

rewrite the function f as exp(w1). Then, one needs under-
and over-estimators only for the relatively simple functions
exp(w1),

√
w2, and y1y2.

3.4. Branching: standard and spatial

The branch-and-bound method for MILPs, usually attributed
to Land and Doig [54], is well known. The key operation, called
branching, is based on the following idea. If an integer-constrained
variable xi takes a fractional value x∗

i in the optimal solution to
the continuous relaxation of a problem, then one can replace the
problem with two subproblems. In one of the subproblems, the
constraint xi ≤ ⌊x∗

i ⌋ is added, and, in the other, the constraint
xi ≥ ⌈x∗

i ⌉ is added. Clearly, the solution to the original relaxation
is not feasible for either of the two subproblems.

In the global optimization literature, one branches by par-
titioning the domain of continuous variables. Typically, this is
done by taking a continuous variable yi, whose current domain is
[ℓi, ui], choosing some value β with ℓi < β < ui, and creating two
subproblems, one with domain [ℓi, β] and the other with domain
[β, ui]. In addition, when solving either of the subproblems, one
can replace the original under- and over-estimators with stronger
ones, which take advantage of the reduced domain. This process,
called ‘spatial’ branching, is necessary for two reasons: (i) the op-
timal solution to the relaxation may not be feasible for the original
problem, and (ii) even if it is feasible, the approximation of the cost
function in the relaxation may not be sufficiently accurate. Spatial
branching is also due to McCormick [48].

We illustrate spatial branching with an example. Suppose that
the continuous variable y1 is known to satisfy 0 ≤ y1 ≤ ui and that,
in the process of factorization, we have introduced a new variable
zi, representing the quadratic term y2i . If we intended to use a
general convex programming solver, we could obtain a convex
relaxation by appending the constraints zi ≥ y2i and zi ≤ uiyi, as
shown in Fig. 1(a). If, on the other hand, we preferred to use an LP
solver, we could add instead the constraints zi ≥ 0, zi ≥ u2

i −2uiyi,
and zi ≤ uiyi, as shown in Fig. 1(b).

Now, suppose the solution of the relaxation is not feasible for
the MINLP, and we decide to branch by splitting the domain of y1
into the intervals [0, β] and [β, ui]. Also suppose for simplicity that
we are using LP relaxations. Then, in the left branch we can tighten
the relaxation by adding β2

− 2βyi ≤ zi ≤ βyi, while in the right
branch we can add βyi ≤ zi ≤ uiyi (see Fig. 2(a) and (b)).

Since MINLPs contain both integer-constrained and continuous
variables, one is free to apply both standard branching or spatial
branching where appropriate. Moreover, even if one applies
standard branching, onemay still be able to tighten the constraints
in each of the two subproblems.

4. Algorithms for the general case

Now that we are armed with the concepts described in the
previous section, we can go on to survey specific algorithms for
general non-convex MINLPs.

4.1. Spatial branch-and-bound

Branching, whether standard or spatial, usually has to be
applied recursively, leading to a hierarchy of subproblems. As in
the branch-and-bound method for MILPs [54], these subproblems
can be viewed as being arranged in a tree structure, which can
be searched in various ways. A subproblem can be removed from
further consideration (also known as fathomed or pruned) under
three conditions: (i) it is feasible for the original problem and its
cost under the relaxed objective equals it true cost (to within some
specified tolerance), (ii) the associated lower bound is no better
than the best upper bound found so far, or (iii) it is infeasible.

This overall approach was first proposed by McCormick [48] in
the context of global optimization problems. Later on, several au-
thors (mostly from the chemical process engineering community)
realized that the approach could be applied just aswell to problems
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(a) Convex. (b) Linear.

Fig. 1. Convex and linear approximations of the function zi = y2i over the domain [0, ui].

(a) Left. (b) Right.

Fig. 2. Improved linear approximations after spatial branching.

with integer variables. See, for example, Smith and Pantelides [55]
or Lee and Grossmann [56].

4.2. Branch-and-reduce

A major step forward in the exact solution of non-convex
MINLPs was the introduction of the branch-and-reduce technique
byRyoo and Sahinidis [57,58]. This is an improved version of spatial
branch-and-bound in which one attempts to reduce the domains
of the variables, beyond the reductions that occur simply as a
result of branching. More specifically, one adds the following two
operations: (i) before a subproblem is solved, its constraints are
checked to seewhether the domain of any variables can be reduced
without losing any feasible solutions; (ii) after the subproblem
is solved, sensitivity information is used to see whether the
domain of any variables can be reducedwithout losing any optimal
solutions.

