
Surveys in Operations Research and Management Science 18 (2013) 1–17

Contents lists available at ScienceDirect

Surveys in Operations Research and Management Science

journal homepage: www.elsevier.com/locate/sorms

Review

Practical guidelines for solving difficult linear programs
Ed Klotz a, Alexandra M. Newman b,∗

a IBM, 926 Incline Way, Suite 100, Incline Village, NV 89451, United States
b Division of Economics and Business, Colorado School of Mines, Golden, CO 80401, United States

a r t i c l e i n f o

Article history:
Received 26 July 2012
Received in revised form
4 November 2012
Accepted 7 November 2012

a b s t r a c t

The advances in state-of-the-art hardware and software have enabled the inexpensive, efficient solution
of many large-scale linear programs previously considered intractable. However, a significant number of
large linear programs can require hours, or even days, of run time and are not guaranteed to yield an
optimal (or near-optimal) solution. In this paper, we present suggestions for diagnosing and removing
performance problems in state-of-the-art linear programming solvers, and guidelines for careful model
formulation, both of which can vastly improve performance.

© 2012 Elsevier Ltd. All rights reserved.

Contents

1. Introduction.. 1
2. Linear programming fundamentals .. 2

2.1. Simplex methods ... 2
2.2. Interior point algorithms... 4
2.3. Algorithm performance contrast .. 5

3. Guidelines for successful algorithm performance ... 8
3.1. Numerical stability and Ill conditioning... 8
3.2. Degeneracy... 11
3.3. Excessive simplex algorithm iteration counts ... 11
3.4. Excessive barrier algorithm iteration counts ... 13
3.5. Excessive time per iteration.. 15

4. Conclusions... 17
Acknowledgments ... 17
References... 17

1. Introduction

Operations research practitioners have been formulating and
solving linear programs since the 1940s [1]. State-of-the-art op-
timizers such as CPLEX [2], Gurobi [3], MOPS [4], Mosek [5], and
Xpress-MP [6] can solvemost practical large-scale linear programs
effectively. However, some ‘‘real-world’’ problem instances re-
quire days or weeks of solution time. Furthermore, improvements
in computing power and linear programming solvers have often
prompted practitioners to create larger, more difficult linear pro-
grams that provide a more accurate representation of the systems
theymodel. Although not a guarantee of tractability, careful model
formulation and standard linear programming algorithmic tuning

∗ Corresponding author. Tel.: +1 303 273 3688; fax: +1 303 273 3416.
E-mail addresses: klotz@us.ibm.com (E. Klotz), newman@mines.edu

(A.M. Newman).

often result in significantly faster solution times, in some cases ad-
mitting a feasible or near-optimal solution which could otherwise
elude the practitioner.

In this paper, we briefly introduce linear programs and their
corresponding commonly used algorithms, show how to assess
optimizer performance on such problems through the respec-
tive algorithmic output, and demonstrate methods for improving
that performance through careful formulation and algorithmic pa-
rameter tuning. We assume basic familiarity with fundamental
mathematics, such as matrix algebra, and with optimization. We
expect that the reader has formulated linear programs and has a
conceptual understanding of how the corresponding problems can
be solved. The interested reader can refer to basic texts such as
[7–11] for more detailed introductions to mathematical program-
ming, including geometric interpretations. For a more general dis-
cussion of good optimization modeling practices, we refer the
reader to [12]. However, we contend that this paper is self-
contained such that relatively inexperienced practitioners can use
its advice effectively without referring to other sources.

1876-7354/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.sorms.2012.11.001

http://dx.doi.org/10.1016/j.sorms.2012.11.001
http://www.elsevier.com/locate/sorms
http://www.elsevier.com/locate/sorms
mailto:klotz@us.ibm.com
mailto:newman@mines.edu
http://dx.doi.org/10.1016/j.sorms.2012.11.001

2 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

The remainder of the paper is organized as follows. In Section 2,
we introduce linear programs and the simplex and interior point
algorithms. We also contrast the performance of these algorithms.
In Section 3, we address potential difficulties when solving a
linear program, including identifying performance issues from
the corresponding algorithmic output, and provide suggestions
to avoid these difficulties. Section 4 concludes the paper with a
summary. Sections 2.1 and 2.2, with the exception of the tables,
may be omitted without loss of continuity for the practitioner
interested only in formulation and algorithmic parameter tuning
without detailed descriptions of the algorithms themselves. To
illustrate the concepts we present in this paper, we show output
logs resulting from having run a state-of-the-art optimizer on a
standard desktop machine. Unless otherwise noted, this optimizer
is CPLEX 12.2.0.2, and the machine possesses four 3.0 GHz Xeon
chips and eight gigabytes of memory.

2. Linear programming fundamentals

We consider the following system where x is an n × 1 column
vector of continuous-valued, nonnegative decision variables, A is
an m × n matrix of left-hand-side constraint coefficients, c is an
n × 1 column vector of objective function coefficients, and b is
an m × 1 column vector of right-hand-side data values for each
constraint.

(PLP):min cT x
subject to Ax = b
x ≥ 0.

Though other formats exist, without loss of generality, any
linear program can bewritten in the primal standard formweadopt
above. Specifically, a maximization function can be changed to
a minimization function by negating the objective function (and
then negating the resulting optimal objective). A less-than-or-
equal-to or greater-than-or-equal-to constraint can be converted
to an equality by adding a nonnegative slack variable or subtracting
a nonnegative excess variable, respectively. Variables that are
unrestricted in sign can be converted to nonnegative variables by
replacing each with the difference of two nonnegative variables.

We also consider the related dual problem corresponding to
our primal problem in standard form, (PLP). Let y be an m × 1
column vector of continuous-valued, unrestricted-in-sign decision
variables; A, b and c are data values with the dimensionality given
above in (PLP).

(DLP):max yTb
subject to yTA ≤ cT .

The size of a linear program is given by the number of
constraints, m, the number of variables, n, and the number
of non-zero elements in the A matrix. While a large number
of variables affects the speed with which a linear program is
solved, the commonly used LP algorithms solve linear systems
of equations dimensioned by the number of constraints. Because
these linear solves often dominate the time per iteration, the
number of constraints is a more significant measure of solution
time than the number of variables. Models corresponding to
practical applications typically contain sparse A matrices in which
more than 99% of the entries are zero. In the context of linear
programming, a dense matrix need not have a majority of its
entries assume non-zero values. Instead, a dense LP matrix merely
has a sufficient number or pattern of non-zeros so that the
algorithmic computations using sparse matrix technology can be
sufficiently time consuming to create performance problems. Thus,
a matrix can still have fewer than 1% of its values be non-zero, yet
be considered dense. Practical examples of such matrices include

those that average more than 10 non-zeros per column and those
with a small subset of columns with hundreds of non-zeros. State-
of-the-art optimizers capitalize on matrix sparsity by storing only
the non-zero matrix coefficients. However, even for suchmatrices,
the positions of the non-zero entries and, therefore, the ease with
which certain algorithmic computations (discussed below) are
executed, can dramatically affect solution time.

A basis for the primal system consists of m variables whose
associated matrix columns are linearly independent. The basic
variable values are obtained by solving the system Ax = b given
that the resulting n−mnon-basic variables are set to values of zero.
The set of the actual values of the variables in the basis, as well as
those set equal to zero, is referred to as a basic solution. Each primal
basis uniquely defines a basis for the dual (see [1, pp. 241–242]).
For each basis, there is a range of right-hand-side values such
that the basis retains the same variables. Within this range, each
constraint has a corresponding dual variable value which indicates
the change in the objective function value per unit change in the
corresponding right hand side. (This variable value can be obtained
indirectly via the algorithm and is readily available through any
standard optimizer.) Solving the primal system, (PLP), provides
not only the primal variable values but also the dual values at
optimality; these values correspond to the optimal variable values
to the problem (DLP). Correspondingly, solving the dual problem
to optimality provides both the optimal dual and primal variable
values. In other words, we can obtain the same information by
solving either (PLP) or (DLP).

Each vertex (or extreme point) of the polyhedron formed by
the constraint set Ax = b corresponds to a basic solution. If
the solution also satisfies the nonnegativity requirements on all
the variables, it is said to be a basic feasible solution. Each such
basic feasible solution, of which there is a finite number, is a
candidate for an optimal solution. In the case of multiple optima,
any convex combination of extreme-point optimal solutions is also
optimal. Because basic solutions contain significantly more zero-
valued variables than solutions that are not basic, practitioners
may be more easily able to implement basic solutions. On the
other hand, basic solutions lack the ‘‘diversity’’ in non-zero values
that solutions that are not basic provide. In linear programs
with multiple optima, solutions that are not basic may be more
appealing in applications in which it is desirable to spread out
the non-zero values among many variables. Linear programming
algorithms can operate with a view to seeking basic feasible
solutions for either the primal or for the dual system, or by
examining solutions that are not basic.

2.1. Simplex methods

The practitioner familiar with linear programming algorithms
may wish to omit this and the following subsection. The primal
simplex method [1], whose mathematical details we provide later
in this section, exploits the linearity of the objective and convexity
of the feasible region in (PLP) to efficiently move along a sequence
of extreme points until an optimal extreme-point solution is
found. The method is generally implemented in two phases. In
the first phase, an augmented system is initialized with an easily
identifiable extreme-point solution using artificial variables to
measure infeasibilities, and then optimized using the simplex
algorithm with a view to obtaining an extreme-point solution to
the augmented system that is feasible for the original system. If a
solution without artificial variables cannot be found, the original
linear program is infeasible. Otherwise, the second phase of the
method uses the original problem formulation (without artificial
variables) and the feasible extreme-point solution from the first
phase and moves from that solution to a neighboring, or adjacent,
solution. With each successive move to another extreme point,
the objective function value improves (assuming non-degeneracy,

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 3

discussed in Section 3.2) until either: (i) the algorithm discovers
a ray along which it can move infinitely far (to improve the
objective) while still remaining feasible, inwhich case the problem
is unbounded, or (ii) the algorithm discovers an extreme-point
solution with an objective function value at least as good as that of
any adjacent extreme-point solution, in which case that extreme
point can be declared an optimal solution.

An optimal basis is both primal and dual feasible. In other
words, the primal variable values calculated from the basis satisfy
the constraints and nonnegativity requirements of (PLP), while the
dual variable values derived from the basis satisfy the constraints
of (DLP). The primal simplex method works by constructing a
primal basic feasible solution, then working to remove the dual
infeasibilities. The dual simplex method [13] works implicitly
on the dual problem (DLP) while operating on the constraints
associatedwith the primal problem (PLP). It does so by constructing
a dual basic feasible solution, and then working to remove
the primal infeasibilities. In that sense, the two algorithms are
symmetric. By contrast, one can also explicitly solve the dual
problem (DLP) by operating on the dual constraint set with either
the primal or dual simplex method. In all cases, the algorithm
moves from one adjacent extreme point to another to improve
the objective function value (assuming non-degeneracy) at each
iteration.
Primal simplex algorithm:

We give the steps of the revised simplex algorithm, which
assumes that we have obtained a basis, B, and a corresponding
initial basic feasible solution, xB, to our system as given in (PLP).
Note that the primal simplex method consists of an application
of the algorithm to obtain such a feasible basis (phase I), and a
subsequent application of the simplex algorithm with the feasible
basis (phase II).

We define cB and AB as, respectively, the vector of objective
coefficients and matrix coefficients associated with the basic
variables, ordered as the variables appear in the basis. The nonbasic
variables belong to the set N , and are given by {1, 2, . . . , n} − {B}.

The revised simplex algorithm mitigates the computational
expense and storage requirements associated with maintaining an
entire simplex tableau, i.e., a matrix of A, b, and c components of
a linear program, equivalent to the original but relative to a given
basis, by computing only essential tableau elements. By examining
the steps of the algorithm in the following list, the practitioner can
often identify the aspects of the model that dominate the revised
simplex method computations, and thus take suitable remedial
action to reduce the run time.
1. Backsolve Obtain the dual variables by solving the linear sys-

tem yTAB = cTB , where AB is represented by an LU factorization.
The LU factorization is a product of a lower triangular and upper
triangularmatrix that is computed through a sequence of pivot-
ing operations analogous to the operations used to compute the
inverse of a matrix. Most simplex algorithm implementations
compute and maintain an LU factorization rather than a basis
inverse because the former is sparser and can be computed in
a more numerically stable manner. See [14] for details. Given
a factorization AB = LU , it follows that A−1B = U−1L−1, so the
backsolve is equivalent to solving

yT = cTB AB
−1
= cTBU

−1L−1. (1)

This can be calculated efficiently by solving the following sparse
triangular linear systems (first, by computing the solution of a
linear system involving U , and then using the result to solve a
linear system involving L); this computation can be performed
faster than computing yT as a matrix product of cT and AB

−1.

pTU = cTB
yT L = pT .

2. Pricing Calculate the reduced costs c̄TN = cTN − yTAN , which in-
dicate for each nonbasic variable the rate of change in the ob-
jective with a unit increase in the corresponding variable value
from zero.

3. Entering variable selection Pick the entering variable xt and
associated incoming column At from the set of nonbasic vari-
able indices N with c̄TN < 0. If c̄TN ≥ 0, stop with an optimal
solution x = (xB, 0).

4. Forward solve Calculate the corresponding incoming column
w relative to the current basis matrix by solving ABw = At .

5. Ratio test Determine the amount by which the value of the en-
tering variable can increase from zero without compromising
feasibility of the solution, i.e., without forcing the other basic
variables to assume negative values. This, in turn, determines
the position r of the outgoing variable in the basis and the asso-
ciated index on the chosen variable xj, j ∈ {1, 2, . . . , n}. Call the
outgoing variable in the rth position xjr . Then, such a variable is
chosen as follows: r = argmini:wi>0

xji
wi
.

Let θ = mini:wi>0
xji
wi
.

If there exists no i such that wi > 0, then θ is infinite; this im-
plies that regardless of the size of the objective function value
given by a feasible solution, another feasible solutionwith a bet-
ter objective function value always exists. The extreme-point
solution given by (xB, 0), and the direction of unboundedness
given by the sum of (−w, 0) and the unit vector et combine to
form the direction of unboundedness. Hence, stop because the
linear program is unbounded. Otherwise, proceed to Step 6.

6. Basis update Update the basis matrix AB and the associated LU
factorization, replacing the outgoing variable xjr with the in-
coming variable xt . Periodically refactorize the basis matrix AB
using the factorization given above in Step 1 in order to limit the
round-off error (see Section 3.1) that accumulates in the repre-
sentation of the basis as well as to reduce the memory and run
time required to process the accumulated updates.

7. Recalculate basic variable values Either update or refactorize.
Most optimizers perform between 100 and 1000 updates be-
tween each refactorization.
(a) Update: Let xt = θ; xi ← xi − θ · wi for i ∈ {B} − {t}.
(b) Refactorize: Using the refactorization mentioned in Step 1

above, solve ABxB = b.
8. Return to Step 1.

A variety of methods can be used to determine the incoming
variable for a basis (see Step 3) while executing the simplex
algorithm. One can inexpensively select the incoming variable
using partial pricing by considering a subset of nonbasic variables
and selecting one of those with negative reduced cost. Full pricing
considers the selection from all eligible variables. More elaborate
variable selection schemes entail additional computation such as
normalizing each negative reduced cost such that the selection of
the incoming variable is based on a scale-invariant metric [15].
These more elaborate schemes can diminish the number of
iterations needed to reach optimality but can also require more
time per iteration, especially if a problem instance contains a
large number of variables or if the A matrix is dense, i.e., it is
computationally intensive to perform the refactorizations given
in the simplex algorithm. Hence, if the decrease in the number
of iterations required to solve the instance does not offset the
increase in time required per iteration, it is preferable to use a
simple pricing scheme. In general, it is worth considering non-
default variable selection schemes for problems in which the
number of iterations required to solve the instance exceeds three
times the number of constraints.

Degeneracy in the simplex algorithm occurs when a basic
variable assumes a value of zero as it enters the basis. In other
words, the value θ in the minimum ratio test in Step 5 of the

4 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

simplex algorithm is zero. This results in iterations in which
the objective retains the same value, rather than improving.
Theoretically, the simplex algorithm can cycle, revisiting bases
multiple times with no improvement in the objective. While
cycling is primarily a theoretical, rather than a practical, issue,
highly degenerate LPs can generate long, acyclic sequences of bases
that correspond to the same objective, making the problem more
difficult to solve using the simplex algorithm.

While space considerations preclude us from giving an
analogous treatment of the dual simplex method [16], it is worth
noting that the method is very similar to that of the primal
simplex method, only preserving dual feasibility while iterating
towards primal feasibility, rather than vice versa. The dual simplex
algorithm begins with a set of nonnegative reduced costs; such
a set can be obtained easily in the presence of an initial basic,
dual-feasible solution or by a method analogous to Phase I of
the primal simplex method. The primal variable values, x, are
checked for feasibility, i.e., nonnegativity. If they are nonnegative,
the algorithm terminates with an optimal solution; otherwise, a
negative variable is chosen to exit the basis. Correspondingly, a
minimum ratio test is performed on the quotient of the reduced
costs and row associated with the exiting basic variable relative
to the current basis (i.e., the simplex tableau row associated with
the exiting basic variable). The ratio test either detects primal
infeasibility or identifies the incoming basic variable. Finally, a
basis update is performed on the factorization [17].

2.2. Interior point algorithms

The earliest interior point algorithms were the affine scaling
algorithm proposed by Dikin [18] and the logarithmic barrier al-
gorithm proposed by Fiacco and McCormick [19]. However, at
that time, the potential of these algorithms for efficiently solv-
ing large-scale linear programs was largely ignored. The ellipsoid
algorithm, proposed by Khachian [20], established the first poly-
nomial time algorithm for linear programming. But, this great
theoretical discovery did not translate to good performance
on practical problems. It was not until Karmarkar’s projective
method [21] had shown great practical promise and was subse-
quently demonstrated to be equivalent to the logarithmic barrier
algorithm [22], that interest in these earlier interior point algo-
rithms increased. Subsequent implementations of various interior
point algorithms revealed primal–dual logarithmic barrier algo-
rithms as the preferred variant for solving practical problems [23].

None of these interior point algorithms or any of their variants
uses a basis. Rather, the algorithm searches through the interior
of the feasible region, avoiding the boundary of the constraint set
until it finds an optimal solution. Each variant possesses a different
means for determining a search direction. However, all variants
fundamentally rely on centering the current iterate, computing an
improving search direction, moving along it for a given step size
short enough that the boundary is not reached (until optimality),
and then re-centering the iterate.

While not the most efficient in practice, Dikin’s Primal
Affine Scaling Algorithm provides the simplest illustration of the
computational steps of these interior point algorithms. Therefore,
we describe Dikin’s Algorithm in detail below. Lustig et al. [24]
contains a more detailed description of the more frequently
implemented primal–dual logarithmic barrier algorithm.

The kth iteration of Dikin’s algorithm operates on the linear
program (PLP), along with a feasible interior point solution xk > 0.
The algorithm centers the feasible interior point by rescaling the
variables based on the values of xk, computes a search direction by
projecting the steepest descent direction onto the null space of the
rescaled constraintmatrix, andmoves in the search directionwhile
ensuring that the new scaled solution remains a feasible interior

point. The algorithm then unscales the solution, resulting in a new
iterate, xk+1. Following the unscaling, the algorithm performs a
convergence test for optimality on xk+1. If xk+1 is not optimal, the
algorithm repeats its steps using xk+1 as the feasible interior point
solution. The following steps provide the mathematical details.
Interior point algorithm with affine scaling:

1. Centering Let D = Diag(xk). Rescale the problem to center the
current interior feasible solution by letting Â = AD, ĉT = cTD.
Hence, x̂k = D−1xk = e, the vector consisting of all 1’s. Note
that Âx̂k = b.

2. Search Direction Computation For the rescaled problem,
project the steepest descent direction −ĉT onto the null space
of the constraintmatrix Â, resulting in the search direction pk =
−(I − ÂT (ÂÂT)−1Â)ĉ.

3. Step Length Add a positive multiple θ of the search direction
to pk, the scaled interior feasible point, by computing x̂k+1 =
e + θpk. If pk ≥ 0, then x̂k+1, and hence xk+1, can increase
without bound; stop the algorithm with an unbounded
solution. Otherwise, because Âpk = 0, Âxk+1 = b. Therefore,
θ must be chosen to ensure that x̂k+1 > 0. For any constant α

such that 0 < α < 1, the update x̂k+1 = e −


α
minj pk[j]


pk

suffices.
4. Optimality Test Unscale the problem, setting xk+1 = Dx̂k+1.

Test xk+1 for optimality by checking whether ∥xk+1 − xk∥ is
suitably small. If xk+1 is optimal, stop the algorithm. Otherwise,
return to Step 1 with feasible interior point solution xk+1.

The calculation of pk = −(I − ÂT (ÂÂT)−1Â)ĉ (Step 2) is the
most time consuming operation of this algorithm. First, one must
perform the matrix vector multiplication v = Âĉ. Then, one must
compute the solution w to the linear system of equations
(ÂÂT)w = v. This step typically dominates the computation time
of an iteration. Subsequently, one must perform a second matrix
vector multiplication, ÂTw, then subtract ĉ from the result.

The simplex algorithm creates an m × m basis matrix of left-
hand-side coefficients, AB, which is invertible. By contrast, interior
point algorithms do not maintain a basis matrix. The matrix AAT is
not guaranteed to be invertible unless A has full rank. Fortunately,
in the case of solving an LP, full rank comes naturally, either
through removal of dependent constraints during presolve, or
because of the presence of slack and artificial variables in the
constraint matrix.

Other interior point algorithmsmaintain feasibility by different
means. Examples include applying a logarithmic barrier function to
the objective rather than explicitly projecting the search direction
onto the null space of the rescaled problem, and using a projective
transformation instead of the affine transformation of Dikin’s
algorithm to center the iterate. Some also use the primal and
dual constraints simultaneously, and use more elaborate methods
to calculate the search direction in order to reduce the total
number of iterations. However, in all such practical variants to
date, the dominant calculation remains the solution of a system
of linear equations similar to the form (ÂÂT)w = v, as in Dikin’s
algorithm. As of the writing of this paper, the primal–dual
barrier algorithm, combined with Mehrotra’s predictor–corrector
method [25], has emerged as the method of choice in most state-
of-the-art optimizers.