After domain reduction has been performed, one can then
generate better convex under-estimators. This in turn enables
one to tighten the constraints, which can lead to improved lower
bounds. The net effect is usually a drastic decrease in the size of the
enumeration tree.

Branch-and-reduce is usually performed using LP relaxations,
rather than more complex convex programming relaxations, due
to two important facts. First and foremost, LPs can be solved more
efficiently and with greater numerical stability. Second, sensitivity
information is more readily available (and easier to interpret) in
the case of LPs.

Tawarmalani and Sahinidis [59,60] added some further refine-
ments to this scheme. In [59], a unified framework is given for do-
main reduction strategies, and, in [60], it is shown that, even when
a constraint is convex, it may be helpful (in terms of tightness of

the resulting relaxation) to introduce additional variables and split
the constraint into two constraints. Some further enhanced rules
for domain reduction, branching variable selection, and branching
value have also been given by Belotti et al. [61].

4.3. α-branch-and-bound

Androulakis et al. [50] proposed an exact spatial branch-and-
bound algorithm for global optimization of non-convex NLPs in
which all functions involved are twice differentiable. This method,
called α-BB, is based on their general technique for constructing
under-estimators, whichwasmentioned in Section 3.1. In Adjiman
et al. [62,63], the algorithm was improved by using tighter
and more specialized under-estimators for constraints that have
certain specific structures, and reserving the general technique
only for constraints that do not have any of those structures. Later
on, Adjiman et al. [64] extended the α-BB method to the mixed-
integer case.

One advantage that α-BB has, with respect to the more
traditional spatial branch-and-bound approach, or indeed branch-
and-reduce, is that usually no additional variables are needed.
That is to say, one can often work with the original objective and
constraint functions, without needing to resort to factorization.
This is because the under-estimators used do not rely on functions
being factored. On the other hand, to solve the relaxations, one
needs a general convex programming solver, rather than an LP
solver.

4.4. Conversion to an MILP

Another approach that one can take is to factorize the problem
(if necessary) as described in Section 3.3, approximate the resulting
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separable MINLP by an MILP as described in Section 3.2, and
then solve the resulting MILP using any available MILP solver.
To our knowledge, this approach was first suggested by Beale
and Tomlin [65]. The conversion into an MILP leads to sets
of binary variables with a certain special structure. Beale and
Tomlin call these sets special ordered sets of type 2 (SOS2), and
propose a specialized branching rule. This branching rule is
now standard in most commercial and academic MILP solvers.
Beale and Forrest [66] discuss a method for updating the MILP
approximations dynamically and an improved branching strategy
for the SOS2 variables.

Keha et al. [67] compare several different ways of modeling
piece-wise linear functions (PLFs) using binary variables. In their
follow-up paper [68], the authors present a branch-and-cut
algorithm that uses the SOS approach in conjunction with strong
valid inequalities. Vielma and Nemhauser [69] also present an
elegant way to reduce the number of auxiliary binary variables
required for modeling PLFs.

A natural way to generalize this approach is to construct PLFs
that approximate functions of more than one variable. (In fact,
this was already suggested by Beale [70] and Tomlin [52] in the
context of non-convex NLPs.) A recent exploration of this idea was
conducted by Martin et al. [27]. As well as constructing such PLFs,
they also propose adding cutting planes to tighten the relaxation.
Geißler et al. [71] is another recent reference.

Leyffer et al. [72] show that the naive use of PLFs can lead
to an infeasible MILP, even when the original MINLP is clearly
feasible. They propose a modified approach, called ‘branch-and-
refine’, in which piece-wise-linear under- and over-estimators are
constructed. This ensures that all of the original feasible solutions
for the MINLP remain feasible for the MILP. Also, instead of
branching spatially or on special ordered sets, they branch in the
classical way. Finally, they refine the PLFs each time a subproblem
is constructed.

4.5. Some other exact approaches

For completeness, we mention a few other exact approaches.

• Benson and Erenguc [73] and Bretthauer et al. [74] present
exact algorithms for MINLPs with linear constraints and a
concave objective function. Their algorithms use LP relaxations,
specialized penalty functions, and cutting planes that are
similar to the well-known concavity cuts of Tuy [75].