Because the optimal solutions to linear programs reside on
the boundary of the feasible region, interior point algorithms
cannot move to the exact optimal solution. They instead rely on
convergence criteria. Methods to identify an optimal basic solution
from the convergent solution that interior point algorithms
provide have been developed [26]. A procedure termed crossover
can be invoked in most optimizers to transform a (typically near

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 5

Fig. 1. Let x denote an arbitrarily valued non-zero entry in the above matrices.
The upper matrix product yields a completely dense result, while the lower matrix
product yields a reasonably sparse result. The two products are merely reversals of
each other.

optimal) interior solution to an optimal extreme-point solution.
(In the case of a unique solution, the interior point method
would converge towards the optimal extreme-point solution, i.e., a
basic solution.) Crossover provides solutions that are easier to
implement in practice. While crossover typically comprises a
small percentage of the run time on most models, it can be time
consuming, particularly when initiated on a suboptimal interior
point solution with significant distance from an optimal solution.
For primal–dual interior algorithms [27], the optimality criterion
is usually based on a normalized duality gap, e.g., the quotient of
the duality gap and primal objective (or dual objective since they
are equal at optimality): (cT x−yT b)

cT x
.

In order to solve the linear system (ÂÂT)w = v efficiently,
most practical implementations maintain a Cholesky factorization
(ÂÂT) = L̂L̂T . The non-zero structure, i.e., the positions in the
matrix in which non-zero elements of ÂÂT lie, profoundly
influences interior point algorithm run times. Since D is a diagonal
matrix, ÂÂT and AAT have the same non-zero structure. For sparse
matrices, the non-zero structure of AAT depends heavily on the
structure of the original matrix A. Note that even if the A matrix
is sparse, the product of A and AT can be dense. Consider the two
matrix products in Fig. 1, inwhich x represents an arbitrarily valued
non-zero matrix entry. The first product of A and AT leads to a
fully dense matrix (barring unlikely cancellation of terms in some
entries), while the second product, which is simply a reversal of the
two matrices A and AT , remains relatively sparse.

A significant amount of work involves determining how to
order A so that the Cholesky factor of AAT is as sparse as possible.
Although the non-zero values of Â change from one iteration to the
next, the non-zero structure ofAAT remains unchanged throughout
the algorithm. So, interior point algorithm implementations can
perform a large part of the computation that involves AAT at
the start of the algorithm by computing a symbolic Cholesky
factorization of AAT to provide the static non-zero structure of
a lower triangular matrix L such that: AAT

= LLT . This avoids
recomputing (ÂÂT)−1 from scratch during each iteration and
removes the need to maintain any inverse at all. Rather, the
implementation uses the Cholesky factorization to solve the
system of equations (ÂÂT)w = v. At each iteration, the algorithm
must update the individual values of the Cholesky factorization,
but the non-zero structure of the factorization is known from the
initial symbolic factorization.

2.3. Algorithm performance contrast

The linear programming algorithmswe have discussed perform
differently depending on the characteristics of the linear programs
on which they are invoked. Although we introduce (PLP) in
standard form with equality constraints, yielding anm× n system

with m equality constraints and n variables, we assume for the
following discussion that our linear program is given as naturally
formulated, i.e., with a mixture of equalities and inequalities, and,
as such, contains m equality and inequality constraints and n
variables.

The solution time for simplex algorithm iterations is more
heavily influenced by the number of constraints than by the
number of variables. This is because the row-based calculations in
the simplex algorithm involving the m × m basis matrix usually
comprise a much larger percentage of the iteration run time than
the column-based operations. One can equivalently solve either
the primal or the dual problem, so the practitioner should select
the one that most likely solves fastest. Some optimizers have the
ability to create the dual model before or after presolving a linear
program, and to use internal logic for determining when to solve
the explicit dual. The aspect ratio, n

m , generally indicates whether
solving the primal or the dual problem, and/or solving the problem
with the primal or the dual simplex method is likely to be more
efficient. Ifm≪ n, it ismore expedient to preserve the large aspect
ratio. In this case, the primal simplex algorithmwith partial pricing
is likely to be effective because reduced costs on a potentially
small subset of the nonbasic variables need to be computed at each
iteration. By contrast, the dual simplex algorithm must compute a
row of the simplex tableau during the ratio test that preserves dual
feasibility. This calculation in the dual simplex algorithm involves
essentially the same effort as full pricing in the primal simplex
algorithm. This can consume a large portion of the computation
time of each iteration. For models with m ≫ n, an aspect ratio of
0.5 or smaller indicates that solving the dual explicitly yields faster
performance than the primal, though solving the dual explicitly
can also be faster even if the aspect ratio is greater than 0.5.
Also, under primal degeneracy, implicitly solving the dual problem
via the dual simplex method or solving the explicit dual can
dramatically reduce the iteration count.

Regarding interior point algorithms, theymaybe effectivewhen
m ≪ n. And, when m is relatively small, AAT has only m rows and
m columns, which gives the interior point algorithm a potential
advantage over simplex algorithms, even when AAT is relatively
dense. For m≫ n, the interior point algorithm applied to the dual
problem has potential to do very well. If A has either dense rows
or dense columns, choosing between solving the primal and the
dual affects only the interior point algorithm performance. Neither
the primal nor the dual simplex algorithm and the associated
factorized basis matrices has an obvious advantage over the other
on an LP (or its dual) with dense rows or columns. However, in the
interior point method, if AAT is dense, and if the Cholesky factor is
also dense, explicitly solving the dual model might produce faster
run time performance. Dense columns in the primal problem,
which frequently result in a dense AAT matrix, become dense rows
in the dual problem, which are less likely to result in a dense AAT

matrix (see Fig. 1). An Amatrix which averagesmore than ten non-
zero elements per column (regardless of the values ofm and n), can
make problems difficult to solve.

Most state-of-the-art optimizers can handle a modest number
of dense columns by representing AAT as the sumof outer products
of the columns of A and separating the sum of the outer products
of the dense columns. See [27] for more details. However, this
approach can exhibit numerical instability (see Section 3.1) as the
number of dense columns increases, so applying an interior point
method to the explicit dual problem may be more effective.

Iteration Log #1 sheds light on the density of AAT , as well as the
additional non-zeromatrix elements introduced during the factor-
ization. Themost important information in this output is the num-
ber of non-zeros in the lower triangle of AAT and the total number
of non-zeros in the Cholesky factor. An interior point algorithm
is less likely to outperform the simplex algorithm if the number

6 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

Iteration Log #1

Reduced LP has 17645 rows, 35223 columns, and 93047 non-zeros.
Presolve time = 0.05 sec.
Parallel mode: using up to 4 threads for barrier.
***NOTE: Found 144 dense columns.

Number of non-zeros in lower triangle of A*A’ = 31451
Using Approximate Minimum Degree ordering
Total time for automatic ordering = 0.00 sec.
Summary statistics for Cholesky factor:

Threads = 4
Rows in Factor = 17789
Integer space required = 70668
Total non-zeros in factor = 116782
Total FP ops to factor = 2587810

Iteration Log #2

Reduced LP has 17645 rows, 35223 columns, and 93047 non-zeros.
Presolve time = 0.05 sec.
Parallel mode: using up to 4 threads for barrier.
Number of non-zeros in lower triangle of A*A’ = 153530245
Using Approximate Minimum Degree ordering
Total time for automatic ordering = 11.88 sec.
Summary statistics for Cholesky factor:

Threads = 4
Rows in Factor = 17645
Integer space required = 45206
Total non-zeros in factor = 153859571
Total FP ops to factor = 1795684140275

Iteration Log #3

Reduced LP has 79972 rows, 404517 columns, and 909056 non-zeros.
Presolve time = 1.57 sec.
Parallel mode: using up to 16 threads for barrier.
Number of non-zeros in lower triangle of A*A’ = 566986
Using Nested Dissection ordering
Total time for automatic ordering = 9.19 sec.
Summary statistics for Cholesky factor:

Threads = 16
Rows in Factor = 79972
Integer space required = 941792
Total non-zeros in factor = 20737911
Total FP ops to factor = 24967192039

of non-zeros in the lower triangle of AAT is much larger than the
number of non-zeros in A, or if the number of non-zeros in the re-
sulting Cholesky factor grows dramatically relative to the number
of non-zeros in AAT . Not surprisingly, then, the output in Iteration
Log #1 suggests that an interior point algorithm is likely to outper-
form the simplex algorithm, since both the density of AAT and the
fill-in from the resulting factorization are quite modest. That is in-
deed true for this model (south31, a publicly available model from
http://www.sztaki.hu/~meszaros/public_ftp/lptestset/misc/).
CPLEX’s barrier method solves the model in just under one second,
in contrast to 7 and 16 seconds for the primal and dual simplex
methods, respectively.

Now consider Iteration Log #2 which represents, in fact, output
for the same model instance as considered in Iteration Log #1,

but with dense column handling disabled. The A matrix has
93,047 non-zeros, while the lower triangle of AAT from which
the Cholesky factor is computed has over 153 million non-zeros,
which represents a huge increase. The additional fill-in associated
with the factorization is relatively negligible, with 153,859,571 −
153,530,245 = 329,326 additional non-zeros created.

The barrier algorithm must now perform calculations with a
Cholesky factor containing over 153 million non-zeros instead of
fewer than 120,000 non-zeros with the dense column handling.
This increases the barrier run time on themodel instance from less
than one second to over 19 minutes.

Iteration Log #3 illustrates the case in which the non-zero
count of AAT (566,986) is quite modest relative to the non-zero
count in A; however, the subsequent fill-in while computing the

http://www.sztaki.hu/~meszaros/public_ftp/lptestset/misc/

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 7

Iteration Log #4

Reduced LP has 9652 rows, 9224120 columns, and 348547188 non-zeros.
Presolve time = 268.99 sec.
Parallel mode: using up to 16 threads for barrier.
Number of non-zeros in lower triangle of A*A’ = 16747402
Using Nested Dissection ordering
Total time for automatic ordering = 409.44 sec.
Summary statistics for Cholesky factor:

Threads = 16
Rows in Factor = 9652
Integer space required = 256438
Total non-zeros in factor = 36344797
Total FP ops to factor = 171936037267

Cholesky factor is significant, as can be seen from the final non-zero
count,which exceeds 20million. And, indeed, the barrier algorithm
requires more than 4 times as long as the dual simplex method to
solve this model instance.

Finally, Iteration Log #4 illustrates the potential advan-
tage of an interior point method over the simplex methods
as the problem size grows very large. Due to its polynomial
behavior, an interior point method’s iteration count tends to
increase slowly as problem size increases. Iteration Log #4
contains results for the zib05 model, available in MPS format at
http://miplib.zib.de/contrib/miplib2003-contrib/IPWS2008/.
Despite over 9 million columns in A with an average density of
over 35 non-zeros per column, the modest number of rows and
level of fill-in when computing the Cholesky factor results in a
manageable model, provided sufficient memory (about 20 GB) is
available. Due to the increasedmemory needed to solve thismodel,
this run was done on a machine with 4 2.9 GHz quad core Xeon
chips and 128 GB of memory.

By contrast, the simplex methods must select a basis of 9652
columns among the 9.2 million available, making this model much
more challenging. CPLEX’s barrier algorithm can solve this model
in about 3 hours, while neither the primal nor the dual simplex
method solves the model on the same machine in 20 hours.

The simplex method that can start with a feasible basis has a
performance advantage over the one that lacks a feasible basis.
Although, at the time of thiswriting, interior pointmethods cannot
take advantage of a starting solution from amodified problem, the
computational steps they perform parallelize better than those in
the simplex algorithm. The simplex algorithm possesses a basis
factorization whose non-zero structure changes at each iteration,
while the interior point algorithm maintains a factorization with
static non-zero structure throughout the algorithm that is more
amenable to parallelization. The ability to parallelize an algorithm
can produce faster run time performance.

Both the implicit dual, i.e., the dual simplex algorithm, and
solving the dual explicitly, offer the advantages of (i) better
performance in the presence of primal degeneracy, and (ii) a more
easily available feasible starting basis on practical models. In many
practical cases, dual feasibility may be easier to obtain than primal

feasibility. If, as is often the case in practicalmodels involving costs,
all values of c are nonnegative, then y = 0 is immediately dual
feasible. In fact, this holds even if the dual constraints are amixture
of equalities and inequalities (in either direction).

The basis with which the simplex algorithm operates allows for
‘‘warm starts’’, i.e., the ability to take advantage of a solution as
a starting point for a slightly modified problem. Such a problem
can be found as a subproblem in an iterative technique in which
new variables and/or constraints have been inserted. For the case
in which the practitioner is interested in multiple, similar solves,
the choice of the primal or the dual simplex method is influenced
by how the modifications that generate the sequence of instances
preserve primal or dual feasibility of the basis and associated
solution from the previous solve. For example, adding columns to
(PLP) maintains primal feasibility, but typically compromises dual
feasibility. One can set the variables associated with the newly
added columns to nonbasic at zero and append those values to
the values of the existing primal feasible solution. Therefore, after
adding columns, the primal simplex method has an advantage
over the dual simplex method because the optimal basis from the
previous LP remains primal feasible, but not typically dual feasible.
Dual feasibility would also be preserved if the additional columns
corresponded to redundant constraints in the dual, but such
additions are uncommon in practice. Analogously, adding rows to
a dual feasible solution (which is equivalent to adding columns
to the explicit dual LP) preserves dual feasibility but typically
compromises primal feasibility, so the dual simplex method has
an advantage over the primal simplex method. Similarly, one can
examine the different types of problem modifications to an LP
and determine whether the modification preserves primal or dual
feasibility. Table 1 summarizes the different types of modifications
to the primal problem, (PLP), andwhether they ensure preservation
of primal or dual feasibility. Note that the preservation of primal
feasibility for a row of the table does not imply the absence of
dual feasibility for the given problem modification (or vice versa).
For some problem modifications, additional conclusions about
preservation of feasibility can be made with a closer examination
of the nature of the change. For example, changing an objective
coefficient that relaxes a dual constraint preserves dual feasibility

Table 1
Different types of modifications to (PLP) influence primal or dual feasibility of the modified LP.

Problem modification Primal or dual feasibility preserved?

Add columns Primal feasibility
Add rows Dual feasibility
Change objective function coefficients Primal feasibility
Change right-hand-side coefficients Dual feasibility
Change matrix coefficients of basic variables Neither
Change matrix coefficients of nonbasic variables Primal feasibility

http://miplib.zib.de/contrib/miplib2003-contrib/IPWS2008/

8 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

Table 2
Under various circumstances, different methods have a greater chance of faster solution time on a linear programming
problem instance.

Characteristic Recommended method

m≪ n Primal simplex or interior point on primal problem
m≫ n Primal simplex or interior point on dual problem
Dense rows in A matrix Solve primal problem if using interior point
Dense columns in A matrix Solve dual problem if using interior point
Availability of parallel hardware Interior point
Multiple solves on similar instances necessary Primal or dual simplex
Availability of a primal or dual feasible basis Primal or dual simplex, respectively
Minimization with nonnegative c Dual simplex as dual feasible basis is available

when the associated variable is nonbasic, but can result in a dual
infeasible basis if said variable is basic.

Table 2 summarizes guidelines for the circumstances under
which one should use primal simplex, dual simplex, or interior
point method; the characteristics we present in this table are not
mutually exclusive. For example, an LP may have m ≪ n but also
have dense columns in the A matrix. Table 2 recommends either
the primal simplex method on the primal problem, or an interior
point method on the primal or dual problem. However, the dense
columnspotentially hinder the interior pointmethod on the primal
problem, while the large aspect ratio is potentially problematic for
the dual problem. By contrast, there are no obvious limitations to
primal simplex method performance. Therefore, while one should
consider all of these recommendations, the primal simplexmethod
on the primal LP has the most promise in this example.

3. Guidelines for successful algorithm performance

3.1. Numerical stability and Ill conditioning

Because most commonly used computers implement floating
point computations in finite precision, arithmetic calculations
such as those involved in solving linear programming problems
can be prone to inaccuracies due to round-off error. Round-
off error can arise from numerical instability or ill conditioning.
In general terms, ill conditioning pertains to the situation in
which a small change to the input can result in a much larger
change to the output in models or systems of equations (linear
or otherwise). Ill conditioning can occur under perfect arithmetic
as well as under finite precision computing. Numerical stability
(or lack thereof) is a characteristic of procedures and algorithms
implemented under finite precision. A procedure is numerically
stable if its backward error analysis results in small, bounded errors
on all data instances, i.e., if a small, bounded perturbation to the
model would make the computed solution to the unperturbed
model an exact solution. Thus, numerical instability does not
imply ill conditioning, nor does ill conditioning imply numerical
instability. But, a numerically unstable algorithm introduces larger
perturbations into its calculations than its numerically stable
counterpart; this can lead to larger errors in the final computed
solution if the model is ill conditioned. See [28] for more
information on the different types of error analysis and their
relationships to ill conditioning.

The practitioner cannot always control the floating point
implementations of the computers on which he works and,
hence, how arithmetic computations are done. As of this writing,
exact floating point calculations can be done, but these are
typically done in software packages such as Maple [29] and
Mathematica [30], which are not large-scale linear programming
solvers. The QSopt optimizer [31] reflects significant progress
in exact linear programming, but even this solver still typically
performs some calculations in finite precision. Regardless, the
practitioner can and should be aware of input data and the

implications of using an optimization algorithm and a floating
point implementation on a model instance with such data. To this
end, let us consider the derivation of the condition number of a
squarematrix, and how ill conditioning can affect the optimization
of linear programs on finite-precision computers.

Consider a system of linear equations in standard form, ABxB
+ ANxN = b, where B constitutes the set of basic variables, N
constitutes the set of non-basic variables, and AB and AN are the
corresponding left-hand-side basic and non-basic matrix columns,
respectively. Equivalently, xB and xN represent the vectors of basic
and non-basic decision variables, respectively. We are interested
in solving (PLP), whose constraints we can rewrite as follows:

ABxB = b− ANxN = b. (2)

Note that in (PLP), all variables have lower bounds of zero and
infinite upper bounds. Therefore, all nonbasic variables are zero
and ANxN = 0. By contrast, if some of the variables have finite
non-zero lower and/or upper bounds, then variables at these
bounds can also be nonbasic and not equal to zero. Also note that
Eq. (2) corresponds to Step 7b of the previously provided
description of the primal simplex algorithm. In addition, Steps 1
and 4 solve similar systems of linear equations involving the basis
matrix, AB.

The exact solution of Eq. (2) is given by:

xB = A−1B b. (3)

Consider a small perturbation, ∆b, to the right hand side of Eq. (2).
We wish to assess the relation between ∆b and the corresponding
change ∆xB to the computed solution of the perturbed system of
equations:

AB(xB +∆xB) = b+∆b. (4)

The exact solution of this system of Eq. (4) is given by:

(xB +∆xB) = A−1B (b+∆b). (5)

Subtracting Eq. (3) from those given in (5), we obtain:

∆xB = A−1B ∆b. (6)

Applying the Cauchy–Schwarz inequality to Eq. (6), we obtain:

∥∆xB∥ ≤ ∥A−1B ∥∥∆b∥. (7)

In other words, the expression (7) gives an upper bound on the
maximum absolute change in xB relative to that of b. Similarly, we
can get a relative change in xB by applying the Cauchy–Schwarz
inequality to Eq. (2):

∥b∥ ≤ ∥AB∥∥xB∥. (8)

Multiplying the left and right hand sides of (7) and (8) together,
and rearranging terms:

∥∆xB∥
∥xB∥

≤ ∥AB∥∥A−1B ∥


∥∆b∥
∥b∥


. (9)

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 9

From (9), we see that the quantity κ = ∥AB∥∥A−1B ∥ is a scaling
factor for the relative change in the solution, ∥∆xB∥

∥xB∥
, given a relative

change in the right hand side, ∥∆b∥
∥b∥ . The quantityκ


∥∆b∥
∥b∥


provides

an upper bound on the relative change in the computed solution,

∥∆xB∥
∥xB∥

, for a given relative change in the right hand side,


∥∆b∥
∥b∥


.

Recall that ill conditioning in its most general sense occurs when a
small change in the input of a system leads to a large change in the
output. The quantity κ defines the condition number of the matrix
AB and enables us to assess the ill conditioning associated with
the system of equations in (2). Larger values of κ imply greater
potential for ill conditioning in the associated square linear system
of equations by indicating a larger potential change in the solution
given a change in the (right-hand-side) inputs. Because both the
simplex and interior point algorithms need to solve square systems
of equations, the value of κ can help predict how ill conditioning
affects the computed solution of a linear program. Note that the
condition number κ has the same interpretation when applied to
small perturbations in AB.

In practice, perturbations∆b can occur due to (i) finite precision
in the computer on which the problem is solved, (ii) round-
off error in the calculation of the input data to the problem,
or (iii) round-off error in the implementation of the algorithm
used to solve the problem. Note that these three issues are
related. Input data with large differences in magnitude, even if
computed precisely, require more shifting of exponents in the
finite precision computing design of most computers than data
with small differences in magnitude. This typically results in more
round-off error in computations involving numbers of dramatically
different orders of magnitude. The increased round-off error in
these floating point calculations can then increase the round-off
error that accumulates in the algorithm implementation. Most
simplex algorithm implementations are designed to reduce the
level of such round-off error, particularly as it occurs in the ratio
test and LU factorization calculations. However, for some LPs, the
round-off error remains a problem, regardless of the efforts to
contain it in the implementation. In this case, additional stepsmust
be taken to reduce the error by providing more accurate input
data, by improving the conditioning of the model, or by tuning
algorithm parameters. While this discussion is in the context
of a basis matrix of the simplex algorithm, the calculations in
Eqs. (3)–(9) apply to any square matrix and therefore also apply
to the system of equations involving AAT in the barrier algorithm.

Let us consider the condition number of the optimal basis to
a linear program. Given the typical machine precision of 10−16
for double precision calculations and Eq. (9) that defines the
condition number, a condition number value of 1010 provides
an important threshold value. Most state-of-the-art optimizers
use default feasibility and optimality tolerances of 10−6. In other
words, a solution is declared feasible when solution values that
violate the lower bounds of 0 in (PLP) do so by less than the
feasibility tolerance. Similarly, a solution is declared optimal when
any negative reduced costs in (PLP) are less (in absolute terms)
than the optimality tolerance. Because of the values of these
tolerances, condition numbers of 1010 or greater imply a level
of ill conditioning that could cause the implementation of the
algorithm to make decisions based on round-off error. Because (9)
is an inequality, a condition number of 1010 does not guarantee ill
conditioning, but it provides guidance as to when ill conditioning
is likely to occur.

Round-off error associated with finite precision implementa-
tions depends on the order of magnitude of the numbers involved
in the calculations. Double precision calculations involving num-
bers with orders of magnitude larger than 100 can introduce a

round-off error that is larger than the machine precision. How-
ever, because machine precision defines the smallest value that
distinguishes two numbers, calculations involving numbers with
smaller orders of magnitude than 100 still possess round-off er-
rors at the machine precision level. For example, for floating point
calculations involving at least one number on the order of 105,
round-off error due to machine precision can be on the order of
105
∗10−16 = 10−11. Thus, round-off error for double precision cal-

culations is relative, whilemost optimizers use absolute tolerances
for assessing feasibility and optimality. State-of-the-art optimiz-
ers typically scale the linear programs they receive to try to keep
the round-off error associated with double precision calculations
close to the machine precision. Nonetheless, the practitioner can
benefit from formulating LPs that are well scaled, avoiding mix-
tures of large and small coefficients that can introduce round-off
errors significantly larger thanmachine precision. If this is not pos-
sible, the practitionermay need to consider solving themodel with
larger feasibility or optimality tolerances than the aforementioned
defaults of 10−6.

Eqs. (3)–(9) above are all done under perfect arithmetic. Finite-
precision arithmetic frequently introduces perturbations to data. If
a perturbation to the data is on the order of 10−16 and the condi-
tion number is on the order of 1012, then round-off error as large
as 10−16 ∗ 1012

= 10−4 can creep into the calculations, and linear
programming algorithms may have difficulty distinguishing num-
bers accurately within its 10−6 default optimality tolerance. The
following linear program provides an example of ill conditioning
and round-off error in the input data:
max x1 + x2 (10)

subject to
1
3
x1 +

2
3
x2 = 1 (11)

x1 + 2x2 = 3 (12)
x1, x2 ≥ 0. (13)

Because Eqs. (11) and (12) are linearly dependent, {x1, x2}
cannot form a basis. Rather, x1 is part of the optimal basis, along
with an artificial variable, and the optimal solution under perfect
precision in this case is x∗1 = 3 and x∗2 = 0. By contrast, imprecisely
rounded input with coefficients on x1 and x2 of 0.333333 and
0.666667, respectively, in the first constraint produces no linear
dependency in the constraint sets (11) and (12), allowing both
x1 and x2 to be part of a feasible basis. Furthermore, the optimal
solution under perfect precision, x∗1 = 3 and x∗2 = 0, is
infeasible in (11) with the rounded coefficients (because 3 ×
0.333333 ≠ 1). Instead, a solution of x∗1 = x∗2 = 1 satisfies
both (11) and (12) using the default feasibility tolerance of 10−6
and is, in fact, optimal in this case. The associated optimal basis
is {x1, x2}, with condition number 8.0 ∗ 106. Using three more
digits of accuracy on the coefficients of x1 and x2 in constraint
(11) yields the correct optimal solution. The optimal basis now
consists of x1 and one of the artificial variables, resulting in a
condition number of 8.0. However, the better approach is to avoid
rounding (or approximating) altogether by appropriately scaling
the problem (i.e., multiplying through by the denominator) such
that the first constraint is expressed as x1 + 2x2 = 3. When
the first constraint is expressed in this way, constraints (11)
and (12) are obviously redundant, which simplex algorithm
implementations can easily handle. By contrast, the representation
using rounding yields a near-singular basis matrix, AB.

When a linear program is poorly scaled or ill conditioned, the
simplex algorithm may lose feasibility when solving the problem
instance. Even if the instance remains feasible, the algorithmmight
try to refactorize AB = LU to regain digits of accuracy it may
have lost due to round-off error in the basis updates. Iteration
Log #5, involving a model with an objective to be maximized,
illustrates an instance that loses feasibility. The log prints the
objective function value each time the algorithm refactorizes,

10 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

rather than updates, AB. The algorithm tries to refactorize the basis
matrix three times in three iterations, and increases theMarkowitz
threshold to improve the accuracy with which these computations
are done. Larger values of the Markowitz threshold impose tighter
restrictions on the criteria for a numerically stable pivot during
the computation of the LU factorization [14]. However, despite the
increased accuracy in the factorization starting at iteration 6391,
enough round-off error accumulates in the subsequent iterations
so that the next refactorization, at iteration 6456, results in a loss
of feasibility.

Iteration Log #5

Iter: 6389 Objective = 13137.039899
Iter: 6390 Objective = 13137.039899
Iter: 6391 Objective = 13726.011591
Markowitz threshold set to 0.3.
Iter: 6456 Scaled infeas = 300615.030682
...
Iter: 6752 Scaled infeas = 0.000002
Iter: 6754 Objective = -23870.812630

Although the algorithm regains feasibility at iteration 6754,
it spends an extra 298 (6754–6456) iterations doing so, and the
objective function is much worse than the one at iteration 6389.
Additional iterations are then required just to regain the previously
attained objective value. So, even when numerical instability or
ill conditioning does not prevent the optimizer from solving the
model to optimality, it may slow down performance significantly.
Improvements to the model formulation by reducing the source
of perturbations and, if needed, changes to parameter settings can
reduce round-off error in the optimizer calculations, resulting in
smaller basis condition numbers and faster computation of optimal
solutions.

As another caveat, the practitioner should avoid including data
with meaningful values smaller than the optimizer’s tolerances.
Similarly, the practitioner should ensure that the optimizer’s
tolerances exceed the largest round-off error in any of the data
calculations. The computer can only handle a fixed number of
digits. Very small numerical values force the algorithm to make
decisions about whether those smaller values are real or due to
round-off error, and the optimizer’s decisions can depend on the
coordinate system (i.e., basis) with which it views the model.
Consider the following feasibility problem:

c1 : −x1 + 24x2 ≤ 21 (14)
−∞ < x1 ≤ 3 (15)
x2 ≥ 1.00000008. (16)

The primal simplex method concludes infeasibility during the
presolve:

Iteration Log #6

CPLEX> primopt
Infeasibility row ’c1’: 0 <= -1.92e-06.
Presolve time = 0.00 sec.
Presolve - Infeasible.
Solution time = 0.00 sec.

Turning presolve off causes the primal simplexmethod to arrive
at a similar conclusion during the first iteration.

Iteration Log #7

Primal simplex - Infeasible:
Infeasibility = 1.9199999990e-06
Solution time = 0.00 sec. Iterations = 0 (0)
CPLEX> display solution reduced -
Variable Name Reduced Cost
x1 -1.000000
x2 24.000000
CPLEX> display solution slacks -
Constraint Name Slack Value
slack c1 -0.000002**
CPLEX> display solution basis variables -
There are no basic variables in the given range.
CPLEX> display solution basis slack -
Constraint ’c1’ is basic.

The asterisks on the slack value for constraint c1 signify that the
solution violates the slack’s lower bound of 0.

These two runs both constitute correct outcomes. In Iteration
Log #6, CPLEX’s presolve uses the variable bounds and constraint
coefficients to calculate that the minimum possible value for the
left hand side of constraint c1 is −3 + 24 ∗ 1.00000008 = 21 +
1.92 ∗ 10−6. This means that the left hand side must exceed the
right hand side, and by a value of more than that of CPLEX’s
default feasibility tolerance of 10−6. Iteration Log #7 shows that
with presolve off, CPLEX begins the primal simplex method with
the slack on constraint c1 in the basis, and the variables x1 and
x2 at their respective bounds of 3 and 1.00000008. Given this
basis, the reduced costs, i.e., the optimality criterion from Phase
I, indicate that there is no way to remove the infeasibility, so the
primal simplex method declares the model infeasible. Note that
most optimizers treat variable bound constraints separately from
general linear constraints, and that a negative reduced cost on a
variable at its upper bound such as x1 indicates that decreasing that
variable from its upper bound cannot decrease the objective. Now,
suppose we run the primal simplexmethodwith a starting basis of
x2, the slack variable nonbasic at its lower bound, and x1 nonbasic
at its upper bound. The resulting basic solution of x1 = 3, x2 = 1,
slack on c1 = 0 satisfies constraint c1 exactly. The variable x2 does
not satisfy its lower bound of 1.00000008 exactly, but the violation
is less than many optimizers’ default feasibility tolerance of 10−6.
So, with this starting basis, an optimizer could declare the model
feasible (and hence optimal, because the model has no objective
function):

Iteration Log #8

Primal simplex - Optimal:
Objective = 0.0000000000e+00
Solution time = 0.00 sec. Iterations = 0 (0)

In this example, were we to set the feasibility tolerance to 10−9,
we would have obtained consistent results with respect to both
bases because the data do not possess values smaller than the
relevant algorithm tolerance. Although the value of 0.00000008
is input data, this small numerical value could have just as easily
been created during the course of the execution of the algorithm.
This example illustrates the importance of verifying that the
optimizer tolerances properly distinguish legitimate values from
those arising from round-off error. When a model is on the edge
of feasibility, different bases may prove feasibility or infeasibility
relative to the optimizer’s tolerances. Rather than relying on
the optimizer to make such important decisions, the practitioner
should ensure that the optimizer’s tolerances are suitably set to

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 11

reflect the valid precision of the data values in the model. In the
examplewe just examined, one should first determinewhether the
lower bound on x2 is really 1.00000008, or if, in fact, the fractional
part is round-off error in the data calculation and the correct lower
bound is 1.0. If the former holds, the practitioner should set the
optimizer’s feasibility and optimality tolerances to values smaller
than 0.00000008. If the latter holds, the practitioner should change
the lower bound to its correct value of 1.0 in the model. In this
particular example, the practitionermay be inclined to deduce that
the correct value for the lower bound on x2 is 1.0, because all other
data in the instance are integers. More generally, examination of
the possible round-off error associated with the procedures used
to calculate the input data may help to distinguish round-off error
from meaningful values.

One particularly problematic source of round-off error in the
data involves the conversion of single precision values to their dou-
ble precision counterparts used by most optimizers. Precision for
an IEEE single precision value is 6∗10−8, which is almost as large as
many of the important default optimizer tolerances. For example,
CPLEXuses default feasibility and optimality tolerances of 10−6. So,
simply representing a data value in single precision can introduce
round-off error of at least 6 ∗ 10−8, and additional single precision
data calculations can increase the round-off error above the afore-
mentioned optimizer tolerances. Hence, the optimizer may subse-
quently make decisions based on round-off error. Computing the
data in double precision from the start will avoid this problem. If
that is not possible, setting the optimizer tolerances to values that
exceed the largest round-off error associated with the conversion
from single to double precision provides an alternative.

All linear programming algorithms can suffer from numerical
instability. In particular, the choice of primal or dual simplex
algorithm does not affect the numerical stability of a problem
instance because the LU factorizations are the same with
either algorithm. However, the interior point algorithm is more
susceptible to numerical stability problems because it tries
to maintain an interior solution, yet as the algorithm nears
convergence, it requires a solution on lower dimensional faces of
the polyhedron, i.e., the boundary of the feasible region.

3.2. Degeneracy

Degeneracy in the simplex algorithm occurs when the value θ
in the minimum ratio test in Step 5 of the simplex algorithm (see
Section 2.1) is zero. This results in iterations in which the objective
retains the same value, rather than improving. Highly degenerate
LPs tend to be more difficult to solve using the simplex algorithm.
Iteration Log #9 illustrates degeneracy: the nonoptimal objective
does not change between iterations 5083 and 5968; therefore,
the algorithm temporarily perturbs the right hand side or variable
bounds to move away from the degenerate solution.

Iteration Log #9

Iter: 4751 Infeasibility = 8.000000
Iter: 4870 Infeasibility = 8.000000
Iter: 4976 Infeasibility = 6.999999
Iter: 5083 Infeasibility = 6.000000
Iter: 5191 Infeasibility = 6.000000

...

Iter: 5862 Infeasibility = 6.000000
Iter: 5968 Infeasibility = 6.000000
Perturbation started.

After the degeneracy has been mitigated, the algorithm
removes the perturbation to restore the original problem instance.
If the current solution is not feasible, the algorithm performs
additional iterations to regain feasibility before continuing the
optimization run. Although a pricing scheme such as Bland’s rule
can be used to mitigate cycling through bases under degeneracy,
this rule holds more theoretical, than practical, importance and,
as such, is rarely implemented in state-of-the-art optimizers.
While such rules prevent cycles of degenerate pivots, they do not
necessarily prevent long sequences of degenerate pivots that do
not form a cycle but do inhibit primal or dual simplex method
performance.

When an iteration log indicates degeneracy, first consider
trying all other LP algorithms. Degeneracy in the primal LP does
not necessarily imply degeneracy in the dual LP. Therefore, the
dual simplex algorithm might effectively solve a highly primal
degenerate problem, and vice versa. Interior point algorithms
are not prone to degeneracy because they do not pivot from
one extreme point to the next. Interior point solutions are, by
definition, nondegenerate. If alternate algorithms do not help
performance (perhaps due to other problem characteristics that
make them disadvantageous), a small, random perturbation of
the problem data may help. Primal degenerate problems can
benefit from perturbations of the right hand side values, while
perturbations of the objective coefficients can help on dual
degenerate problems. While such perturbations do not guarantee
that the simplex algorithm does not cycle, they frequently yield
improvements in practical performance. Some optimizers allow
the practitioner to request perturbations by setting a parameter;
otherwise, one can perturb the problem data explicitly.

3.3. Excessive simplex algorithm iteration counts

As described in the previous section, degeneracy can increase
simplex algorithm iteration counts. However, the simplex algo-
rithm may exhibit excessive iterations (typically, at least three
times the number of constraints) for other reasons as well. For
some models, the algorithm may make inferior choices when se-
lecting the entering basic variable. In such cases, more compu-
tationally elaborate selection schemes than partial or full pricing
that compute additional information can reduce the number of it-
erations enough to outweigh any associated increase in time per
iteration. Today’s state-of-the-art optimizers typically offer pa-
rameter settings that determine the entering variable selection to
the practitioner, and selections other than the default can signifi-
cantly improve performance.

Steepest edge and Devex pricing are the most popular of these
more informative selection rules. Steepest edge pricing computes
the L2 norm of each nonbasic matrix column relative to the
current basis. Calculating this norm explicitly at each iteration by
performing a forward solve, as in Step 4 of the primal simplex
algorithm, would be prohibitively expensive (with the possible
exception of when a large number of parallel threads is available).
However, such computation is unnecessary, as all of the Steepest
edge norms can be updated at each iteration with two additional
backward solves, using the resulting vectors in inner products
with the nonbasic columns in a manner analogous to full pricing
[32,33]. Devex pricing [34] estimates part of the Steepest edge
update, removing one of the backward solves and one of the
aforementioned inner products involving the nonbasic matrix
columns. These methods can be implemented efficiently in both
the primal and dual simplex algorithms.

The initial calculation of the exact Steepest edge norms can also
be time consuming, involving a forward solve for each L2 norm or
a backward solve for each constraint. Steepest edge variants try to
reduce or remove this calculation by using estimates of the initial

12 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

Iteration Log #10

Problem ’/ilog/models/lp/all/pilot87.sav.gz’ read.

...

Iteration log . . .
Iteration: 1 Scaled dual infeas = 0.676305
Iteration: 108 Scaled dual infeas = 0.189480
Iteration: 236 Scaled dual infeas = 0.170966
...

Iteration: 8958 Dual objective = 302.913722
Iteration: 9056 Dual objective = 303.021157
Iteration: 9137 Dual objective = 303.073444
Removing shift (4150).

Iteration: 9161 Scaled dual infeas = 0.152475
Iteration: 9350 Scaled dual infeas = 0.001941
Iteration: 9446 Scaled dual infeas = 0.000480
Iteration: 9537 Dual objective = 299.891447
Iteration: 9630 Dual objective = 301.051704
Iteration: 9721 Dual objective = 301.277884
Iteration: 9818 Dual objective = 301.658507
Iteration: 9916 Dual objective = 301.702665
Removing shift (41).

Iteration: 10008 Scaled dual infeas = 0.000136
Iteration: 10039 Dual objective = 301.678880
Iteration: 10140 Dual objective = 301.710360
Removing shift (8).
Iteration: 10151 Objective = 301.710354

Dual simplex - Optimal: Objective = 3.0171035068e+02
Solution time = 6.38 sec. Iterations = 10154 (1658)

norms that are easier to compute. After computing these initial
estimates, subsequent updates to the norms are done exactly. By
contrast, Devex computes initial estimates to the norms, followed
by estimates of the norm updates as well.

Since the additional computations for Steepest edge comprise
almost as much work as a primal simplex algorithm iteration, this
approach may need a reduction in the number of primal simplex
iterations of almost 50% to be advantageous for the algorithm.
However, the Steepest edge norm updates for the dual simplex
algorithm involve less additional computational expense [35];
in this case, a 20% reduction in the number of iterations may
suffice to improve performance. Devex pricing can also be effective
if it reduces iteration counts by 20% or more. State-of-the-art
optimizers may already use some form of Steepest edge pricing
by default. If so, Steepest edge variants or Devex, both of which
estimate initial norms rather than calculate them exactly, may
yield similar iteration counts with less computation time per
iteration.

Model characteristics such as constraint matrix density and
scaling typically influence the tradeoff between the additional
computation time and the potential reduction in the number of
iterations associated with Steepest edge, Devex or other entering
variable selection schemes. The practitioner should keep this in
mind when assessing the effectiveness of these schemes. For
example, since these selection rules involve additional backward
solves and pricing operations, their efficacy depends on the density
of the constraint matrix A. Denser columns in A increase the
additional computation time per iteration. Some optimizers have

default internal logic to perform such assessments automatically
and to use the selection scheme deemed most promising.
Nonetheless, for LPs with excessive iteration counts, trying these
alternate variable selection rules can improveperformance relative
to the optimizer’s default settings.

Iteration Logs #6, #7 and #8 illustrate the importance of select-
ing optimizer tolerances to properly distinguish legitimate values
from those arising from round-off error. In those iteration logs, this
distinction is essential to determine if a model was infeasible or
feasible. This distinction can also influence the number of simplex
algorithm iterations, and proper tolerance settings can improve
performance. In particular, many implementations of the simplex
method use the Harris ratio test [34] or some variant thereof. Har-
ris’ method allows more flexibility in the selection of the outgoing
variable in the ratio test for the primal or dual simplexmethod, but
it does so by allowing the entering variable to force the outgoing
variable to a value slightly below 0. The optimizer then shifts the
variable lower bound of 0 to this new value to preserve feasibil-
ity. These bound shifts are typically limited to a tolerance value no
larger than the optimizer’s feasibility tolerance. While this offers
advantages regarding more numerically stable pivots and less de-
generacy, such violations must eventually be addressed since they
can potentially create small infeasibilities. In some cases, perfor-
mance can be improved by reducing the maximum allowable vio-
lation in the Harris ratio test.

Iteration Logs #10 and #11 illustrate how reducing the
maximum allowable violation in the Harris ratio test can improve
performance. The model, pilot87, is publicly available from

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 13

Iteration Log #11

New value for feasibility tolerance: 1e-09
New value for reduced cost optimality tolerance: 1e-09

...

Iteration log . . .
Iteration: 1 Scaled dual infeas = 0.676355
Iteration: 123 Scaled dual infeas = 0.098169
...

Removing shift (190).

Iteration: 9332 Scaled dual infeas = 0.000004
Iteration: 9338 Dual objective = 301.710248

Dual simplex - Optimal: Objective = 3.0171034733e+02
Solution time = 6.15 sec. Iterations = 9364 (1353)

the NETLIB set of linear programs at http://www.netlib.org/lp/.
Iteration Log #10 illustrates a run with default feasibility and
optimality tolerances of 10−6. However, because pilot87 contains
matrix coefficients as small as 10−6, the resulting bound violations
and shifts allowed in the Harris ratio test can create meaningful
infeasibilities. Hence, when CPLEX removes the shifted bounds
starting at iteration 9161, it must repair some modest dual
infeasibilities with additional dual simplex iterations. Subsequent
iterations are performed with a reduced limit on the bound shift,
but the removal of the additional bound shifts at iteration 10,008
results in some slight dual infeasibilities requiring additional
iterations. Overall, CPLEX spends 993 additional dual simplex
iterations after the initial removal of bound shifts at iteration 9161.
Since this model has (apparently legitimate) matrix coefficients
of 10−6, the default feasibility and optimality tolerances are too
large to enable the optimizer to properly distinguish legitimate
values from round-off error. The bound shifts thus are large enough
to create dual infeasibilities that require additional dual simplex
iterations to repair.

By contrast, Iteration Log #11 illustrates the corresponding
run with feasibility and optimality tolerances reduced to 10−9.
This enables CPLEX to distinguish the matrix coefficient of
10−6 as legitimate in the model. Thus, it uses smaller bound
violations and shifts in the Harris ratio test. Therefore, it needs
to remove the bound shifts once, and only requires 32 additional
dual simplex iterations to prove optimality. While the overall
reduction in run time with this change is a modest four percent,
larger improvements are possible on larger or more numerically
challenging models.

3.4. Excessive barrier algorithm iteration counts

Section 2.3 included a discussion of how the non-zero structure
of the constraint matrix influences barrier and other interior
point algorithms’ time per iteration. On most LPs, the weakly
polynomial complexity of the barrier algorithm results in a very
modest number of iterations, even as the size of the problem
increases. Models with millions of constraints and variables
frequently solve in fewer than 100 iterations. However, because
the barrier algorithm relies on convergence criteria, the algorithm
may struggle to converge, performing numerous iterations with
little or no improvement in the objective. Most barrier algorithm
implementations include an adjustable convergence tolerance
that can be used to determine when the algorithm should stop,

and proceed to the crossover procedure to find a basic solution.
For some models, increasing the barrier convergence tolerance
avoids barrier iterations of little, if any, benefit to the crossover
procedure. In such cases, a larger barrier convergence tolerance
may save significant time when the barrier method run time
dominates the crossover run time. By contrast, if the crossover
time with default settings comprises a significant part of the
optimization time and the barrier iteration count is modest,
reducing the barrier convergence tolerance may provide the
crossover procedure a better interior point with which to start,
thus improving performance.