• Kesavan et al. [76] present special techniques for MINLPs in
which separability occurs at the level of the vectors x and y,
i.e., the functions f j(x, y) can be expressed as g j(x) + hj(y). In
fact, the authors assume that the functions hj(·) are linear and
that y is binary.

• Karuppiah and Grossman [77] use Lagrangian decomposition
to generate lower bounds and cutting planes for general non-
convex MINLPs.

• D’Ambrosio et al. [78] present an exact algorithm for MINLPs in
which the non-convexities are solely manifested as the sum of
non-convex univariate functions. In this sense, while the whole
problem is not necessarily separable, the non-convexities are.
Their algorithm, called SC-MINLP, involves an alternating
sequence of convex MINLPs and non-convex NLPs.

4.6. Heuristics

All of the methods mentioned so far in this section have been
exact methods. To close this section, we mention some heuristic
methods, i.e., methods designed to find good, but not provably
optimal, solutions quickly.

It is sometimes possible to convert exact algorithms for convex
MINLPs into heuristics for non-convex MINLPs. Leyffer [79] does

this using an MINLP solver that combines branch-and-bound with
sequential quadratic programming. Nowak and Vigerske [80] do
so by using quadratic under- and over-estimators of all nonlinear
functions, together with an exact solver for convex all-quadratic
problems.

Other researchers have adapted classical heuristic (and meta-
heuristic) approaches, normally applied to 0–1 LPs, to the more
general case of non-convex MINLPs. For example, Exler et al. [81]
present a heuristic, based on tabu search, for certain non-convex
MINLP instances arising in integrated systems and process control
design. A particle-swarm optimization for MINLPs is presented
in [82], [83] studies an enhanced genetic algorithm, and [84]
considers an ant-colony approach. Two recent examples are that
of Liberti et al. [85], whose approach involves the integration
of variable neighborhood search, local branching, sequential
quadratic programming, and branch-and-bound, and that of
Berthold [86], who conducts large neighborhood local search
by rounding the fractional solution from a relaxation. Finally,
D’Ambrosio et al. [87] and Nannicini and Belotti [88] have recently
presented heuristics that involve the solution of an alternating
sequence of NLPs and MILPs.

5. The quadratic case (and beyond)

In this section, we focus on the case in which all of the non-
linear objective and constraint functions are quadratic. This case
has receivedmuch attention, not only because it is themost natural
generalization of the linear case, but also because it has a verywide
range of applicability. Indeed, all MINLPs involving polynomials can
be reduced to quadratic MINLPs by using additional constraints
and variables (e.g., the cubic constraint y2 = y31 can be reduced
to the quadratic constraints y2 = y1w and w = y21, where w is an
additional variable). The papers [89,90] provide further discussion
of such transformations. Moreover, even functions that are
not polynomials can often be well approximated by quadratic
functions in the domain of interest.

5.1. Quadratic optimization with binary variables

The simplest quadratic MINLPs are those in which all variables
are binary. The literature on such problems is vast, and several
different approaches have been suggested for tackling them.
Among them, we mention the following.

• A seminal result due to Fortet [91] (see also [92,93]) is that
a quadratic function of n binary variables can be linearized
by adding O(n2) additional variables and constraints. More
precisely, any term of the form xixj, with i ≠ j, can be replaced
with a new binary variable xij, along with constraints of the
form xij ≤ xi, xij ≤ xj, and xij ≥ xi + xj − 1. Note the
match with McCormick’s approximation of the function yiyj in
the continuous case, mentioned in Section 3.1.

• Glover [94] showed that, in fact, one can linearize such
functions using only O(n) additional variables and constraints.
See, e.g., [95,96] for related formulations. Chaovalitwongse
et al. [97] and Sherali and Smith [98] provide recent,
conceptually different O(n) linearization approaches.

• Hammer and Rubin [99] showed that non-convex quadratic
functions in binary variables can be convexified by adding or
subtracting appropriate multiples of terms of the form x2i −

xi (which equal zero when xi is binary). This approach was
improved by Körner [100].

• Hammer et al. [101] present a bounding procedure, called the
roof dual, which replaces each quadratic function with a tight
linear under-estimator. Extensions of this are surveyed in Boros
and Hammer [102].
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• Pardalos and Rodgers [103] solve unconstrained 0–1 QPs
within a branch-and-bound algorithm involving careful pre-
processing and computational efficiencies.