Iteration logs #12 and #13 provide an example in which in-
creasing the barrier convergence tolerance improves performance.
Themodel solved in the logs is Linf_520c.mps, publicly available at
HansMittelmann’s Benchmarks forOptimization Softwarewebsite
(http://plato.asu.edu/ftp/lptestset/). Because this model has some
small coefficients on the order of 10−6, the runs in these logs follow
the recommendations in Section 3.1 and use feasibility and opti-
mality tolerances of 10−8 to distinguish them from anymeaningful
values in the model.

Columns 2 and 3 of Iteration Log #12 provide the information
needed to assess the relative duality gap (cT x−yT b)

cT x
typically com-

paredwith the barrier convergence tolerance. Not surprisingly, the
gap is quite large initially. However, the gap is much smaller by it-
eration 20. Modest additional progress occurs by iteration 85, but
little progress occurs after that, as can be seen at iterations 125 and
175. In fact, at iteration 175, CPLEX’s barrier algorithm has stopped
improving relative to the convergence criteria, as can be seen by
the slight increases in relative duality gap, primal bound infeasi-
bility and dual infeasibility (in the second, third, fifth and sixth
columns of the iteration log). CPLEX therefore initiates crossover
using the solution from iteration 19. Thus, iterations 20 through
175 are essentially wasted. The solution values at iteration 19 still
have a significant relative duality gap, so the crossover procedure
finds a basis that requires additional simplex method iterations.
Iteration Log #13 illustrates how, by increasing the barrier con-
vergence tolerance from the CPLEX default of 10−8 to 10−4, much
of the long tail of essentially wasted iterations is removed. In this
case, the optimizer does not need to restore solution values froman
earlier iteration due to increases in the relative duality gap. Hence,
the optimizer initiates crossover at a solution closer to optimality.
The basis determined by crossover is much closer to optimal than
the one in Iteration Log #12, resulting in very few additional sim-
plex iterations to find an optimal basis. This reduction in simplex

http://www.netlib.org/lp/
http://plato.asu.edu/ftp/lptestset/

14 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

Iteration Log #12

Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf
0 5.9535299e+02 -2.7214222e+13 4.05e+11 1.03e+12 3.22e+07
1 1.8327921e+07 -2.4959566e+13 2.07e+10 5.30e+10 6.74e+04
2 7.5190135e+07 -5.6129961e+12 4.68e+09 1.20e+10 1.09e+03
3 2.8110662e+08 -2.2938869e+12 5.95e+07 1.52e+08 4.46e+02
4 2.8257248e+08 -4.7950310e+10 1.28e+06 3.26e+06 3.53e+00

...
19 2.0017972e-01 1.9840302e-01 1.37e-05 1.14e-06 1.51e-06
20 2.0003146e-01 1.9848712e-01 1.73e-05 1.30e-06 1.65e-06
21 1.9987509e-01 1.9854536e-01 1.62e-05 1.37e-06 1.71e-06

...
80 1.9896330e-01 1.9865235e-01 1.35e-04 2.87e-06 2.33e-06
81 1.9895653e-01 1.9865287e-01 1.50e-04 2.79e-06 2.32e-06
82 1.9895461e-01 1.9865256e-01 1.52e-04 2.87e-06 2.44e-06
83 1.9895075e-01 1.9865309e-01 1.69e-04 2.86e-06 2.38e-06
84 1.9894710e-01 1.9865303e-01 1.70e-04 2.85e-06 2.39e-06
85 1.9894158e-01 1.9865347e-01 1.68e-04 2.77e-06 2.40e-06

...
123 1.9888124e-01 1.9865508e-01 4.81e-04 3.01e-06 2.31e-06
124 1.9888029e-01 1.9865515e-01 4.46e-04 2.89e-06 2.37e-06
125 1.9887997e-01 1.9865506e-01 4.35e-04 2.93e-06 2.43e-06

...
170 1.9886958e-01 1.9865768e-01 9.10e-04 2.63e-06 2.37e-06
171 1.9886949e-01 1.9865771e-01 8.96e-04 2.56e-06 2.33e-06
172 1.9886939e-01 1.9865739e-01 8.15e-04 2.45e-06 2.28e-06
173 1.9886934e-01 1.9865738e-01 8.19e-04 2.47e-06 2.26e-06
174 1.9886931e-01 1.9865728e-01 7.94e-04 2.52e-06 2.29e-06

175 1.9886927e-01 1.9865716e-01 7.57e-04 2.55e-06 2.31e-06

* 2.0017972e-01 1.9840302e-01 1.37e-05 1.14e-06 1.51e-06
Barrier time = 869.96 sec.
Primal crossover.

Primal: Fixing 34010 variables.
34009 PMoves: Infeasibility 3.11238869e-08 Objective 2.00179717e-01
32528 PMoves: Infeasibility 4.93933590e-08 Objective 2.00033745e-01
31357 PMoves: Infeasibility 6.39691687e-08 Objective 2.00033745e-01

...
Elapsed crossover time = 20.14 sec. (3600 PMoves)

3021 PMoves: Infeasibility 1.14510022e-07 Objective 2.00033487e-01
2508 PMoves: Infeasibility 9.65797950e-08 Objective 2.00033487e-01

...
Primal: Pushed 15282, exchanged 18728.
Dual: Fixing 15166 variables.

15165 DMoves: Infeasibility 1.03339605e+00 Objective 1.98870673e-01
Elapsed crossover time = 27.38 sec. (14800 DMoves)

...
Elapsed crossover time = 68.41 sec. (1400 DMoves)

0 DMoves: Infeasibility 1.00261077e+00 Objective 1.98865022e-01
Dual: Pushed 10924, exchanged 4.

...
Iteration log . . .
Iteration: 1 Scaled infeas = 28211.724670
Iteration: 31 Scaled infeas = 23869.881089
Iteration: 312 Scaled infeas = 4410.384413
...
Iteration: 6670 Objective = 0.202403
Iteration: 6931 Objective = 0.199894
Elapsed time = 1061.69 sec. (7000 iterations).
Removing shift (5).
Iteration: 7072 Scaled infeas = 0.000000
Total crossover time = 192.70 sec.
Total time on 4 threads = 1063.55 sec.

Primal simplex - Optimal: Objective = 1.9886847000e-01
Solution time = 1063.55 sec. Iterations = 7072 (5334)

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 15

Iteration Log #13

Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf
0 5.9535299e+02 -2.7214222e+13 4.05e+11 1.03e+12 3.22e+07
1 1.8327921e+07 -2.4959566e+13 2.07e+10 5.30e+10 6.74e+04
2 7.5190135e+07 -5.6129961e+12 4.68e+09 1.20e+10 1.09e+03
3 2.8110662e+08 -2.2938869e+12 5.95e+07 1.52e+08 4.46e+02
4 2.8257248e+08 -4.7950310e+10 1.28e+06 3.26e+06 3.53e+00
5 1.3900254e+08 -6.1411363e+07 1.21e-03 9.44e-07 6.00e-02

...

82 1.9895461e-01 1.9865256e-01 1.52e-04 2.87e-06 2.44e-06
83 1.9895075e-01 1.9865309e-01 1.69e-04 2.86e-06 2.38e-06
84 1.9894710e-01 1.9865303e-01 1.70e-04 2.85e-06 2.39e-06

Barrier time = 414.31 sec.

Primal crossover.
Primal: Fixing 33950 variables.

33949 PMoves: Infeasibility 4.36828532e-07 Objective 1.98868436e-01
32825 PMoves: Infeasibility 4.32016730e-07 Objective 1.98868436e-01

...

128 PMoves: Infeasibility 5.49582923e-07 Objective 1.98868436e-01
0 PMoves: Infeasibility 5.49534369e-07 Objective 1.98868436e-01

Primal: Pushed 13212, exchanged 20737.
Dual: Fixing 71 variables.

70 DMoves: Infeasibility 2.72300071e-03 Objective 1.98842990e-01
0 DMoves: Infeasibility 2.72073853e-03 Objective 1.98842990e-01

Dual: Pushed 63, exchanged 0.
Using devex.

Iteration log . . .
Iteration: 1 Objective = 0.198868
Removing shift (45).
Iteration: 2 Scaled infeas = 0.000000
Iteration: 6 Objective = 0.198868
Total crossover time = 38.39 sec.

Total time on 4 threads = 452.71 sec.

Primal simplex - Optimal: Objective = 1.9886847000e-01
Solution time = 452.71 sec. Iterations = 6 (4)

iterations, in addition to the reduced number of barrier iterations,
improves the overall run time from 1063 seconds to 452 seconds.

By contrast, if the barrier iteration counts are small (e.g., 50
or fewer), show no long tail of iterations with little progress as
seen in Log #12, yet exhibit significant crossover and simplex
iterations, decreasing the barrier convergence tolerance, rather
than increasing it, often improves performance.

3.5. Excessive time per iteration

Algorithms may require an unreasonable amount of time per
iteration. For example, consider Iteration Log #14 in which 37,000
iterations are executed within the first 139 seconds of the run; at
the bottom of the log, 1000 (140,000–139,000) iterations require
about 408 (25,145.43–24,736.98) seconds of computation time.

Iteration Log #14

Elapsed time = 138.23 sec. (37000 iterations)
Iter: 37969 Infeasibility = 387849.999786

Iter: 39121 Infeasibility = 379979.999768
Iter: 40295 Infeasibility = 375639.999998
Elapsed time = 150.41 sec. (41000 iterations)
...

Elapsed time = 24318.58 sec. (138000 iterations)
Iter: 138958 Infeasibility = 23.754244

Elapsed time = 24736.98 sec. (139000 iterations)

Elapsed time = 25145.43 sec. (140000 iterations)

This slowdown in iteration execution can be due to denser
bases and the associated denser factorization and solve times in
the simplex algorithm, specifically in Steps 1, 4 and 7. In this
case, the practitioner should try each LP algorithm and consider
an alternate pricing scheme if using the simplex algorithm.
The more computationally expensive gradient pricing schemes
available in today’s state-of-the-art optimizers calculate (exactly

16 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17

or approximately) the norm of each nonbasic matrix column
relative to the current basis. The most expensive calculations
involve computing these norms exactly, while less expensive
calculations involve progressively cheaper (but progressively less
accurate) ways of estimating these exact norms [15]. All of these
norm calculations involve extra memory, extra computation, and
extra pricing operations.

Another reason for excessive time per iteration is the com-
puter’s use of virtual memory. A general rule requires one gigabyte
of memory per million constraints of a linear program and even
more if the Amatrix is very dense or if there is a significantly larger
number of columns (variables) than rows (constraints). Short of
purchasing more memory, some optimizers support non-default
settings that compress data and/or store data efficiently to disk. For
example, CPLEX has a memory emphasis parameter whose over-
head is mitigated by reducing the optimizer’s reliance on the op-
erating system’s virtual memory manager. This can help preserve
memory and ultimately lead to finding a good solution reasonably
quickly.

While the change in density of the basis matrices used by the
simplex method can alter the time per iteration, each iteration of
the barrier algorithm and related interior point methods solves
a linear system involving AAT with constant non-zero structure.
Hence, barrier algorithm memory usage and time per iteration
typically exhibit little change throughout the run. Section 2.3
describes how the density of AAT and the associated Cholesky
factorization influence the time per barrier algorithm iteration.
However, that section assumes that the density of the Cholesky
factor was given, and identified guidelines for assessing when
the density was favorable for the barrier algorithm. While state-
of-the-art optimizers do offer some parameter settings that can
potentially reduce the density of the Cholesky factor, the default
settings are very effective regarding the sparsity of the Cholesky
factor for a given non-zero structure of AAT . Instead of trying to
find a sparser Cholesky factor for a given AAT , the practitioner can
adjust the model formulation so that AAT is sparser, resulting in
a sparser Cholesky factor and faster barrier algorithm iterations.
One example of reformulation involves splitting dense columns
into sparser ones [36,37]. While this increases the number of
constraints and variables in the model, those dimensions are not

the source of the performance bottleneck. A larger model with a
Cholesky factor that has more constraints but fewer non-zeros can
result in faster performance. For example, if Aj is a dense matrix
columnassociatedwith variable xj, it can be split into two (ormore)
sparser columnsA1

j andA2
j that,when combined, intersect the same

rows asAj. By definingA1
j andA2

j so thatAj = A1
j +A

2
j , and their non-

zero indices do not intersect, a single dense column can be replaced
by two sparser ones. In the model formulation, Ajxj is replaced
by A1

j x
1
j + A2

j x
2
j . The model also requires an additional constraint

x1j − x2j = 0. The value of xj in the final solution is x1j (or x2j).
Column splitting increases the problem size to improve

performance. However, this somewhat counterintuitive approach
can be effective because the reduction in run time associated with
the dense columns exceeds the increase in run time associated
with additional variables and constraints. More generally, if an
increase in problem size removes a performance problem in an
algorithm without creating a new bottleneck, it may improve
overall algorithm performance.

Table 3 summarizes problems and suggestions for resolving
them as addressed in Section 3. These suggestions assume that
the practitioner has formulated the model in question with the
correct fidelity, i.e., that the model cannot be reduced without
compromising the value of its solution. When the model size
becomes potentially problematic, as illustrated in Iteration Logs #2
and #14, the practitioner should also consider whether solving a
less refined, smaller model would answer his needs.

When neither the tactics in Table 3 nor any other tuning
of the simplex method or barrier algorithms yields satisfactory
performance, the practitioner may also consider more advanced
variants of the simplex method. Such variants frequently solve
a sequence of easier, more tractable LPs, resulting in an optimal
solution to the more difficult LP of interest. Some variants, such
as sifting (also called the SPRINT technique by its originator, John
Forrest [38]), work on parts of the LP of interest, solving a sequence
of LPs in which the solution of the previous one defines problem
modifications for the next one. In particular, sifting works well
on LPs in which the number of variables dramatically exceeds
the number of constraints. It starts with an LP consisting of all
constraints but a manageable subset of the variables. After solving

Table 3
LP Performance issues and their suggested resolution.

LP performance issue Suggested resolution

Numerical instability • Calculate and input model data in double precision
• Eliminate nearly-redundant rows and/or columns of A a priori
• Avoid mixtures of large and small numbers:
(i) Be suspicious of κ between 1010 and 1014;
(ii) Avoid data leading to κ greater than 1014

• Use alternate scaling (in the model formulation or optimizer settings)
• Increase the Markowitz threshold
• Employ the numerical emphasis parameter (if available)

Lack of objective function • Try all other algorithms (and variants)
improvement under degeneracy • Perturb data either a priori or using algorithmic settings

Primal degeneracy • Use either dual simplex or interior point on primal problem

Dual degeneracy • Employ either primal simplex or interior point on primal problem

Both primal and dual degeneracy • Execute interior point on primal or dual problem

Excessive time per iteration • Try all other algorithms (and variants)
• Use algorithmic settings to conserve memory or purchase more externally
• Try less expensive pricing settings if using simplex algorithms

Excessive simplex algorithm iterations • Try Steepest edge or Devex variable selection

Multiple bound shift removals or significant infeasibilities after
removing shifts

• Reduce feasibility and optimality tolerances

Barrier algorithm iterations with little or no progress • Increase barrier convergence tolerance in order to initiate crossover earlier

Too much time in crossover • Reduce barrier convergence tolerance in order to provide a better starting point for crossover

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 1–17 17

this LP subproblem, it uses the optimal dual variables to compute
reduced costs that identify potential variables to add. The basis
from the previous LP is typically primal feasible, speeding up
the next optimization. Through careful management of added
and removed variables from the sequence of LPs it solves, sifting
can frequently solve the LP of interest to optimality without
ever having to represent it in memory in its entirety. Sifting can
also work well on models for which the number of constraints
dramatically exceeds the number of variables by applying sifting
to the dual LP. Other variants are more complex, maintaining
two or more distinct subproblems, and using the solution of
one to modify the other. The most frequently used methods are
Dantzig-Wolfe Decomposition and Benders’ Decomposition. These
methods both maintain a master problem and solve a separate
subproblem to generatemodifications to themaster problem. Both
the master and subproblem are typically much easier to solve
than the original LP of interest. Repeatedly optimizing the master
and subproblem ultimately yields an optimal solution to the
original problem. The Dantzig-Wolfe Decomposition is column-
based, using the subproblem to generate additional columns for
the master problem, while Benders’ Decomposition is row-based,
solving the subproblem to generate additional rows for the master
problem. It can be shown that Benders’ Decomposition applied
to the primal representation of an LP is equivalent to applying
Dantzig-Wolfe Decomposition to the dual LP. The details and
application of these and other decomposition methods are beyond
the scope of this paper. Dantzig and Thapa [39] provide more
information about these approaches.

4. Conclusions

We summarize in this paper commonly employed linear pro-
gramming algorithms and use this summary as a basis fromwhich
we present likely algorithmic troubles and associated avenues for
their resolution. While optimizers and hardware will continue to
advance in their capabilities of handling hard linear programs,
practitioners will take advantage of corresponding improved per-
formance to further refine their models. The guidelines we present
are useful, regardless of the anticipated advances in hardware and
software. Practitioners can implement many of these guidelines
without expert knowledge of the underlying theory of linear pro-
gramming, thereby enabling them to solve larger and more de-
tailed models with existing technology.

Acknowledgments

Dr. Klotz wishes to acknowledge all of the CPLEX practitioners
over the years, many of whom have provided the wide variety of
models that revealed the guidelines described in this paper. He
also wishes to thank the past and present CPLEX development,
support, and sales and marketing teams who have contributed to
the evolution of the product. Professor Newman wishes to thank
the students in her first advanced linear programming class at
the Colorado School of Mines for their helpful comments; she
also wishes to thank her colleagues Professor Josef Kallrath (BASF-
AG, Ludwigshafen, Germany) and Jennifer Rausch (Jeppeson,
Englewood, Colorado) for helpful comments on an earlier draft.
Both authors thank an anonymous referee for his helpful
comments that lead to the improvement of the paper.

Both authors also wish to remember Lloyd Clarke (February 14,
1964–September 20, 2007). His departure from the CPLEX team
had consequences that extended beyond the loss of an important
employee and colleague.

References

[1] G. Dantzig, Linear Programming and Extensions, Princeton University Press,
1963.

[2] IBM, ILOG CPLEX. Incline Village, NV, 2012.
[3] Gurobi, 2012. Gurobi Optimizer. Houston, TX.
[4] MOPS, MOPS, Paderborn, Germany, 2012.
[5] MOSEK, MOSEK Optimization Software, Copenhagen, Denmark, 2012.
[6] FICO, Xpress-MP Optimization Suite. Minneapolis, MN, 2012.
[7] V. Chvátal, Linear Programming, W. H. Freeman, 1983.
[8] G. Dantzig, M. Thapa, Linear Programming 1: Introduction, Springer, 1997.
[9] R. Rardin, Optimization in Operations Research, Prentice Hall, 1998, (Chapter

6).
[10] W. Winston, Operations Research: Applications and Algorithms, Brooks/Cole,

Thompson Learning, 2004.
[11] M. Bazaraa, J. Jarvis, H. Sherali, Linear Programming and Network Flows, John

Wiley & Sons, Inc., 2005.
[12] G. Brown, R. Rosenthal, Optimization tradecraft: Hard-won insights from real-

world decision support, Interfaces 38 (5) (2008) 356–366.
[13] C. Lemke, The dual method of solving the linear programming problem, Naval

Research Logistics Quarterly 1 (1) (1954) 36–47.
[14] I. Duff, A. Erisman, J. Reid, Direct Methods for SparseMatrices, Clarendon Press

Oxford, 1986.
[15] J. Nazareth, Computer Solution of Linear Programs, Oxford University Press,

1987.
[16] B. Fourer, Notes on the dual simplex method, 1994, http://users.iems.

northwestern.edu/∼4er/WRITINGS/dual.pdf.
[17] D. Bertsimas, J. Tsitsiklis, Introduction to Linear Optimization, Prentice Hall,

1997, (Chapter 4).
[18] I. Dikin, Iterative solution of problems of linear and quadratic programming,

Soviet Mathematics Doklady 8 (1967) 674–675.
[19] A. Fiacco, G. McCormick, Nonlinear Programming: Sequential Unconstrained

Minimization Techniques, Wiley, 1968.
[20] L. Khachian, A polynomial algorithm for linear programming, Soviet Mathe-

matics Doklady 20 (1979) 191–194.
[21] N. Karmarkar, A new polynomial-time algorithm for linear programming,

Combinatorica 4 (4) (1984) 373–395.
[22] P. Gill, W. Murray, M. Saunders, J. Tomlin, M. Wright, On projected Newton

barrier methods for linear programming and an equivalence to Karmarkar’s
projective method, Mathematical Programming 36 (2) (1986) 183–209.

[23] I. Lustig, R. Marsten, D. Shanno, Interior-point methods for linear program-
ming: computational state of the art, ORSA Journal on Computing 6 (1) (1994)
1–14.

[24] I. Lustig, R. Marsten, M. Saltzman, R. Subramanian, D. Shanno, Interior-point
methods for linear programming: just call Newton, Lagrange, and Fiacco and
McCormick! Interfaces 20 (4) (1990) 105–116.

[25] S. Mehrotra, On the implementation of a primal–dual interior point method,
SIAM Journal on Optimization 2 (4) (1992) 575–601.

[26] N. Megiddo, On finding primal- and dual- optimal bases, ORSA Journal on
Computing 3 (1) (1991) 63–65.