• Poljak and Wolkowicz [104] examine several bounding tech-
niques for unconstrained 0–1 QPs, and show that they all give
the same bounds.

• Caprara [105] shows how to compute good bounds efficiently
using Lagrangian relaxation, when the linearized version of the
problem can be solved efficiently.

There are three other well-known approaches, that are not only
highly effective, but can be adapted to quadratic problems that
have a mixture of binary, integer-constrained, and/or continuous
variables. These are discussed in the following three subsections.

5.2. The reformulation-linearization technique (RLT)

In their seminal 1986 paper, Adams and Sherali [106] proposed
the following approach to 0–1 quadratic programs. First, the
additional xij variables are introduced, alongwith the constraints of
Fortet [91] mentioned in the previous subsection. Next, new valid
constraints are derived as follows.
• Each linear inequality, say aT x ≤ b, is multiplied by each vari-

able in turn, to obtain n valid quadratic inequalities of the form
(aT x)xk ≤ bxk. Replacing each product of the form xixk with the
single variable xik, and replacing x2k with xk, one obtains the fol-
lowing valid linear inequalities:
i≠k

aixik ≤ (b − ak)xk (k = 1, . . . , n).

• Similarly, multiplying each linear inequality by terms of the
form 1 − xk, one obtains n more valid quadratic inequalities of
the form (aT x)(1 − xk) ≤ b(1 − xk). This yields the linear in-
equalities:
i≠k

ai(xi − xik) ≤ (b − ak)(1 − xk) (k = 1, . . . , n).

The original linear inequalities can then be discarded, as they
are implied by the new ones.

• Next, each linear equation, say cT x = d, is multiplied by each
variable in turn, to obtain n valid quadratic equations. Lineariz-
ing as usual, one obtains
i≠k

cixik = (d − ck)xk (k = 1, . . . , n).

Unlike in the case of inequalities, there is no need to multiply
equations by 1− xk, since the resulting equations would be im-
plied by the original equations and the new ones.

Later on, Sherali and Adams [107] realized that, if the above
procedure is applied to a 0–1 linear program, the continuous
relaxation of the transformed instance is stronger than that of
the original instance. They also showed that one could obtain
a hierarchy of increasingly stronger relaxations, by introducing
variables representing products of three variables, products of
four variables, and so on. They named the entire scheme the
Reformulation-Linearization Technique (RLT).

Since then, the RLT has been extended to cover several other
classes of convex and non-convex MINLPs, beyond pure 0–1 linear
and quadratic problems.Wewillmention someof these extensions
in Sections 5.5 and 5.6, but, for a full treatment, the reader is
referred to the book [9].

5.3. Semidefinite relaxation

Another popular approach for generating strong relaxations
of non-convex quadratic optimization (and other) problems is
based on semidefinite programming (SDP). The starting point of

this approach is as follows. Given an arbitrary vector x ∈ Rn of
decision variables, define thematrix X = xxT . Note that a quadratic
function of x is a linear function of X . Therefore, any optimization
problem involving quadratic functions can be reformulated as an
optimization problem involving linear functions, togetherwith the
single non-convex constraint X = xxT .

Now, note that X is real, symmetric and positive semidefinite
(psd), and that, for 1 ≤ i ≤ j ≤ n, the entry Xij represents the
product xixj (and is thus analogous to the term xij in Sections 5.1
and 5.2). Moreover, as pointed out in [108,109], the augmented
matrix

X̂ :=


1
x

 
1
x

T

=


1 xT

x X


is also psd. This fact enables one to construct useful SDP relaxations
of various quadratic optimization problems (e.g., [110–112,109,
113,114,108]).

Note that, for aMixed-IntegerQuadratic Program (i.e., anMINLP
with a quadratic objective but linear constraints), one can easily
combine the RLT and SDP, to obtain a relaxation that dominates
those obtained by using either technique alone. Anstreicher [115]
shows that this can yield significant benefits in terms of bound
strength, though running times can be high.

Buchheim andWiegele [116] use SDP relaxations and a tailored
branching scheme for a special kind of Mixed-Integer Quadratic
Program, in which the only constraints present are ones that
enforce each variable to belong to a specified subset of R. Note
that this includes unconstrained problems with any mixture of
continuous, binary and general-integer variables.