[27] S. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.
[28] N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 1996.
[29] Cybernet Systems Co., Maple, 2012, http://www.maplesoft.com/.
[30] Wolfram, Mathematica, 2012, http://www.wolfram.com/mathematica/.
[31] D. Applegate, W. Cook, S. Dash, QSopt, 2005, http://www.isye.gatech.edu/

∼wcook/qsopt/.
[32] D. Goldfarb, J. Reid, A practical steepest-edge simplex algorithm,Mathematical

Programming 12 (1) (1977) 361–371.
[33] H. Greenberg, J. Kalan, An exact update for Harris’ TREAD, Mathematical

Programming Study 4 (1) (1975) 26–29.
[34] P. Harris, Pivot selection methods in the Devex LP code, Mathematical

Programming Study 4 (1) (1975) 30–57.
[35] D. Goldfarb, J. Forrest, Steepest-edge simplex algorithms for linear program-

ming, Mathematical Programming 57 (1) (1992) 341–374.
[36] I. Lustig, J. Mulvey, T. Carpenter, Formulating two-stage stochastic programs

for interior point methods, Operations Research 39 (5) (1991) 757–770.
[37] R. Vanderbei, Splitting dense columns in sparse linear systems, Linear Algebra

and its Applications 152 (1) (1991) 107–117.
[38] J. Forrest, Mathematical programming with a library of optimization routines,

Presentation at 1989 ORSA/TIMS Joint National Meeting, 1989.
[39] G. Dantzig, M. Thapa, Linear Programming 2: Theory and Extensions, Springer,

2003.

http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
http://www.maplesoft.com/
http://www.wolfram.com/mathematica/
http://www.isye.gatech.edu/~wcook/qsopt/
http://www.isye.gatech.edu/~wcook/qsopt/
http://www.isye.gatech.edu/~wcook/qsopt/
http://www.isye.gatech.edu/~wcook/qsopt/
http://www.isye.gatech.edu/~wcook/qsopt/
http://www.isye.gatech.edu/~wcook/qsopt/
http://www.isye.gatech.edu/~wcook/qsopt/

Surveys in Operations Research and Management Science 18 (2013) 18–32

Contents lists available at ScienceDirect

Surveys in Operations Research and Management Science

journal homepage: www.elsevier.com/locate/sorms

Review

Practical guidelines for solving difficult mixed integer linear programs
Ed Klotz a, Alexandra M. Newman b,∗

a IBM, Incline Village, NV 89451, United States
b Division of Economics and Business, Colorado School of Mines, Golden, CO 80401, United States

a r t i c l e i n f o

Article history:
Received 5 August 2012
Received in revised form
3 December 2012
Accepted 14 December 2012

a b s t r a c t

Even with state-of-the-art hardware and software, mixed integer programs can require hours, or even
days, of run time and are not guaranteed to yield an optimal (or near-optimal, or any!) solution. In this
paper, we present suggestions for appropriate use of state-of-the-art optimizers and guidelines for careful
formulation, both of which can vastly improve performance.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1. Introduction.. 18
2. Fundamentals ... 19
3. Guidelines for successful algorithm performance ... 21

3.1. Lack of node throughput due to troublesome linear programming node solves .. 21
3.2. Lack of progress in the best integer solution ... 22
3.3. Lack of progress in the best bound ... 24
3.4. Data and memory problems ... 26

4. Tighter formulations .. 27
5. Conclusion .. 31

Acknowledgments ... 31
References... 32

‘‘Problems worthy of attack prove their worth by hitting back.’’
Piet Hein, Grooks 1966

‘‘Everybody has a plan until he gets hit in the mouth.’’
Mike Tyson

1. Introduction

Operations research practitioners have been formulating and
solving integer programs since the 1950s. As computer hardware
has improved [1], practitioners have taken the liberty to formulate
increasingly detailed and complex problems, assuming that the
corresponding instances can be solved. Indeed, commercially
available optimizers such as CPLEX [2], Gurobi [3], MOPS [4],
Mosek [5], and Xpress-MP [6] can solve many practical large-
scale integer programs effectively. However, even if these ‘‘real-
world’’ problem instances are solvable in an acceptable amount of

∗ Corresponding author.
E-mail addresses: klotz@us.ibm.com (E. Klotz), newman@mines.edu

(A.M. Newman).

time (seconds, minutes or hours, depending on the application),
other instances require days or weeks of solution time. Although
not a guarantee of tractability, carefully formulating the model
and tuning standard integer programming algorithms often result
in significantly faster solve times, in some cases, admitting a
feasible or near-optimal solution which could otherwise elude the
practitioner.

In this paper, we briefly introduce integer programs and their
corresponding commonly used algorithm, show how to assess
optimizer performance on such problems through the respective
algorithmic output, and demonstrate methods for improving
that performance through careful formulation and algorithmic
parameter tuning. Specifically, there are many mathematically
equivalent ways in which to express a model, and each optimizer
has its own set of default algorithmic parameter settings. Choosing
from these various model expressions and algorithmic settings
can profoundly influence solution time. Although it is theoretically
possible to try each combination of parameter settings, in practice,
random experimentation would require vast amounts of time and
would be unlikely to yield significant improvements. We therefore
guide the reader to likely performance-enhancing parameter
settings given fixed hardware, e.g., memory limits, and suggest

1876-7354/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
doi:10.1016/j.sorms.2012.12.001

http://dx.doi.org/10.1016/j.sorms.2012.12.001
http://www.elsevier.com/locate/sorms
http://www.elsevier.com/locate/sorms
mailto:klotz@us.ibm.com
mailto:newman@mines.edu
http://dx.doi.org/10.1016/j.sorms.2012.12.001

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32 19

methods for avoiding performance failures a priori through careful
model formulation. All of the guidelines we present here apply
to the model in its entirety. Many relaxation and decomposition
methods, e.g., Lagrangian Relaxation, Benders’ Decomposition,
and Column Generation (Dantzig–Wolfe Decomposition), have
successfully been used to make large problems more tractable
by partitioning the model into subproblems and solving these
iteratively. A description of these methods is beyond the scope
of our paper; the practitioner should first consider attempting to
improve algorithmic performance or tighten the existing model
formulation, as these approaches are typically easier and less
time consuming than reformulating the model and applying
decomposition methods.

The reader should note that we assume basic familiarity
with fundamental mathematics, such as matrix algebra, and with
optimization, in particular, with linear programming and the
concepts contained in Klotz and Newman [7]. We expect that
the reader has formulated linear integer programs and has a
conceptual understanding of how the corresponding problems
can be solved. Furthermore, we present an algebraic, rather than
a geometric, tutorial, i.e., a tutorial based on the mathematical
structure of the problem and corresponding numerical algorithmic
output, rather than based on graphical analysis. The interested
reader can refer to basic texts such as Rardin [8] and Winston [9]
for more detailed introductions to mathematical programming,
including geometric interpretations.

We have attempted to write this paper to appeal to a diverse
audience. Readers with limited mathematical programming expe-
riencewho infrequently use optimization software anddonotwish
to learn the details regarding how the underlying algorithms relate
to model formulations can still benefit from this paper by learning
how to identify sources of slow performance based on optimizer
output. This identification will allow them to use the tables in the
paper that list potential performance problems and parameter set-
tings that address them. More experienced practitioners who are
interested in the way in which the optimizer algorithm relates to
the model formulation will gain insight into new techniques for
improving model formulations, including those different from the
ones discussed in this paper. While intended primarily for prac-
titioners seeking performance enhancements to practical models,
theoretical researchers may still benefit. The same guidelines that
can help tighten specific practical models can also help in the de-
velopment of the theory associated with fundamental algorithmic
improvements in integer programming, e.g., new cuts and new
techniques for preprocessing.

The remainder of the paper is organized as follows: In Section 2,
we introduce integer programs, the branch-and-bound algorithm,
and its variants. Section 3 provides suggestions for successful
algorithm performance. Section 4 presents guidelines for and
examples of, tight formulations of integer programs that lead
to faster solution times. Section 5 concludes the paper with a
summary. Section 2, with the exception of the tables, may be
omitted without loss of continuity for the practitioner interested
only in formulation and algorithmic parameter tuning without
detailed descriptions of the algorithms themselves. To illustrate
the concepts we present in this paper, we show output logs
resulting from having run a commercial optimizer on a standard
desktop machine. Unless otherwise noted, this optimizer is CPLEX
12.2.0.2, and the machine possesses four single-core 3.0 GHz Xeon
chips and 8 GB of memory.

2. Fundamentals

Consider the following system in which C is a set of indices on
our variables x such that xj, j ∈ C are nonnegative, continuous
variables, and I is a set of indices on the variables x such that xj, j ∈

I are nonnegative, integer variables. Correspondingly, cC and AC are
the objective function and left-hand-side constraint coefficients,
respectively, on the nonnegative, continuous variables, and cI
and AI are the objective function and left-hand-side constraint
coefficients, respectively, on the nonnegative, integer variables. For
the constraint set, the right-hand-side constants, b, are given as an
m × 1 column vector.

(PMIP) : min cTC xC + cTI xI
subject to ACxC + AIxI = b
xC , xI ≥ 0, xI integer.

Three noteworthy special cases of this standard mixed integer
program are (i) the case in which xI is binary, (ii) the case in which
cC , AC , and xC do not exist and xI is general integer, and (iii) the
case in which cC , AC , and xC do not exist and xI is binary. Note
that (iii) is a special case of (i) and (ii). We refer to the first case
as a mixed binary program, the second case as a pure integer
program, and the third case as a binary program. These cases can
benefit from procedures such as probing on binary variables [10],
or even specialized algorithms. For example, binary programs lend
themselves to some established techniques in the literature that
do not exist if the algorithm is executed on an integer program.
These techniques are included in most standard branch-and-
bound optimizers; however, some features that are specific to
binary-only models, e.g., the additive algorithm of Balas [11], can
be lacking.

Branch-and-bound uses intelligent enumeration to arrive at an
optimal solution for a (mixed) integer program or any special case
thereof. This involves construction of a search tree. Each node
in the tree consists of the original constraints in (PMIP), along
with some additional constraints on the bounds of the integer
variables, xI , to induce those variables to assume integer values.
Thus, each node is also a mixed integer program (MIP). At each
node of the branch-and-bound tree, the algorithm solves a linear
programming relaxation of the restricted problem, i.e., the MIP
with all its variables relaxed to be continuous.

The root node at the top of the tree is (PMIP) with the variables
xI relaxed to assume continuous values. Branch-and-bound begins
by solving this problem. If the root node linear program (LP) is
infeasible, then the original problem (which is more restricted
than its linear programming relaxation) is also infeasible, and the
algorithm terminates with no feasible solution. Similarly, if the
optimal solution to the root node LP has no integer restricted
variables with fractional values, then the solution is optimal for
(PMIP) as well. The most likely case is that the algorithm produces
an optimal solution for the relaxation with some of the integer-
restricted variables assuming fractional values. In this case, such a
variable, xj = f , is chosen and branched on, i.e., two subproblems are
created — one with a restriction that xj ≤ ⌊f ⌋ and the other with
a restriction that xj ≥ ⌈f ⌉. These subproblems are successively
solved, which results in one of the following three outcomes:
Subproblem solution outcomes (for a minimization problem)

• (i) The subproblem is optimal with all variables in I assuming
integer values. In this case, the algorithm can update its best
integer feasible solution; this update tightens the upper bound
on the optimal objective value. Because the algorithm only
seeks a single optimal solution, no additional branches are
created from this node; examining additional branches cannot
yield a better integer feasible solution. Therefore, the node is
fathomed or pruned.

• (ii) The subproblem is infeasible. In this case, no additional
branching can restore feasibility. As in (i), the node is fathomed.

• (iii) The subproblem has an optimal solution, but with some of the
integer-restricted variables in I assuming fractional values. There
are two cases:

20 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32

⋆ a. The objective function value is dominated by the objective
of the best integer feasible solution. In other words, the
optimal node LP objective is no better than the previously
established upper bound on the optimal objective for (PMIP).
In this case, no additional branching can improve the
objective function value of the node, and, as in (i), the node
is fathomed.

⋆ b. The objective function value is not dominated by that of the
best integer feasible solution. The algorithm then processes
the node in that it chooses a fractional xj′ = f ′

; j′ ∈ I to
branch on by creating two child nodes and their associated
subproblems — one with a restriction that xj′ ≤ ⌊f ′

⌋ and the
other with a restriction that xj′ ≥ ⌈f ′

⌉. These restrictions are
imposed on the subproblem in addition to any others from
previous branches in the same chain stemming from the root;
each of these child subproblems is subsequently solved. Note
that while most implementations of the algorithm choose a
single integer variable from which to create two child nodes,
the algorithm’s convergence only requires that the branching
divides the feasible region of the current node in a mutually
exclusive manner. Thus, branching on groups of variables or
expressions of variables is also possible.

Due to the exponential growth in the size of such a tree, ex-
haustive enumeration would quickly become hopelessly compu-
tationally expensive for MIPs with even dozens of variables. The
effectiveness of the branch-and-bound algorithm depends on its
ability to prune nodes. Effective pruning relies on the fundamen-
tal property that the objective function value of each child node is
either the same as or worse than that of the parent node (both for
theMIP at the node and the associated LP relaxation). This property
holds because every child node consists of the MIP in the parent
node plus an additional constraint (typically, the bound constraint
on the branching variable).

As the algorithm proceeds, it maintains the incumbent integer
feasible solution with the best objective function determined thus
far in the search. The algorithm performs updates as given in (i) of
Subproblem Solution Outcomes. The updated incumbent objective
value provides an upper bound on the optimal objective value.
A better incumbent increases the number of nodes that can be
pruned in case (iii), part (a) by more easily dominating objective
function values elsewhere in the tree.

In addition, the algorithm maintains an updated lower bound
on the optimal objective for (PMIP). The objective of the root node
LP establishes a lower bound on the optimal objective because its
feasible region contains all integer feasible solutions to (PMIP). As
the algorithm proceeds, it dynamically updates the lower bound
by making use of the property that the child node objectives are
no better than those of their parent. Because a better integer so-
lution can only be produced by the children of the currently un-
explored nodes, this property implies that the optimal objective
value for (PMIP) can be no better than the best unexplored node
LP objective value. As the algorithm continues to process nodes,
the minimum LP objective of the unexplored nodes can dynami-
cally increase, improving the lower bound. When the lower bound
meets the upper bound, the algorithm terminates with an opti-
mal solution. Furthermore, once an incumbent has been estab-
lished, the algorithm uses the difference between the upper bound
and lower bound to measure the quality of the solution relative
to optimality. Thus, on difficult models with limited computa-
tion time available, practitioners can configure the algorithm to
stop as soon as it has an integer feasible solution within a spec-
ified percentage of optimality. Note that most other approaches
to solving integer programs (e.g., tabu search, genetic algorithms)
lack any sort of bound, although it may be possible to derive one
from the model instance. However, even if it is possible to derive
a bound, it is likely to be weak, and it probably remains static.

Note that in the case of a maximization problem, the best in-
teger solution provides a lower bound on the objective function
value and the objective of the root node LP establishes an upper
bound on the optimal objective; the previous discussion holds, but
with this reversal in bounds. Unless otherwise noted, our exam-
ples are minimization problems, as given by our standard form
in (PMIP).

Fig. 1 provides a tree used to solve a hypothetical integer
program of the form (PMIP) with the branch-and-bound algorithm.
Only the relevant subset of solution values is given at each
node. The numbers in parentheses outside the nodes denote
the order in which the nodes are processed, or examined. The
inequalities on the arcs indicate the bound constraint placed on an
integer-restricted variable in the original problem that possesses a
fractional value in a subproblem.

Node (1) is the root node. Its objective function value provides a
lower bound on theminimization problem. Suppose x1, an integer-
restricted variable in the original problem, possesses a fractional
value (3.5) at the root node solve. To preclude this fractional value
from recurring in any subsequent child node solve, we create two
subproblems, one with the restriction that x1 ≤ 3, i.e., x1 ≤ ⌊3.5⌋,
and the other with the restriction that x1 ≥ 4, i.e., x1 ≥ ⌈3.5⌉. This
is a mutually exclusive and collectively exhaustive set of outcomes
for x1 (and, hence, the original MIP) given that x1 is an integer-
restricted variable in the original problem.

Node (2) is the child node that results from branching down on
variable x1 at node (1). Among possibly others, x7 is an integer-
restricted variable that assumes a fractional value when this
subproblem at node (2) is solved; the solve consists of the root
node problem and the additional restriction that x1 ≤ 3. Because of
this fractional value, we create two subproblems emanating from
node (2) in the same way in which we create them from node
(1). The subproblem solve at node (4), i.e., the solve consisting of
the root node subproblem plus the two additional restrictions that
x1 ≤ 3 and x7 ≤ 2, results in an integer solution. At this point,
we can update the upper bound. That is, the optimal solution for
this problem, an instance of (PMIP), can never yield an objective
worse than that of the best feasible solution obtained in the
tree.

At any point in the tree, nodes that require additional branching
are considered active, or unexplored. Nodes (6) and (11) remain
unexplored. Additional processing has led to pruned nodes (4),
(7), and (9), either because the subproblem solve was infeasible,
e.g., node (9), or because the objective function value was worse
than that of node (4), regardless of whether or not the resulting
solution was integer. As the algorithm progresses, it establishes
an incumbent solution at node (10). Because nodes (6) and
(11) remain unexplored, improvement on the current incumbent
can only come from the solutions of the subproblems at nodes
(6) and (11) or their descendants. The descendants have an
objective function value no better than that of either of these two
nodes; therefore, the optimal solution objective is bounded by
the minimum of the optimal LP objectives of nodes (6) and (11).
Without loss of generality, assume node (11) possesses the lesser
objective. That objective value then provides a lower bound on the
optimal objective for (PMIP). We can continue searching through
the tree in this fashion, updating lower and upper bounds, until
either the gap is acceptably small, or until all the nodes have been
processed.

The previous description of the branch-and-bound algorithm
focuses on its fundamental steps. Advances in the last 20 years have
extended the algorithm from branch and bound to branch and cut.
Branch and cut, the current choice of most integer programming
solvers, follows the same steps as branch and bound, but it also can
add cuts. Cuts consist of constraints involving linear expressions
of one or more variables that are added at the nodes to further

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32 21

Fig. 1. Branch-and-bound algorithm.

improve performance. As long as these cuts do not remove any
integer feasible solutions, their addition does not compromise the
correctness of the algorithm. If done judiciously, the addition of
such cuts can yield significant performance improvements.

3. Guidelines for successful algorithm performance

There are four common reasons that integer programs can
require a significant amount of solution time:

• (i) There is lack of node throughput due to troublesome linear
programming node solves.

• (ii) There is lack of progress in the best integer solution, i.e., the
upper bound.

• (iii) There is lack of progress in the best lower bound.
• (iv) There is insufficient node throughput due to numerical

instability in the problem data or excessive memory usage.

By examining the output of the branch-and-bound algorithm,
one can often identify the cause(s) of the performance problem.
Note that integer programs can exhibit dramatic variations in
run time due to seemingly inconsequential changes to a problem
instance. Specifically, differences such as reordering matrix rows
or columns, or solving a model with the same optimizer, but
on a different operating system, only affect the computations
at very low-order decimal places. However, because most linear
programming problems drawn from practical sources have
numerous alternate optimal basic solutions, these slight changes
frequently suffice to alter the path taken by the primal or dual
simplex method. The fractional variables eligible for branching are
basic in the optimal node LP solution. Therefore, alternate optimal
bases can result in different branching variable selections. Different
branching selections, in turn, can cause significant performance
variation if the model formulation or optimizer features are not
sufficiently robust to consistently solve the model quickly. This
notion of performance variability in integer programs is discussed
in more detail in Danna [12] and Koch et al. [13]. However,
regardless of whether an integer program is consistently or only
occasionally difficult to solve, the guidelines described in this

section can help address the performance problem. We now
discuss each potential performance bottleneck and suggest an
associated remedy.

3.1. Lack of node throughput due to troublesome linear programming
node solves

Because processing each node in the branch-and-bound tree
requires the solution of a linear program, the choice of a linear
programming algorithm can profoundly influence performance.
An interior point method may be used for the root node solve; it
is less frequently used than the simplex method at the child nodes
because it lacks a basis and hence, the ability to start with an initial
solution, which is important when processing tens or hundreds of
thousands of nodes. However, conducting different runs in which
the practitioner invokes the primal or the dual simplex method at
the child nodes is a good idea. Consider the following two node
logs, the former corresponding to solving the root and child node
linear programs with the dual simplex method and the latter with
the primal simplex method.

The iteration count for the root node solve shown in Node Log
#1 that occurredwithout any advanced start information indicates
5278 iterations. Computing the average iteration count across all
node LP solves, there are 11 solves (10 nodes, and 1 extra solve
for cut generation at node 0) and 73,714 iterations, which were
performed in a total of 177 seconds. The summary output in gray
indicates in parentheses that one unexplored node remains. So,
the average solution time per node is approximately 17 seconds,
and the average number of iterations per node is about 6701.
In Node Log #2, the solution time is 54 seconds, at which point
the algorithm has performed 11 solves, and the iteration count is
23,891. The average number of iterations per node is about 2172.
InNode Log #1, the 10 child node LPs requiremore iterations, 6844,
on average, than the root node LP (which requires 5278), despite
the advanced basis at the child node solves that was absent at the
root node solve. Any time this is true, or even when the average
node LP iteration count is more than 30%–50% of the root node
iteration count, an opportunity for improving node LP solve times

22 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32

Node Log #1: Node Linear Programs Solved with Dual Simplex

Nodes Cuts/ ItCnt
Node Left Objective IInf Best Integer Best Node
0 0 -89.0000 6 -89.0000 5278
0 0 -89.0000 6 Fract: 4 12799
0 2 -89.0000 6 -89.0000 12799
1 1 infeasible -89.0000 20767
2 2 -89.0000 5 -89.0000 27275
3 1 infeasible -89.0000 32502
...
8 2 -89.0000 8 -89.0000 65717
9 1 infeasible -89.0000 73714
...
Solution time = 177.33 sec. Iterations = 73714 Nodes = 10 (1)

Node Log #2: Node Linear Programs Solved with Primal Simplex

Nodes Cuts/ ItCnt
Node Left Objective IInf Best Integer Best Node
0 0 -89.0000 5 -89.0000 6603
0 0 -89.0000 5 Fract: 5 7120
0 2 -89.0000 5 -89.0000 7120
1 1 infeasible -89.0000 9621
2 2 -89.0000 5 -89.0000 10616
3 1 infeasible -89.0000 12963
...
8 2 -89.0000 8 -89.0000 21522
9 1 infeasible -89.0000 23891
...
Solution time = 54.37 sec. Iterations = 23891 Nodes = 10 (1)

exists by changing algorithms or algorithmic settings. In Node Log
#2, the 10 child node LPs require 1729 iterations, on average,which
is much fewer than those required by the root node solve, which
requires 6603 (solving the LP from scratch). Hence, switching from
the dual simplex method in Node Log #1 to the primal simplex
method in Node Log #2 increases throughput, i.e., decreases the
average number of iterations required to solve a subproblem in the
branch-and-bound tree.

The different linear programming algorithms can also benefit
by tuning the appropriate optimizer parameters. See Klotz and
Newman [7] for a detailed discussion of this topic.

3.2. Lack of progress in the best integer solution

An integer programming algorithmmay struggle to obtain good
feasible solutions. Node Log #3 illustrates a best integer solution
found before node 300 of the solve that has not improved by node
7800 of the same solve.

Many state-of-the-art optimizers have built-in heuristics to
determine initial and improved integer solutions. However, it
is always valuable for the practitioner to supply the algorithm
with an initial solution, no matter how obvious it may appear
to a human. Such a solution may provide a better starting point
than what the algorithm can derive on its own, and algorithmic
heuristics may perform better in the presence of an initial
solution, regardless of the quality of its objective function value.
In addition, the faster progress in the cutoff value associated
with the best integer solution may enable the optimizer features
such as probing to fix additional variables, further improving
performance. Common tactics to find such starting solutions
include the following:

• Provide an obvious solution based on specific knowledge of the
model. For example, models with integer penalty variablesmay
benefit from a starting solution with a significant number (or
even all) of the penalty variables set to non-zero values.

• Solve a related, auxiliary problem to obtain a solution (e.g., via
the Feasoptmethod in CPLEX, which looks for feasible solutions
by minimizing infeasibilities), provided that the gain from the
starting solution exceeds the auxiliary solve time.

• Use the solution from a previous solve for the next solve when
solving a sequence of models.

To see the advantages of providing a starting point, compare
Node Log #5 with Node Log #4. Log #4 shows that CPLEX with
default settings takes about 1589 seconds to find a first feasible
solution, with an associated gap of 4.18%. Log #5 illustrates the
results obtained by solving a sequence of five faster optimizations
(see Lambert et al. [14] for details) to obtain a starting solution
with a gap of 2.23%. The total computation time to obtain the
starting solution is 623 seconds. So, the time to obtain the first
solution is faster by providing an initial feasible solution, and if
we let the algorithm with the initial solution run for an additional
1589−623 = 966 seconds, the gap for the instancewith the initial
solution improves to 1.53%.

In the absence of a readily identifiable initial solution, various
branching strategies can aid in obtaining initial and subsequent
solutions. These branching strategies may be based purely on
the algebraic structure of the model. For example, by using
depth-first search, the branch-and-bound algorithm never defers
processing a node until it has been pruned. This strategy helps
find integer feasible solutions sooner, although it potentially slows
progress in the best bound. (Recall, the best lower bound for a

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32 23

Node Log #3: Lack of Progress in Best Integer Solution

Nodes Cuts/ ItCnt Gap
Node Left Objective IInf Best Integer Best Node
...
300 229 22.6667 40 31.0000 22.0000 4433 29.03%
400 309 cutoff 31.0000 22.3333 5196 27.96%
500 387 26.5000 31 31.0000 23.6667 6164 26.88%
...
7800 5260 28.5000 23 31.0000 25.6667 55739 17.20%

Node Log #4: No initial practitioner-supplied solution

Root relaxation solution time = 131.45 sec.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 1.09590e+07 2424 1.09590e+07 108111
0 0 1.09570e+07 2531 Cuts: 4 108510
0 0 1.09405e+07 2476 Cuts: 2 109208

Heuristic still looking.
Heuristic still looking.
Heuristic still looking.
Heuristic still looking.
Heuristic still looking.

0 2 1.09405e+07 2476 1.09405e+07 109208
Elapsed real time = 384.09 sec. (tree size = 0.01 MB)

1 3 1.08913e+07 2488 1.09405e+07 109673
2 4 1.09261e+07 2326 1.09405e+07 109977

...
1776 1208 1.05645e+07 27 1.09164e+07 474242
1814 1246 1.05588e+07 31 1.09164e+07 478648
1847 1277 1.05554e+07 225 1.09164e+07 484687

* 1880+ 1300 1.04780e+07 1.09164e+07 491469 4.18%
1880 1302 1.05474e+07 228 1.04780e+07 1.09164e+07 491469 4.18%

Elapsed real time = 1589.38 sec. (tree size = 63.86 MB)

Node Log #5: An initial solution supplied by the practitioner

Root relaxation solution time = 93.92 sec.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

* 0+ 0 1.07197e+07 108111 ---
0 0 1.09590e+07 2424 1.07197e+07 1.09590e+07 108111 2.23%
0 0 1.09570e+07 2531 1.07197e+07 Cuts: 4 108538 2.21%

...

485 433 1.09075e+07 2398 1.07197e+07 1.08840e+07 244077 1.53%
487 434 1.08237e+07 2303 1.07197e+07 1.08840e+07 244350 1.53%
497 439 1.08637e+07 1638 1.07197e+07 1.08840e+07 245391 1.53%

Elapsed real time = 750.11 sec. (tree size = 32.61 MB)

501 443 1.08503e+07 1561 1.07197e+07 1.08840e+07 245895 1.53%
...
Elapsed real time = 984.03 sec. (tree size = 33.00 MB)

1263 674 1.08590e+07 2574 1.07197e+07 1.08840e+07 314814 1.53%

24 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32

Node Log #6: Progress in Best Integer Solution but not in the Best Bound

Nodes Cuts/ ItCnt Gap
Node Left Objective IInf Best Integer Best Node

300 296 2018.00 27 3780.00 560.00 3703 85.19%
* 300+ 296 0 2626.00 560.00 3703 78.67%
* 393 368 0 2590.00 560.00 4405 78.38%

400 372 560.00 291 2590.00 560.00 4553 78.38%
500 472 810.00 175 2590.00 560.00 5747 78.38%

...
* 7740+ 5183 0 1710.00 560.00 66026 67.25%

7800 5240 1544.00 110 1710.00 560.00 66279 67.25%
7900 5325 944.00 176 1710.00 560.00 66801 67.25%
8000 5424 1468.00 93 1710.00 560.00 67732 67.25%

Fig. 2. Convex hull.

minimization problem is updated once all nodes with relaxation
objective value equal to the lower bound have been processed.)
In other cases, branching strategies may involve specific aspects
of the model. For example, branching up, i.e., processing the
subproblem associated with the greater bound as a restriction on
its branch, in the presence of many set partitioning constraints

i xi = 1, xi binary

not only fixes the variable on the associated

branch in the constraint to 1, but it also fixes all other variables in
the constraint to a value of 0 in the children of the current node.
By contrast, branching down does not yield the ability to fix any
additional variables.

Improvements to the model formulation can also yield better
feasible solutions faster. Differentiation in the data, e.g., by adding
appropriate discounting factors to cost coefficients in the objective
function, helps the algorithm distinguish between dominated and
dominating solutions, which expedites the discovery of improving
solutions.

3.3. Lack of progress in the best bound

The branch-and-bound depiction in Fig. 1 and the correspond-
ing discussion illustrate how the algorithmmaintains and updates
a lower bound on the objective function value for the minimiza-
tion integer program. (Note that this would correspond to an up-
per bound for a maximization problem.) The ability to update the
best bound effectively depends on the best objective function value
of all active subproblems, i.e., the associated LP objective function
value of the nodes that have not been fathomed. If successive sub-
problems, i.e., subproblems corresponding to nodes lying deeper
in the tree, do not possess significantly worse objective function
values, the bound does not readily approach the true objective

function value of the original integer program. Furthermore, the
greater the number of active, i.e., unfathomed, nodes deeper in the
tree, the smaller the chance of a tight bound, which always cor-
responds to the weakest (lowest, for a minimization problem) ob-
jective function value of any active node. These objective function
values, and the associated bounds they generate, in turn, dependon
the strength of the model formulation, i.e., the difference between
the polyhedron associated with the LP relaxation of (PMIP) and the
polyhedron consisting of the convex hull of all integer feasible so-
lutions to (PMIP). Fig. 2 provides an illustration. The region P1 rep-
resents the convex hull of all integer feasible solutions of the MIP,
while P2 represents the feasible region of the LP relaxation. Adding
cuts yields the region P3, which contains all integer solutions of the
MIP, but contains only a subset of the fractional solutions feasible
for P2. Node Log #6 exemplifies progress in best integer solution
but not in the best bound.

To strengthen the bound, i.e., to make its value closer to that of
the optimal objective function value of the integer program,we can
modify the integer program by adding special constraints. These
constraints, or cuts, do not excise any integer solutions that are
feasible in the unmodified integer program. A cut that does not
remove any integer solution is valid. However, the cuts remove
portions of the feasible region that contain fractional solutions. If
the removed area contains the fractional solution resulting from
the LP relaxation of the integer program,we say the cut is useful [8],
or that the cut separates the fractional solution from the resulting
LP relaxation feasible region. In this case, the cut improves the
bound by increasing the original LP objective. There are various
problem structures that lend themselves to different types of cuts.
Thus,wehave a general sense of cuts that could beuseful. However,
without the LP relaxation solution, it is difficult to say a priori
which cuts are definitely useful.

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32 25

Let us consider the following numerical example, in this case,
for ease of illustration, a maximization problem:

(PEX
Binary) max 3x1 + 2x2 + x3 + 2x4 + x5 (1)

subject to x1 + x2 ≤ 1 (2)

x1 + x3 ≤ 1 (3)

x2 + x3 ≤ 1 (4)

4x3 + 3x4 + 5x5 ≤ 10 (5)

x1 + 2x4 ≤ 2 (6)

3x2 + 4x5 ≤ 5 (7)

xi binary ∀i. (8)

A cover cut based on the knapsack constraint of (PEX
Binary), 4x3 +

3x4 + 5x5 ≤ 10, is x3 + x4 + x5 ≤ 2. That is, at most
two of the three variables can assume a value of 1 while main-
taining feasibility of the knapsack constraint (5). Adding this
cut is valid since it is satisfied by all integer solutions feasi-
ble for the constraint. It also separates the fractional solution
x1 = 0, x2 = 0, x3 = 1, x4 =

1
3 , x5 = 1


from the LP relaxation

feasible region. Nowconsider the three packing constraints, (2)–(4):
x1 + x2 ≤ 1, x1 + x3 ≤ 1, and x2 + x3 ≤ 1. We can construct
a conflict graph (see Fig. 3) for the whole model, with each vertex
corresponding to a binary variable and each edge corresponding
to a pair of variables, both of which cannot assume a value of 1 in
any feasible solution. A clique is a set of vertices such that every
two in the set are connected by an edge. At most one variable in a
clique can equal 1. Hence, the vertices associatedwith x1, x2 and x3
form a clique, and we derive the cut: x1 + x2 + x3 ≤ 1. In addition,
constraints (6) and (7) generate the edges {1, 4} and {2, 5} in the
conflict graph, revealing the cuts x1 + x4 ≤ 1 and x2 + x5 ≤ 1.
One could interpret these cuts as either clique cuts from the con-
flict graph, or cover cuts derived directly from constraints (6) and
(7). Note that not only does each of these clique cuts separate frac-
tional solutions from the LP relaxation feasible region (as did the
cover cut above), but they are also useful in that they remove the
LP relaxation solution

 1
2 ,

1
2 ,

1
2 ,

3
4 ,

7
8


from the feasible region.

The derivations of both clique and cover cuts rely on identifying
a linear expression of variables that assumes an integral value in
any integer feasible solution, then determining the integer upper
(right-hand-side) limit on the expression. In the case of the cover
cut for our example (PEX

Binary), x3, x4 and x5 form a cover, which
establishes that x3+x4+x5 ≥ 3 is infeasible for any integer solution
to the model. Therefore, x3 + x4 + x5 ≤ 2 is valid for any integer
feasible solution to (PEX

Binary). Similarly, the clique in the conflict
graph identifies the integral expression x1+x2+x3 and establishes
that x1 + x2 + x3 ≥ 2 is infeasible for any integer solution to the
model. Therefore, x1 + x2 + x3 ≤ 1 is valid for any integer feasible
solution to (PEX

Binary). This cut removes fractional solutions such
as


x1 =

1
2 , x2 =

1
2 , x3 =

1
2


. Making use of fractional infeasibility

relative to integer expressions is a useful technique for deriving
additional cuts, and is a special case of disjunctive programming
[15].

Anothermechanism to generate additional cuts includes the ex-
amination of the complementary system, i.e., one in which a binary
variable xi is substituted with 1 − xi. Consider a constraint sim-
ilar to the knapsack constraint, but with the inequality reversed:

i aixi ≥ b (with ai, b > 0). Let x̄i = 1 − xi. Multiplying the in-

Fig. 3. Conflict Graph for numerical example (PEX
Binary).

equality on the knapsack-like constraint by−1 and adding


i ai to
both sides, we obtain:


i ai −


i aixi ≤ −b +


i ai. Substituting

the complementary variables yields:


i aix̄i ≤ −b +


i ai. Note
that when the right hand side is negative, the original constraint is
infeasible. Otherwise, this yields a knapsack constraint on x̄i from
which cuts can be derived. Cover cuts involving the x̄i can then be
translated into cuts involving the original xi variables.

We summarize characteristics of these and other potentially
helpful cuts in Table 1. A detailed discussion of each of these cuts is
beyond the scope of this paper; see Achterberg [16] orWolsey [17]
for more details, as well as extensive additional references. State-
of-the-art optimizers tend to implement cuts that are based on
general polyhedral theory that applies to all integer programs, or
on special structure that occurs on a sufficiently large percentage
of practical models. Table 1 can help the practitioner distinguish
cuts that a state-of-the-art optimizer is likely to implement from
those that are specific to particular types of models, and are less
likely to be implemented in a generic optimizer (and, hence, more
likely to help performance if the practitioner uses his knowledge
to derive them).

Adding cuts does not always help branch-and-bound perfor-
mance. While it can remove integer infeasibilities, it also results
in more constraints in each node LP. More constraints can in-
crease the time required to solve these linear programs. Without a
commensurate speed-up in solution time associated with process-
ing fewer nodes, cuts may not be worth adding. Some optimizers
have internal logic to automatically assess the trade-offs between
adding cuts and node LP solve time. However, if the optimizer lacks
such logic or fails to make a good decision, the practitioner may
need to look at the branch-and-bound output in order to assess the
relative increase in performance due to fewer examined nodes and
the potential decrease in the rate at which the algorithm processes
the nodes. In other cases, the computational effort required to de-
rive the cuts needed to effectively solve the model may exceed the
performance benefit they provide. Similar to node LP solve time
and node throughput, a proper comparison of the reduction in so-
lution time the cuts provide with the time spent calculating them
may be necessary. (See Achterberg [16].)

Most optimizers offer parameter settings that can improve
progress of the best node, either by strengthening the formulation
or by enabling more node pruning. Features that are commonly
available include:

• (i) Best Bound node selection By selecting the nodewith themin-
imal relaxation objective value, the algorithm updates the best
node value faster. However, by considering node LP objective
values while ignoring the number of integer infeasibilities, best
bound node selectionmay cause the optimizer to find fewer in-
teger feasible solutions. Therefore, best bound node selection

26 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32

Table 1
Different types of cuts and their characteristics, where z is binary unless otherwise noted, and x is continuous.

Cut name Mathematical description of cut Structure of original MILP that generates the cut

Cliqueb


i zi ≤ 1 Packing constraints
Coverb


i zi ≤ b, b integer Knapsack constraints

Disjunctivea Constraint derived from an LP solution


i a
′

ixi ≥ b′ or


i a
′′

i xi ≥ b′′ , xi continuous or
integer

Mixed Integer Roundinga Use of floors and ceilings of coefficients and integrality of original variables aCxC + aIxI = b, x ≥ 0
Generalized Upper Boundb 

i xi ≤ b, b integer Knapsack constraints with precedence or
packing

Implied Boundb xi ≤
b
ai


i aixi ≤ bz, x ≥ 0

Gomorya Mixed integer rounding applied to a simplex tableau row ā associated with
optimal node LP basis

āCxC + āI/kxI/k + xk = b̄, xk integer, x ≥ 0

Zero-halfa λTAx ≤ ⌊λT b⌋, λi ∈ {0, 1/2} Constraints containing integer variables and
coefficients

Flow Coverb Linear combination of flow and binary variables involving a single node Fixed charge network
Flow Pathb Linear combination of flow and binary variables involving a path of nodes Fixed charge network
Multicommodity flowb Linear combination of flow and binary variables involving nodes in a network

cut
Fixed charge network

a Based on general polyhedral theory.
b Based on specific, commonly occurring problem structure.

is most likely to help performance on models in which the op-
timizer finds integer feasible solutions easily, but has trouble
making sufficient progress in the best node.

• (ii) Strong branching By running a modest number of dual
simplex iterations onmultiple branching variable candidates at
each node, the algorithm can exploit any infeasible branches
to tighten additional variable bounds, resulting in a stronger
formulation of theMIP at the node in question, and faster prun-
ing of its descendants. Strong branching increases the compu-
tation at each node, so the performance improvement from the
additional node pruning must compensate for the diminished
rate of node throughput to make this a reasonable feature to
employ.

• (iii) Probing By fixing a binary variable to a value of 0 or 1 and
propagating this bound change to other variables through the
intersecting constraints, the optimizer can often identify binary
variables that can only assume one value in any feasible solu-
tion. For example, if fixing a binary variable to 0 establishes that
(PMIP) is infeasible, then the variable must be 1 in any integer
feasible solution. Probing computation time primarily occurs as
a preprocessing step before starting the branch-and-bound al-
gorithm. Identifying binary variables to fix can tighten the for-
mulation and improve node throughput by reducing the size of
the problem. However, it can be computationally expensive, so
the practitioner must compare the time spent performing the
initial probing computations with the subsequent performance
gains.

• (iv)More aggressive levels of cut generationGeneratingmore cuts
can further tighten the formulation. However, the practitioner
must properly assess the trade-off between the tighter formu-
lation and the potentially slower rate of node processing due to
the additional constraints in the node LPs.

If alternate parameter settings are insufficient to yield progress
in the best node, the following guidelines, while requiring more
work, can help address this performance problem:

• (i) Careful model formulation It is sometimes possible to use
alternate variable definitions. For example, in Bertsimas and
Stock Patterson [18], the authors use variables to denote
whether an aircraft (flight) has arrived at a sector in the airspace
by time period t , and postulate that the variables represented
in this manner ‘‘define connectivity constraints that are facets

of the convex hull of solutions’’, which greatly improves the
tractability of their model. Similarly, in a model designed to de-
termine a net present value-maximizing schedule for extract-
ing three-dimensional notional blocks of material in an open
pit mine, we can define xbt = 1 if block b is extracted by time
period t, 0 otherwise, as opposed to the more intuitive x̂bt = 1
if block b is extracted at time period t, 0 otherwise [14]. The
definitions in these two references result in models with sig-
nificant differences in performance, as illustrated theoretically
and empirically.

• (ii) Careful use of elastic variables, i.e., variables that relax a con-
straint by allowing for violations (which are then penalized in the
objective) Adding elastic variables can result in MIPs that re-
move the infeasibilities on integer expressions essential to stan-
dard cut generation. This leads to a weaker model formulation
in which most cut generation mechanisms are disabled. If the
use of elastic variables is necessary, consider first minimizing
the sum of the elastic variables, then optimizing the original
objective while constraining the elastic variable values to their
minimized values.

3.4. Data and memory problems

Because the optimizer solves linear programs at each node of
the branch-and-bound tree, the practitioner must be careful to
avoid the numerical performance issues described in Section 3
of Klotz and Newman [7]. Specifically, it is important to avoid
large differences in orders of magnitude in data to preclude the
introduction of unnecessary round-off error. Such differences of
input values create round-off error in floating point calculations
which makes it difficult for the algorithm to distinguish between
this error and a legitimate value. If the algorithm makes the
wrong distinction, it arrives at an incorrect solution. Integer
programs may contain the construct ‘‘if z = 0, then x = 0.
Otherwise, x can be arbitrarily large’’. Arbitrarily large values of
x can be carelessly modeled with a numerical value designed to
represent infinity (often referred to as ‘‘big M ’’ in the literature).
In reality, the value for this variable can be limited by other
constraints in the problem; if so, we reduce its value, as in the
following:

x − 100000000000z ≤ 0 (9)
0 ≤ x ≤ 5000; z binary. (10)

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32 27

In this case, we should use a coefficient of 5000 on z, which
allows us to eliminate the explicit upper bound on x as well. In
addition to improving the scaling of the constraint, this change
to the numerical value enables the optimizer to better identify
legitimate solutions to the conditions beingmodeled. For example,
the unmodified constraint accepts values of z = 10−8 and
x = 1000 as an integer feasible solution. Most optimizers use an
integrality tolerance and, by default, accept an integrality violation
of this order of magnitude. Therefore, the big M coefficient on
the original constraint enables the optimizer to accept a solution
that, while feasible in a finite precision computing environment,
does not satisfy the intendedmeaning of the constraint. See Camm
et al. [19] for further discussion.

Branch-and-bound can be generalized to other logic, which is
important because it removes the urge to use these numerically
problematic ‘‘big M ’s’’ by allowing, for example, direct branching
on an indicator constraint. The indicator formulation of (9) is z =

0 ⇒ x ≤ 0. An indicator infeasibility that requires branching
occurs when a node relaxation solution has z = 0 but x >
0. The indicator branches would be: x ≤ 0 and z = 1. By
contrast, large values in (9) or elsewhere in the model (whether
truly infinite or some big M approximation) can result in a wide
range of coefficients that can easily lead to numerical problems.
So, using indicators eliminates these potentially large values from
the matrix coefficients used to approximate an infinite value. For
the case in which the large values impose meaningful limits in the
model, the indicator formulation moves the coefficients from the
matrix into the variable bounds, which improves the numerical
characteristics of the model.

Indicator constraints also support more general conditions,
e.g., z = 0 ⇒ aT x ≤ b. In this case, the indicator brancheswould be
aT x ≤ b and z = 1. However, relaxations of indicator constraints
remove the constraint completely and can therefore be potentially
weaker than their less numerically stable big M counterpart. As
of this writing, recent improvements in indicator preprocessing in
CPLEX have helped address this drawback.

Integer programs require at least as much memory as their
linear programming equivalents. Running out of memory is
therefore as frequent, if not more frequent, a problemwhen trying
to solve integer programs, as opposed to linear programs. The
same suggestions as those that appear in Section 3.3 of Klotz and
Newman [7] apply.

Table 2 provides suggestions for the branch-and-bound settings
to use under the circumstances mentioned in this section.