A completely positive matrix is one that can be factored as NNT ,
where N is a component-wise nonnegative matrix. Clearly, if x ∈

Rn
+
, then X̂ is completely positive rather than merely psd. One

can use this fact to derive even stronger SDP relaxations; see the
survey [117]. Chen and Burer [118] use such an approach within
branch-and-bound to solve non-convex QPs having continuous
variables and linear constraints.

5.4. Polyhedral theory and convex analysis

We have seen, in the previous three subsections, that a popular
way to tackle quadratic MINLPs is to introduce new variables
representing products of pairs of original variables. Once this
has been done, it is natural to study the convex hull of feasible
solutions, in the hope of deriving strong linear (or at least convex)
relaxations.

Padberg [40] tackled exactly this topic when he introduced a
polytope associated with unconstrained 0–1 quadratic programs,
which he called the Boolean quadric polytope. The Boolean quadric
polytope of order n is defined as

BQPn = conv

x ∈ {0, 1}n+( n

2 ) : xij = xixj (1 ≤ i < j ≤ n)


.

Note that here, just as in the original version of the RLT, the variable
xij is not defined when i = j. This is because squaring a binary
variable has no effect.

Padberg [40] derived various valid and facet-defining inequal-
ities for BQPn, called triangle, cut, and clique inequalities. Since
then, a wide variety of valid and facet-defining inequalities have
been discovered. These are surveyed in the book by Deza and Lau-
rent [119].

There are several other papers on polytopes related to quadratic
versions of traditional combinatorial optimization problems.
Among them, we mention [120] on the quadratic assignment
polytope, [121] on the quadratic semi-assignment polytope,
and [111] on the quadratic knapsack polytope. Padberg and
Rijal [122] studied several quadratic 0–1 problems in a common
framework.
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There are also three papers on the following (non-polyhedral)
convex set [123–125]:

conv

x ∈ [0, 1]n, y ∈ R


n+1
2


, xij = xixj (1 ≤ i ≤ j ≤ n)


.

This convex set is associated with non-convex quadratic program-
ming with box constraints, a classical problem in global optimiza-
tion. Burer and Letchford [124] use a combination of polyhedral
theory and convex analysis to analyze this convex set. In a follow-
uppaper, Burer and Letchford [126] apply the sameapproach to the
case in which there are unbounded continuous and integer vari-
ables.

Complementing the above approaches, several researchers
have looked at the convex hull of sets of the form {(z, x) ∈ Rn+1

:

z = q(x), x ∈ D}, where q(x) is a given quadratic function
and D is a bounded (most often simple) domain [127–129]. While
slightly less general than convexifying in the space of all pairs xij
as done above, this approach much more directly linearizes and
convexifies the quadratics of interest in a given problem. It can
also be effectively generalized to the non-quadratic case (see, for
example, Section 2 of [53]).

5.5. Some additional techniques

Saxena et al. [130,131] have derived strong cutting planes for
non-convex MIQCQPs (mixed-integer quadratically constrained
quadratic programs). In [130], the cutting planes are derived in the
extended quadratic space of the Xij variables, using disjunctions of
the form (aT x ≤ b)∨ (aT x ≥ b). In [131], the cutting planes are de-
rived in the original space by projecting down certain relaxations
from the quadratic space. See also the recent survey Burer and Sax-
ena [132]. Separately, Galli et al. [133] have adapted the ‘gap in-
equalities’, originally defined in [134] for the max-cut problem, to
non-convex MIQPs.

Berthold et al. [135] present an exact algorithm for MIQCQPs
that is based on the integration of constraint programming and
branch-and-cut. The key is to use quadratic constraints to reduce
domains, wherever possible. Misener and Floudas [25] present an
exact algorithm for non-convex mixed 0–1 QCQPs that is based on
branch-and-reduce, together with cutting planes derived from the
consideration of polyhedra involving small subsets of variables.

Billionnet et al. [136] revisit the approach for 0–1 quadratic
programs,mentioned in Section 5.1, due toHammer andRubin [99]
and Körner [100]. They show that an optimal reformulation can be
derived from the dual of an SDP relaxation. Billionnet et al. [137]
then show that the method can be extended to general MIQPs,
provided that the integer-constrained variables are bounded and
the part of the objective function associated with the continuous
variables is convex.