4. Tighter formulations

When optimizer parameter settings (including aggressive
application of cuts) fail to yield the desired improvements, the
practitioner may obtain additional performance gains by adding
cuts more specific to the model. The cuts added by the optimizer
typically rely either on general polyhedral theory that applies
to all MIPs, or on special structure that appears in a significant
percentage of MIPs. In some cases, the cuts needed to improve
performance rely on special structure specific to individual MIPs.
These less applicable cuts are unlikely to be implemented in
any state-of-the-art optimizer. In such cases, the practitioner
may need to formulate his own cuts, drawing on specific model
knowledge. One can find a staggering amount of theory on cut
derivation in integer programming [20]. While more knowledge of
sophisticated cut theory adds to the practitioner’s quiver of tactics
to improve performance, run time enhancements can be effected
with some fairly simple techniques, provided the practitioner
uses them in a disciplined, well organized fashion. To that end,
this section describes guidelines for identifying cuts that can
tighten a formulation of (PMIP) and yield significant performance
improvements. These guidelines can help both novice practitioners
and those who possess extensive familiarity with the underlying

theories of cut generation. See Rebennack et al. [21] for an example
of adding cuts based on specific model characteristics.

Before tightening the formulation, the practitioner must
identify elements of the model that make it difficult, specifically,
those that contain the constraints and variables fromwhich useful
cuts can be derived. The following steps can help in this regard.

Determining how a MIP can be difficult to solve

• (i) Simplify themodel if necessary. For example, try to identify any
constraints or integrality restrictions that are not involved in
the slow performance by systematically removing constraints
and integrality restrictions and solving the resulting model.
Such filtering can be done efficiently by grouping similar
constraints and variables and solving model instances with one
or more groups omitted. If the model remains difficult to solve
after discarding a group of constraints, the practitioner can
tighten the formulation without considering those constraints.
Or, he can try to reproduce the problemwith a smaller instance
of the model.

• (ii) Identify the constraints that prevent the objective from
improving. With a minimization problem, this typically means
identifying the constraints that force activities to be performed.
In other words, practical models involving nonnegative cost
minimization inevitably have some constraints that prevent the
trivial solution of zero from being viable.

• (iii) Determine how removing integrality restrictions allows the
root node relaxation objective to improve. In weak formulations,
the root node relaxation objective tends to be significantly
better than the optimal objective of the associated MIP. The
variables with fractional solutions in the root node relaxation
help identify the constraints and variables that motivate
additional cuts. Many models have a wealth of valid cuts that
could be added purely by examining the model. But, many of
those cutsmay actually help little in tightening the formulation.
By focusing on how relaxing integrality allows the objective to
improve, the practitioner focuses on identifying the cuts that
actually tighten the formulation.

Having identified the constraints and variables most likely
to generate good cuts, the practitioner faces numerous ways to
derive the cuts. While a sophisticated knowledge of the literature
provides additional opportunities for tightening formulations,
practitioners with limited knowledge of the underlying theory can
still effectively tightenmany formulations using some fairly simple
techniques.

Model characteristics from which to derive cuts

• (i) Linear or logical combinations of constraints By combining
constraints, one can often derive a single constraint in which
fractional values can be rounded to produce a tighter cut.
The clique cuts previously illustrated with the conflict graph
provide an example of how to identify constraints to combine.
The conflict graph in that example occurs in a sufficient number
of practicalMIPs so thatmany state-of-the-art optimizers use it.
But, otherMIPsmay have different graphs associatedwith their
problem structure that do not occur frequently. Identifying such
graphs and implementing the associated cuts can often tighten
the formulation and dramatically improve performance.

• (ii) The optimization of one or more related models By optimizing
a related model that requires much less time to solve, the
practitioner can often extract useful information to apply to
the originalmodel. For example,minimizing a linear expression
involving integer variables and integer coefficients can provide
a cut on that expression. This frequently helps on models with
integer penalty variables.

28 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32

Table 2
Under various circumstances, different formulations and algorithmic settings have a greater chance of faster solution time on an integer programming problem instance.

Characteristic Recognition Suggested tactic(s)

• Troublesome LPs • Large iteration counts per node, especially regarding
root node solve

• Switch algorithms between primal and dual simplex; if
advanced starts do not help simplex, consider barrier method

• Lack of progress in best integer • Little or no change in best integer solution in log after
hundreds of nodes

• Use best estimate or depth-first search

• Apply heuristics more frequently
• Supply an initial solution
• Apply discount factors in the objective
• Branch up or down to resolve integer infeasibilities

• Lack of progress in best node • Little or no change in best node in log after hundreds of
nodes

• Use breadth-first search

• Use aggressive probing
• Use aggressive algorithmic cut generation
• Apply strong branching
• Derive cuts a priori
• Reformulate with different variables

• Data and memory problems • Slow progress in node solves • Avoid large differences in size of data
• Out of memory error • Reformulate ‘‘big M ’’ constraints

• Rectify LP problems, e.g., degeneracy
• Apply memory emphasis setting
• Buy more memory

• (iii) Use of the incumbent solution objective value Because cuts
are often based on infeasibility, models with soft constraints
that are always feasible can present unique challenges for
deriving cuts. However, while any solution is feasible, the
incumbent solution objective value allows the practitioner to
derive cuts based on the implicit, dynamic constraint defined
by the objective function and the incumbent objective value.

• (iv) Disjunctions Wolsey [17] provides a description of de-
riving cuts from disjunctions, which were first developed by
Balas [15]. In general, suppose X1 =


x : aT x ≥ b


and X2 =

x : âT x ≥ b̂

. Let u be the componentwise maximum of a and

â, i.e., uj = max

aj, âj


. And, let ū = min


b, b̂


. Then

uT x ≥ ū (11)

is valid for X1 ∪ X2, which implies it is also valid for the convex
hull of X1 and X2. These properties of disjunctions can be used
to generate cuts in practice.

• (v) The exploitation of infeasibility As previously mentioned,
cover, clique and other cuts can be viewed as implicitly using
infeasibility to identify cuts to tighten a formulation of (PMIP).
Generally, for any linear expression involving integer variables
with integer coefficients and an integer right hand side b, if
aT x ≤ b can be shown to be infeasible, then the constraint
aT x ≥ b + 1 provides a valid cut.

We now consider a simple example to illustrate the use
of disjunctions to derive cuts. Most state-of-the-art optimizers
supportmixed integer rounding cuts, both on constraints explicitly
in the model, and as Gomory cuts based on implicit constraints
derived from the simplex tableau rows of the node LP subproblems.
So, practitioners typically do not need to apply disjunctions
to derive cuts on constraints like the one in the example we
describe below. However, we use this simple example to aid in
the understanding of the more challenging example we present
subsequently. In the first instance, we illustrate the derivation of
a mixed integer rounding cut on the constraint:

4x1 + 3x2 + 5x3 = 10 (12)
x1, x2, x3 ≥ 0, integer. (13)

Dividing by the coefficient of x1, we have

x1 +
3
4
x2 +

5
4
x3 =

5
2
. (14)

Now, we separate the left and right hand sides into integer and
fractional components, and let x̂ represent the integer part of the
left hand side:

x1 + x2 + x3  
x̂

−
1
4
x2 +

1
4
x3 = 2 +

1
2

= 3 −
1
2
. (15)

We examine a disjunction on the integer expression x̂. If x̂ ≤ 2,
the terms with fractional coefficients on the left hand side of (15)
must be greater than or equal to the first fractional term in the
right-hand-side expressions. Similarly, the terms with fractional
coefficients on the left hand side must be less than or equal to
the second fractional term in the right-hand-side expressions if
x̂ ≥ 3. Using the nonnegativity of the x variables to simplify the
constraints implied by the disjunction, we conclude:

x̂ ≤ 2 ⇒
−1
4

x2 +
1
4
x3 ≥

1
2

⇒ x3 ≥ 2 (16)

x̂ ≥ 3 ⇒
−1
4

x2 +
1
4
x3 ≤

−1
2

⇒ x2 ≥ 2. (17)

So, either x3 ≥ 2 or x2 ≥ 2. We can then use the result of (11) to
derive the cut

x2 + x3 ≥ 2. (18)

Note that this eliminates the fractional solution

2, 1

3 ,
1
5


, which

satisfies the original constraint, (12). Note also that by inspection
the only two possible integer solutions to this constraint are
(1, 2, 0) and (0, 0, 2). Both satisfy (18), establishing that the cut
is valid. (Dividing (12) by the coefficient on x2 or x3 instead of x1
results in a similar mixed integer rounding cut.)

This small example serves to illustrate the derivation of a
mixed integer rounding cut on a small constraint; state-of-
the-art optimizers such as CPLEX would have been able to
identify this cut. However, disjunctions are more general, and
can yield performance-improving cuts on models for which the
optimizer’s cuts do not yield sufficiently good performance. For

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32 29

example, consider the following single-constraint knapsackmodel.
Cornuejols et al. [22] originally generated this instance. (See Aardal
and Lenstra [23] for additional information on these types of
models.) We wish to either find a feasible solution or prove
infeasibility for the single-constraint integer program:

13429x1 + 26850x2 + 26855x3 + 40280x4 + 40281x5
+ 53711x6 + 53714x7 + 67141x8 = 45094583

xj ≥ 0, integer, j = 1, . . . , 8.

Running CPLEX 12.2.0.2 with default settings results in no
conclusion after over 7 hours and 2 billion nodes, as illustrated in
Node Log #7.

However, note that all the coefficients in the model are very
close to integer multiples of the coefficient of x1. Therefore, we can
separate the left hand side into the part that is an integer multiple
of this coefficient, and the much smaller remainder terms:

13429 (x1 + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 4x7 + 5x8)  
x̂

(19)

−8x2 − 3x3 − 7x4 − 6x5 − 5x6 − 2x7 − 4x8 (20)
= 3358 ∗ 13429 + 1 = 3359 ∗ 13429 − 13428. (21)

This constraint resembles the one fromwhichwepreviously de-
rived themixed integer rounding cut. But, instead of separating the
integer and fractional components, we separate the components
that are exact multiples of the coefficient of x1 from the remain-
ing terms. We now perform the disjunction on x̂ in an analogous
manner, again using the nonnegativity of the variables.

x̂ ≤ 3358
⇒ −8x2 − 3x3 − 7x4 − 6x5 − 5x6 − 2x7 − 4x8  

≤0

≥ 1. (22)

Thus, if x̂ ≤ 3358, the model is infeasible. Therefore,
infeasibility implies that x̂ ≥ 3359 is a valid cut. We can derive
an additional cut from the other side of the disjunction on x̂:

x̂ ≥ 3359 ⇒ −8x2 − 3x3 − 7x4 − 6x5 − 5x6 − 2x7 − 4x8
≤ −13428. (23)

This analysis shows that constraints (24) (using the infeasibility
argument above) and (25) (multiplying (23) through by −1) are
globally valid cuts.

x1 + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 4x7 + 5x8 ≥ 3359 (24)
8x2 + 3x3 + 7x4 + 6x5 + 5x6 + 2x7 + 4x8 ≥ 13428. (25)

Adding these cuts enables CPLEX 12.2.0.2 to easily identify that the
model is infeasible (see Node Log #8). Summarizing this example,
concepts (iv) and (v), the use of disjunctions and exploiting
infeasibility, helped generate cuts that turned a challenging MIP
into one that was easily solved.

The second practical example we consider is a rather large
maximization problem, and illustrates concepts (ii) and (v): the
optimization of one or more related models and the exploitation
of infeasibility, respectively. The example involves a collection of n
objects with some measure of distance between them. The model
selects k < n of the objects in a way that maximizes the sum of
the distances between the selected object, i.e., the k most diverse
objects are selected. The most direct model formulation involves
binary variables and a quadratic objective. Let dij ≥ 0 be the
known distance between object i and object j, and let xi be a

binary variable that is 1 if object i is selected, and 0 otherwise. The
formulation follows:

(MIQP) max
n

i=1

n
j=i+1

dijxixj

subject to
n

j=1

xj ≤ k

xj binary.

Because this article focuses on linear and linear-integer
models, we consider an equivalent linear formulation that
recognizes that the product of binary variables is itself a binary
variable [24]. We replace each product of binaries xixj in (MIQP)

with a binary variable zij, and add constraints to express the
relationship between x and z in a mixed integer linear program
(MILP):

(MILP)max
n

j=1

n
i=1
i<j

dijzij (26)

subject to
n

j=1

xj ≤ k (27)

zij ≤ xi ∀ i, j (28)

zij ≤ xj ∀ i, j (29)

xi + xj ≤ 1 + zij ∀ i, j (30)

xj, zij binary ∀ i, j. (31)

The constraints (28)–(30) exist for indices (i, j), i < j because the
selection of both i and j is equivalent to the selection of both j and
i. Hence, the model only defines zij variables with i < j. Note that if
xi or xj = 0, then constraints (28) and (29) force zij to 0, while (30)
imposes no restriction on zij. Similarly, if both xi and xj = 1, (28)
and (29) impose no restriction on zij, while (30) forces zij to 1. So,
regardless of the values of xi and xj, zij = xixj, and we can replace
occurrences of xixj with zij to obtain the linearized reformulation
above.

This linearized model instance with n = 60 and k = 24
possesses 1830 binary variables and 5311 constraints. Due to the
large branch-and-bound tree resulting from this instance, we set
CPLEX’s file parameter to instruct CPLEX to efficiently swap the
memory associated with the branch-and-bound tree to disk. This
enables the run to proceed further than with default settings
in which CPLEX stores the tree in physical memory. All other
parameter settings remain at defaults, so CPLEX makes use of
all four available processors. CPLEX runs for just over four hours
(see Node Log #9), terminating when the size of the swap file
for the branch-and-bound tree exceeds memory limits, i.e., at the
point at which CPLEX has processed over 4 million nodes and the
solution has an objective value of 3483.0000, proven to be within
51.32% of optimal. This level of performance indicates significant
potential for improvement. Althoughwe do not provide the output
here, the original MIQP formulation in (MIQP) performs even
worse.

Experimentation with non-default parameter settings as de-
scribed in Section 3 yieldsmodest performance improvements, but
does not come close to enabling CPLEX to find an optimal solution
to the model.

We carefully examine a smaller model instance with n = 3 and
k = 2 to assess how removing integrality restrictions yields an
artificially high objective function value:

30 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32

Node Log #7

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

...
2054970910 13066 0.0000 1 0.0000 25234328

Elapsed real time = 27702.98 sec. (tree size = 2.70 MB, solutions = 0)
2067491472 14446 0.0000 1 0.0000 25388082
2080023238 12892 0.0000 1 0.0000 25542160
2092548561 15366 0.0000 1 0.0000 25696280

...

Total (root+branch&cut) = 28302.29 sec.

MIP - Node limit exceeded, no integer solution.
Current MIP best bound = 0.0000000000e+00 (gap is infinite)
Solution time = 28302.31 sec. Iterations = 25787898 Nodes = 2100000004 (16642)

Node Log #8

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 0.0000 1 0.0000 1
0 0 0.0000 2 MIRcuts: 1 3
0 0 0.0000 2 MIRcuts: 1 5
0 0 cutoff 5

Elapsed real time = 0.23 sec. (tree size = 0.00 MB, solutions = 0)
Mixed integer rounding cuts applied: 1
...
MIP - Integer infeasible.
Current MIP best bound is infinite.
Solution time = 0.46 sec. Iterations = 5 Nodes = 0

Node Log #9

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

* 0+ 0 0.0000 2247 ---
0 0 7640.4000 1830 0.0000 7640.4000 2247 ---

* 0+ 0 19.0000 7640.4000 2247 ---

...

* 0+ 0 3185.0000 7445.4286 2286 133.77%
0 2 7628.5333 1829 3185.0000 7445.4286 2286 133.77%

Elapsed real time = 4.09 sec. (tree size = 0.01 MB, solutions = 8)
35 37 6579.2308 1378 3185.0000 7445.4286 6615 133.77%

...
4332613 3675298 4936.6750 1099 3483.0000 5270.8377 1.78e+08 51.33%
4341075 3682375 3889.4643 714 3483.0000 5270.4545 1.79e+08 51.32%

...
CPLEX Error 1803: Failure on temporary file write.

Solution pool: 25 solutions saved.

MIP - Error termination, no tree: Objective = 3.4830000000e+03
Current MIP best bound = 5.2704102564e+03 (gap = 1787.41, 51.32%)
Solution time = 15031.18 sec. Iterations = 178699476 Nodes = 4342299 (3682262)

E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32 31

max 3z12 + 4z13 + 5z23
subject to x1 + x2 + x3 ≤ 2
z12 − x1 ≤ 0
z12 − x2 ≤ 0
x1 + x2 ≤ 1 + z12
z13 − x1 ≤ 0
z13 − x3 ≤ 0
x1 + x3 ≤ 1 + z13
z23 − x2 ≤ 0
z23 − x3 ≤ 0
x2 + x3 ≤ 1 + z23
x1, x2, x3, z12, z13, z23 binary.

The optimal solution to this MILP consists of setting z23 = x2 =

x3 = 1, yielding an objective value of 5. By contrast, relaxing
integrality enables a fractional solution consisting of setting all x
and z variables to 2/3, yielding a much better objective value of 8.
Note that the difference between theMILP and its relaxation occurs
when the zij variables assume values strictly less than 1. When any
zij = 1, the corresponding xi and xj variables are forced to 1 by
constraints (28) and (29) for both the MILP and its LP relaxation.
By contrast, when 0 ≤ zij < 1, xi or xj must assume a value of 0 in
the MILP, but not in the relaxation. Thus, in the LP relaxation, we
can set more of the z variables to positive values than in the MILP.
This raises the question of howmany z variables we can set to 1 in
the MILP. In the optimal solution, only z23 assumes a value of 1. So,
can we set two of the z variables to 1 and find a feasible solution
to the MILP? To answer this question, pick any two z variables and
set them to 1. Since each z variable is involved in similar types of
constraints, without loss of generality, we set z12 and z13 to 1. From
the constraints:

z12 − x1 ≤ 0
z12 − x2 ≤ 0
z13 − x1 ≤ 0
z13 − x3 ≤ 0

we see that x1, x2, and x3 must all be set to 1. But this violates
the constraint that the x variables can sum to at most 2. For
any of the other two distinct pairs of z variables in this smaller
model, all three x variables are forced to a value of 1 since for the
MILP:

zij > 0 ⇐⇒ xi = xj = 1. (32)

Thus, any distinct pair of z variables set to 1 forces three x variables
to 1, violating the constraint that x1 + x2 + x3 ≤ 2. Hence, in any
integer feasible solution, at most one z variable can be set to 1. This
implies that the constraint:

z12 + z13 + z23 ≤ 1

is a globally valid cut. And, we can see that it cuts off the optimal
solution of the LP relaxation consisting of setting each z variable to
2/3.

We now generalize this to (MILP), in which the x variables can
sum to at most k. We wish to determine the number of z variables
we can set to 1 in (MILP)without forcing the sum of the x variables
to exceed k. Suppose we set k of the x variables to 1. Since (32)
holds for all pairs of x variables, without loss of generality, consider
an integer feasible solution with x1 = x2 = · · · = xk = 1,
and xk+1 = · · · = xn = 0. From (32), zij = 1 if and only if
1 ≤ i ≤ k, 1 ≤ j ≤ k, and i < j. We can therefore count the
number of z variables that equal 1 when x1 = x2 = · · · = xk = 1.
Specifically, there are k(k − 1) pairs (i, j) with i ≠ j, but only half
of them have i < j. So, at most k(k−1)/2 of the zij variables can be
set to 1 when k of the x variables are set to 1. In other words,

n
i=1

n
j=i+1

zij ≤ k(k − 1)/2

is a globally valid cut.
Adding this cut to the instance with n = 60 and k = 24

enables CPLEX to solve the model to optimality in just over 2
hours and 30 min on the same machine using settings identical to
those from the previous run without the cut. (See Node Log #10.)
Note that the cut tightened the formulation significantly, as can be
seen by the much better root node objective value of 4552.4000,
which compares favorably to the root node objective value of
7640.4000 on the instance without the cut. Furthermore, the cut
enabled CPLEX to add numerous zero-half cuts to the model that it
could notwith the original formulation. The zero-half cuts resulted
in additional progress in the best node value that was essential
to solving the model to optimality in a reasonable amount of
time.

Given the modest size of the model, a run time of 2.5 hours to
optimality suggests potential for additional improvements in the
formulation. However, by adding one globally valid cut, we see
a dramatic performance improvement nonetheless. Furthermore,
the derivation of this cut draws heavily on the guidelines proposed
for tightening the formulation. By using a small instance of
the model, we can easily identify how removal of integrality
restrictions enables the objective to improve. Furthermore, we use
infeasibility to derive the cut: by recognizing that the simplified
MILP model is infeasible when z12 + z13 + z23 ≥ 2, we show that
z12 + z13 + z23 ≤ 1 is a valid cut.

5. Conclusion

Today’s hardware and software allowpractitioners to formulate
and solve increasingly large and detailed models. However,
optimizers have become less straightforward, often providing
many methods for implementing their algorithms to enhance
performance given various mathematical structures. Additionally,
the literature regarding methods to increase the tractability of
mixed integer linear programming problems contains a high
degree of theoretical sophistication. Both of these facts might lead
a practitioner to conclude that developing the skills necessary
to successfully solve difficult mixed integer programs is too
time consuming or difficult. This paper attempts to refute that
perception, illustrating that practitioners can implement many
techniques for improving performance without expert knowledge
in the underlying theory of integer programming, thereby enabling
them to solve larger and more detailed models with existing
technology.

Acknowledgments

Dr. Klotz wishes to acknowledge all of the CPLEX practitioners
over the years, many of whom have provided the wide variety of
models that revealed the guidelines described in this paper. He
also wishes to thank the past and present CPLEX development,
support, and sales and marketing teams who have contributed
to the evolution of the product. Professor Newman wishes to
thank former doctoral students Chris Cullenbine, Brian Lambert,
Kris Pruitt, and Jennifer Van Dinter at the Colorado School of
Mines for their helpful comments; she also wishes to thank her
colleagues Jennifer Rausch (Jeppeson, Englewood, Colorado) and
Professor Josef Kallrath (BASF-AG, Ludwigshafen, Germany) for
helpful comments on an earlier draft. Both authors thank an
anonymous referee for his helpful comments that improved the
paper.