Adams and Sherali [37] and Freire et al. [38] present algorithms
for bilinear problems. A bilinear optimization problem is one in
which all constraints are linear, and the objective function is
the product of two linear functions (and therefore quadratic).
The paper [37] is concerned with the case in which one of
the linear functions involves binary variables and the other
involves continuous variables. The paper [38], on the other hand,
is concerned with the case in which all variables are integer-
constrained.

Finally, we mention that Nowak [138] proposes using La-
grangian decomposition for non-convex MIQCQPs.

5.6. Extensions to polynomial optimization

Many researchers have extended ideas from quadratic pro-
grams to the much broader class of polynomial optimization prob-
lems. A simple way to linearize polynomials involving binary

variables was given by Glover and Woolsey [92]. The RLT ap-
proach of Sherali and Adams [9] explained in Section 5.2 creates
a hierarchy of ever-tighter LP relaxations of polynomial problems.
Some successful applications of the RLT approach include the solu-
tion of 0–1 polynomial programs [107], mixed-integer polynomial
programs [139], and mixed-discrete problems having non-convex
polynomial constraints and general convex constraints [140].

Recently, some sophisticated approaches have been developed
for mixed 0–1 polynomial programs that draw on concepts
from real algebraic geometry, commutative algebra, and moment
theory. Relevant works include Nesterov [141], Parrilo [142],
Lasserre [47], Laurent [143], and De Loera et al. [144]. The method
of Lasserre [145] works for integer polynomial programs when
each variable has an explicit lower and upper bound.

Michaels andWeismantel [146]make an important observation
for Integer Polynomial Programming. They note that, given a non-
convex polynomial, say f (x), there may exist a convex polynomial,
say f ′(x), that achieves the same value as f (x) at all integer points.
In principle, this could allow such non-convex programs to be
made convex.

6. Software

There are five software packages that can solve non-convex
MINLPs to proven optimality:

BARON, α-BB, LINDO-Global, Couenne, and GloMIQO.

BARON is due to Sahinidis and colleagues [57,58,10], α-BB is
due to Adjiman et al. [64], and LINDO-Global is described in
Lin and Schrage [147]. Couenne is due to Belotti et al. [43],
and GloMIQO [148] relates to the technique of Misener and
Floudas [25] described in Section 5.5.

Some packages can be used to find heuristic solutions for non-
convex MINLPs:

BONMIN, DICOPT, LaGO, and MIDACO.

The first three are actually packages for convex MINLPs, while
the fourth is based on ant-colony optimization. The algorith-
mic approach behind BONMIN is described in [8], and DICOPT
has been developed by Grossmann and co-authors (e.g., Ko-
cis and Grossmann [149]). LaGO is described in Nowak and
Vigerske [80], and MIDACO is presented in [84] and available at
midaco-solver.com.

The package due to Liberti et al. [85], described in Section 4.6, is
called RECIPE. The paper by Berthold et al. [135] presents anMIQCP
solver for the software package SCIP. Finally, GloptiPoly [150]
can solve general polynomial optimization problems.

7. Conclusions

Because non-convex MINLPs encompass a huge range of
applications and problem types, the depth and breadth of
techniques used to solve them should come as no surprise. In this
survey, we have tried to give a fair and up-to-date introduction to
these techniques.

Without a doubt, substantial successes in the fields of MILP and
global optimization have played critical roles in the development
of algorithms for non-convex MINLPs, and we suspect further
successes will have continued benefits for MINLPs. We believe,
also, that even more insights can be achieved by studying MINLPs
specifically. For example, analyzing — and generating cutting
planes for — the various convex hulls that arise in MINLPs (see
Section 5.4) will require aspects of both polyhedral theory and
convex analysis to achieve best results.

We also advocate the development of algorithms for various
special cases of non-convex MINLPs. While general-purpose
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algorithms for MINLPs are certainly needed, since MINLP are
so broad, there will always be a need for handling important
special cases. Special cases can also allow the development of
newer techniques (e.g., semidefinite relaxations), which may then
progress to more general techniques.

Finally, we believe there will be an increasing place for
heuristics and approximation algorithms for non-convex MINLPs.
Most techniques so far aim for globally optimal solutions, but in
practice it would be valuable to have sophisticated approaches for
finding near-optimal solutions.
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