32 E. Klotz, A.M. Newman / Surveys in Operations Research and Management Science 18 (2013) 18–32

Node Log #10

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

* 0+ 0 0.0000 1161 ---
0 0 4552.4000 750 0.0000 4552.4000 1161 ---

* 0+ 0 6.0000 4552.4000 1161 ---
...
* 0+ 0 3477.0000 3924.7459 37882 12.88%

0 2 3924.7459 1281 3477.0000 3924.7459 37882 12.88%
Elapsed real time = 51.42 sec. (tree size = 0.01 MB, solutions = 31)

1 3 3919.3378 1212 3477.0000 3924.7459 39886 12.88%
2 4 3910.8201 1243 3477.0000 3924.7459 42289 12.88%
3 5 3910.8041 1144 3477.0000 3919.3355 44070 12.72%

...
125571 7819 cutoff 3590.0000 3599.7046 60456851 0.27%

Elapsed real time = 9149.19 sec. (tree size = 234.98 MB, solutions = 43)
Nodefile size = 196.38 MB (168.88 MB after compression)
*126172 7231 integral 0 3591.0000 3599.7046 60571398 0.24%
127700 5225 cutoff 3591.0000 3598.0159 60769494 0.20%
131688 6 cutoff 3591.0000 3592.5939 60980430 0.04%

Zero-half cuts applied: 2244

Solution pool: 44 solutions saved.

MIP - Integer optimal solution: Objective = 3.5910000000e+03
Solution time = 9213.79 sec. Iterations = 60980442 Nodes = 131695

Both authors wish to remember Lloyd Clarke (February 14,
1964–September 20, 2007). His departure from the CPLEX team
had consequences that extended beyond the loss of an important
employee and colleague.

References

[1] R. Bixby, E. Rothberg, Progress in computational mixed integer programming
— a look back from the other side of the tipping point, Annals of Operations
Research 149 (1) (2007) 37–41.

[2] IBM, 2012. ILOG CPLEX. Incline Village, NV.
[3] Gurobi, 2012. Gurobi Optimizer. Houston, TX.
[4] MOPS, 2012. MOPS. Paderborn, Germany.
[5] MOSEK, 2012. MOSEK Optimization Software. Copenhagen, Denmark.
[6] FICO, 2012. Xpress-MP Optimization Suite. Minneapolis, MN.
[7] E. Klotz, A. Newman, Practical guidelines for solving difficult linear programs,

Surveys in Operations Research and Management Science 18 (1–2) (2013)
1–17.

[8] R. Rardin, Optimization in Operations Research, Prentice Hall, 1998, Ch. 6.
[9] W. Winston, Operations Research: Applications and Algorithms, Brooks/Cole,

Thompson Learning, 2004.
[10] M. Savelsbergh, Preprocessing and probing techniques for mixed integer

programming problems, INFORMS Journal on Computing 6 (4) (1994)
445–454.

[11] E. Balas, An additive algorithm for solving linear programs with zero-one
variables, Operations Research 13 (4) (1965) 517–546.

[12] E. Danna, Performance variability inmixed integer programming. Presentation
at MIP 2008 Workshop, Columbia University, 2008.

[13] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. Bixby, E. Danna,
G. Gamrath, A. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D.
Salvagnin, D. Steffy, K. Wolter, MIPLIB 2010, Mathematical Programming
Computation 3 (2) (2011) 103–163.
URL http://mpc.zib.de/index.php/MPC/article/view/56/28.

[14] W. Lambert, A. Brickey, A. Newman, K. Eurek, Open pit block sequencing
formulations: a tutorial, Interfaces (in press).

[15] E. Balas, Disjunctive programming: properties of the convex hull of feasible
points, Discrete Applied Mathematics 89 (1998) 3–44.

[16] T. Achterberg, Constraint Integer Programming (Ph.D. Dissertation). Technical
University Berlin, Berlin, 2007.

[17] L. Wolsey, Integer Programming, Wiley, 1998.
[18] D. Bertsimas, S. Stock Patterson, The air traffic flowmanagement problemwith

enroute capacities, Operations Research 46 (3) (1998) 406–422.
[19] J. Camm, A. Raturi, S. Tadisina, Cutting big M down to size, Interfaces 20 (5)

(1990) 61–66.
[20] Grötschel (Ed.), The Sharpest Cut: The Impact of Manfred Padberg and His

Work, in: MPS-SIAM Series on Optimization, 2004.
[21] S. Rebennack, G. Reinelt, P. Pardalos, A tutorial on branch and cut

algorithms for the maximum stable set problem, International Transactions
in Operational Research 19 (1–2) (2012) 161–199.
URL http://dx.doi.org/10.1111/j.1475-3995.2011.00805.x.

[22] G. Cornuejols, R. Urbaniak, R.Weismantel, L.Wolsey, Decomposition of integer
programs and of generating sets, in: Proceedings of the 5th Annual European
Symposium on Algorithms 1284, in: Lecture Notes in Computer Science, 1997,
pp. 92–102.

[23] K. Aardal, A. Lenstra, Hard equality constrained integer knapsacks, Mathemat-
ics of Operations Research 3 (29) (2004) 724–738.

[24] L. Watters, Reduction of integer polynomial programming to zero-one linear
programming problems, Operations Research 15 (6) (1967) 1171–1174.

http://mpc.zib.de/index.php/MPC/article/view/56/28
http://dx.doi.org/10.1111/j.1475-3995.2011.00805.x

Surveys in Operations Research and Management Science 18 (2013) 33–53

Contents lists available at ScienceDirect

Surveys in Operations Research and Management Science

journal homepage: www.elsevier.com/locate/sorms

Review

The fundamental risk quadrangle in risk management, optimization and
statistical estimation✩

R. Tyrrell Rockafellar a, Stan Uryasev b,∗

a University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350, United States
b University of Florida, ISE Department, P.O. Box 116595, 303 Weil Hall, Gainesville, FL 32611-6595, United States

a r t i c l e i n f o

Article history:
Received 3 March 2013
Accepted 3 March 2013

a b s t r a c t

Random variables that stand for cost, loss or damage must be confronted in numerous situations. Dealing
with them systematically for purposes in risk management, optimization and statistics is the theme of
this presentation, which brings together ideas coming from many different areas.

Measures of risk can be used to quantify the hazard in a random variable by a single value which
can substitute for the otherwise uncertain outcomes in a formulation of constraints and objectives. Such
quantifications of risk can be portrayed on a higher level as generated from penalty-type expressions
of ‘‘regret’’ about the mix of potential outcomes. A trade-off between an up-front level of hazard and the
uncertain residual hazard underlies that derivation. Regret is themirror image of utility, a familiar concept
for dealing with gains instead of losses, but regret concerns hazards relative to a benchmark. It bridges
between risk measures and expected utility, thereby reconciling those two approaches to optimization
under uncertainty.

Statistical estimation is inevitably a partner with risk management in handling hazards, which may
be known only partially through a data base. However, a much deeper connection has come to light
with statistical theory itself, in particular regression. Very general measures of error can associate with
any hazard variable a ‘‘statistic’’ along with a ‘‘deviation’’ which quantifies the variable’s nonconstancy.
Measures of deviation, on the other hand, are paired closely withmeasures of risk exhibiting ‘‘aversity’’. A
direct correspondence can furthermore be identified between measures of error and measures of regret.
The fundamental quadrangle of risk developed here puts all of this together in a unified scheme.

© 2013 Published by Elsevier B.V.

Contents

1. Introduction.. 33
2. Some examples showing the breadth of the scheme .. 37
3. The main properties and relationships... 42
4. Further model-promoting results and interpretations.. 45
5. Quadrangle roles in optimization and regression.. 48
6. Probability modeling and the dualization of risk... 50

References... 53

1. Introduction

The challenges of dealing with risk pervade many areas of
management and engineering. The decisions that have to be made
in risky situations must nonetheless confront constraints on their

✩ This research has been supported by the AFOSR grant FA9550-11-1-0258, ‘‘New
Developments in Uncertainty: Linking Risk Management, Reliability, Statistics and
Stochastic Optimization.
∗ Corresponding author. Tel.: +1 352 213 3457.

E-mail addresses: rtr@uw.edu (R.T. Rockafellar), uryasev@ufl.edu (S. Uryasev).

consequences, no matter how uncertain those consequences may
be. Furthermore, the decisions need to be open to comparisons
which enable some kind of optimization to take place.

When uncertainty is modeled probabilistically with random
variables, practical challenges arise about estimating properties of
those random variables and their interrelationships. Information
may come from empirical distributions generated by sampling, or
there may only be databases representing information accumu-
lated somehow or other in the past. Standard approaches to statis-
tical analysis and regression in terms of expectation, variance and
covariancemay then be brought in. But the prospect is now emerg-
ing of a vastly expanded array of tools which can be finely tuned to

1876-7354/$ – see front matter© 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.sorms.2013.03.001

http://dx.doi.org/10.1016/j.sorms.2013.03.001
http://www.elsevier.com/locate/sorms
http://www.elsevier.com/locate/sorms
mailto:rtr@uw.edu
mailto:uryasev@ufl.edu
http://dx.doi.org/10.1016/j.sorms.2013.03.001

34 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

reflect the various ways that risk may be assessed and, at least to
some extent, controlled.

risk R ←→ D deviation
optimization ↑↓ S ↓↑ estimation

regret V ←→ E error

Diagram 1: The Fundamental Risk Quadrangle.

This paper is aimed at promoting and developing such tools in
a new paradigm we call the risk quadrangle, which is shown in
Diagram 1. It brings together several lines of research andmethod-
ology which, until now, been pursued separately in different pro-
fessional areaswith little inkling of their fertile interplay. The ideas
in these areas form such a vast subject that a broad survey with
full references is beyond feasibility. Our contribution here must,
in part, be seen therefore as providing an overview of the connec-
tions, supplemented by instructive examples and the identification
of issues in need of more attention. However, many new facts are
brought to light along with new results and broad extensions of
earlier results.

R(X) provides a numerical surrogate for the overall hazard in X ,
D(X)measures the ‘‘nonconstancy’’ in X as its uncertainty,
E(X)measures the ‘‘nonzeroness’’ in X ,
V(X)measures the ‘‘regret’’ in facing the mix of outcomes of X ,
S(X) is the ‘‘statistic’’ associated with X through E and V .

Diagram 2: The Quantifications in the Quadrangle.

The context is that of random variables that can be thought of
as standing for uncertain ‘‘costs’’ or ‘‘losses’’ in the broadest sense,
not necessarily monetary (with a negative ‘‘cost’’ corresponding
perhaps to a ‘‘reward’’). The language of cost gives the orientation
that we would like the outcomes of these random variables to be
lower rather than higher, or to be held below some threshold. All
sorts of indicators that may provide signals about hazards can be
viewed from this perspective. The quadrangle elements provide
numerical ‘‘quantifications’’ of them (not only finite numbers but
in some cases∞) which can be employed for various purposes.

It will help, in understanding the quadrangle, to begin at the
upper left corner, where R is a so-called measure of risk. The
specific sense of this needs clarification, since there are conflicting
angles to the meaning of ‘‘risk’’. In denoting a random cost by
X and a constant by C , a key question is how to give meaning
to a statement that X is ‘‘adequately’’ ≤C with respect to the
preferences of a decision maker who realizes that uncertainty
might inescapably generate some outcomes of X that are >C . The
role of a risk measure R, in the sense intended here, is to answer
this question by aggregating the overall uncertain cost in X into a
single numerical value R(X) in order to

model ‘‘X adequately ≤ C ’’ by the inequality R(X) ≤ C .

There are familiar ways of doing this. One version could be
that X is ≤C on average, as symbolized by µ(X) ≤ C with µ(X)
the mean value, or in equivalent notation (both are convenient to
maintain), EX ≤ C with EX the expected value. Then R(X) =
µ(X) = EX . A tighter version could be µ(X) + λσ(X) ≤ C with
λ giving a positive multiple of the standard deviation σ(X) so as
to provide a safety margin reminiscent of a confidence level in
statistics; thenR(X) = µ(X)+λσ(X). The alternative idea that the
inequality should hold at least with a certain probability α ∈ (0, 1)

corresponds to qα(X) ≤ C with qα(X) denoting the α-quantile of
X , whereas insisting that X ≤ C almost surely can be written as
sup X ≤ C with sup X standing for the essential supremum of X .
Then R(X) = qα(X) or R(X) = sup X , respectively.1However,
these examples are just initial possibilities among many for which
pros and cons need to be appreciated.

A typical situation in optimization that illustrates the com-
pelling need for measures of risk revolves around a family of ran-
dom ‘‘costs’’ that depend on a decision vector x belonging to a
subset S ⊂ Rn,

Xi(x) for i = 0, 1, . . . ,m, where x = (x1, . . . , xn). (1.1)

The handicap is that x can usually do no more than influence the
probability distribution of each of the ‘‘costs’’. A potential aim in
choosing x from S would be to keep the random variable Xi(x) ade-
quately ≤ci for i = 1, . . . ,m, while achieving the lowest c0 such
that X0(x) is adequately ≤c0. The way ‘‘adequately’’ is modeled
could be different for each i, and the notion of a risk measure pro-
vides the perfect tool. A selection of risk measures Ri that pins
down the intended sense of ‘‘adequately’’ in each case leads a op-
timization problem having the form

choose x ∈ S to minimize R0(X0(x))
subject to Ri(Xi(x)) ≤ ci for i = 1, . . . ,m. (1.2)

Besides pointing the way toward risk-oriented problem formula-
tions to which optimization technology can successfully be ap-
plied, this illustration brings another issue to the foreground. In
selecting a measure of risk Ri, it may not be enough just to rely
on Ri having an appealing interpretation. An important consider-
ation may be whether Ri produces expressions Ri(Xi(x)) that be-
have reasonably as functions of x = (x1, . . . , xn). Axioms laying
out sensible standards for a measure of risk, such the coherency in-
troduced in [1], are vital for that.2

Another idea in dealing with uncertainty in a random variable
X is to quantify its nonconstancy through ameasure of deviationD ,
withD(X) then being a generalization of σ(X). Again, axioms have
to be articulated. The distinction betweenD andR at the top of the
quadrangle is essential, despite a very close connection, because of
differences in axioms and roles played in applications.

Motivation for nonstandard measures of deviation is apparent
in particular in finance because of the heavy concentration
there on variance – or equivalently standard deviation – despite
shortcomings in capturing dangerous ‘‘tail behavior’’ in probability
distributions. In portfolio theory, the rate of return of the portfolio
is a random variable X(x) depending on the vector x that gives the
proportions of various securities included in the portfolio. Bounds
are placed on σ(X(x)) or this quantity is minimized subject to
side conditions on x. Such an approach can be justified when the
random variables have normal distributions, but when the heavy
tail behavior of nonnormal distributions enters the scene, doubts
arise. It may be better then to replace standard deviation by a
different deviationmeasure, which perhaps could even act on X(x)
asymmetrically.3

The introduction of nonstandard deviationmeasuresD in place
of σ brings up the question of whether this might entail some kind
of generalization in statistical theory itself. That is indeed one of the

1 Note that R(X) = sup X gives examples where R(X)might be∞.
2 The axioms will be developed in Section 3 and their consequences for

optimization problems like (1.2) fully pinned down in Section 5.
3 The ‘‘two fund theorem’’ and other celebrated results of portfolio theory

that revolve around standard deviation can be extended in this direction with
CAPM equations replaced by other equations derived from alternative measures of
deviation; cf. [2,3].

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 35

questions our quadrangle scheme is aimed at answering, as will be
explained shortly.4

We turn now to the lower left corner of the quadrangle. In a
measure of regret V , the value V(X) stands for the net displeasure
perceived in the potential mix of outcomes of a random ‘‘cost’’
X which may sometimes be >0 (bad) and sometimes ≤0 (OK or
better).5,6 Regret comes up in penalty approaches to constraints
in stochastic optimization and, in mirror image, corresponds to
measures of ‘‘utility’’ U in a context of gains Y instead of losses
X , which is typical in economics: V(X) = −U(−X), U(Y) =
−V(−Y). Regret obeys V(0) = 0, so in this pairing we have to
focus on utility measures that have U(0) = 0; we say then that U
is ameasure of relative utility. The interpretation is that, in applying
U to Y , we are thinking of Y not as absolute gain but gain relative
to some threshold, e.g., Y = Y0 − B where Y0 is absolute gain and
B is a benchmark.

Focusing on relative utility in this sense is a positive feature
of the quadrangle scheme because it can help to capture the
sharp difference in attitude toward outcomes above or below a
benchmark that is increasingly acknowledged as influencing the
preferences of decision makers.7

Measures of regret V , like measures of deviation D , are
profoundly related to measures of risk R, and one of our tasks
will to bring this all out. Especially important will be a one-to-one
correspondence between measures of deviation and measures of
risk under ‘‘aversity’’, regardless of coherency. A powerful property
of measures of regret, which soon will be discussed, is their ability
to generate measures of risk through trade-off formulas. By means
of such formulas, an optimization problem in the form of (1.2) may
be recast in terms of regret instead of risk, and this can be a great
simplification.8

Furthermore, by revealing a deep connection between risk
measures and utility, regret reconciles the seemingly different
approaches to optimization based on those concepts.

The interesting question already raised, of whether measures
of deviation beyond standard deviation might fit into some larger
development in statistical theory, is our next topic. It brings us
to the lower right corner of the quadrangle, where we speak of
a measure of error E as assigning to a random variable X a value
E(X) that quantifies the nonzeroness in X . Classical examples are
the Lp-norms

∥X∥1 = E|X |, ∥X∥p = [E(|X |p)]1/p for p ∈ (1,∞),

∥X∥∞ = sup |X |, (1.3)

but there is much more to think of besides norms.
Given an error measure E and a random variable X , one can

look for a constant C nearest to X in the sense of minimizing
E(X − C). The resulting minimum ‘‘E-distance’’, denoted by D(X),
turns out to be a deviation measure (under assumptions explained
later). The C value in the minimum, denoted by S(X), can be called
the ‘‘statistic ’’ associated with X by E . The case of E(X) = ∥X∥2
produces S(X) = EX and D(X) = σ(X), but many other examples
will soon be seen.

4 Nonstandard deviation measures are also connected to statistics through
entropy analysis, cf. [4].
5 Regret in this sense is distinct from the notion of regret as ‘‘opportunity loss’’ in

some versions of decision theory.
6 In financial terms, if X and V(X) have units of money, V(X) can be the

compensation deemed appropriate for taking on the burden of the uncertain loss X .
7 Thiswill be discussed inmoredetail in Section 4 in the case of utility expressions

U(Y) = E[u(Y)] for an underlying function u. Having U(0) = 0 corresponds to
having u(0) = 0, which can be achieved by selecting a benchmark and shifting the
graph of a given ‘‘absolute’’ utility so that benchmark point is at the origin of R2 .
8 This is mission of the Regret Theorem in Section 5.

The emergence of a particular deviationmeasureD and statistic
S from the choice of an errormeasure E has intriguing implications
for statistical estimation in the sense of generalized regression.
There is furthermore a deep connection between regression and
an optimization problem like (1.2). The x-dependent random vari-
ables Xi(x) there might be replaced by convenient approximations
X̂i(x) developed through regression, and the particular mode of re-
gression might have significant consequences. We will get back to
this shortly.

The optimization and estimation sides of the quadrangle are
bound together not only through such considerations, but also in
a more direct manner. The rule that projects from E onto D is
echoed by a certainty–uncertainty trade-off formulawhich projects
a regret measure V onto a risk measure R. This formula, in which
C + V(X − C) is minimized over C , generalizes a rule in [5,6],
for VaR–CVaR computations. It extends the insights gained beyond
that by Ben-Tal and Teboulle [7] in a context of expected utility,
and lines up with still broader expressions for risk in [8]. Under a
simple relationship between V and E , the optimal C value in the
trade-off is the same statistic S(X) as earlier, but that conceptual
bond has beenmissed. Nothing has hitherto suggested that ‘‘error’’
in its context of approximation might be inherently related to the
very different concept of ‘‘regret’’ and, through that, to ‘‘utility’’.

Altogether, we arrive in this way at a ‘‘quadrangle’’ of quantifi-
cations having the descriptions in Diagram 2 and the interconnec-
tions in Diagram 3.9 More details will be furnished in Section 3,
after the assumptions needed to justify the relationships have been
explained.

R(X) = EX +D(X), D(X) = R(X)− EX

V(X) = EX + E(X), E(X) = V(X)− EX

R(X) = min
C


C + V(X − C)


, D(X) = min

C


E(X − C)


argmin

C


C + V(X − C)


= S(X) = argmin

C


E(X − C)


Diagram 3: The General Relationships.

The paired arrows on the sides of Diagram 1, in contrast to the
two-way arrows on the top and bottom, correspond to the fact that
the simple formulas in Diagram 3 for getting R and D from V and
E are not uniquely invertible. Antecedents V and E for R and D
always exist, even inmultiplicity,10 so the real issue for inversion is
the identification of natural, nontrivial antecedents. That is a large
topic with many good answers in the examples in Section 2 and
broader principles in Section 3.

More must be said now about how the quadrangle relates to
statistical estimation in the form of regression, and the motivation
coming from that. Broader approaches to regression than classical
‘‘least-squares’’ are not new, but the description to be given here is
unprecedently broad.

Regression is a way of approximating a random variable Y by a
function f (X1, . . . , Xn) of one ormore other randomvariables Xj for
purposes of anticipating outcome properties or trends. It requires
a way of measuring how far the random difference Zf = Y −
f (X1, . . . , Xn) is from0. That, clearly, iswhere errormeasures E can
come in. The norms (1.3) offer choices, but there may be incentive
for using asymmetric error measures E that look at more than just
|Zf |. When Y has cost or hazard orientation, underestimations Y −

9 The ‘‘argmin’’ notation refers to the C values that achieve the ‘‘min’’.
10 For instance V(X) = R(X)+ α|EX | and E(X) = D(X)+ α|EX |with α > 0.

36 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

f (X1, . . . , Xn) > 0 may be more dangerous than overestimations
Y − f (X1, . . . , Xn) < 0.

For an error measure E and a collection C of regression func-
tions f , the basic problem of regression for Y with respect to
X1, . . . , Xn is to

minimize E(Zf) over f ∈ C,

where Zf = Y − f (X1, . . . , Xn). (1.4)

An immediate question that comes to mind is how one such ver-
sion of regression might differ from another and perhaps be bet-
ter for some purpose. We provide a simple but revealing answer.
As long as C has the property that it includes with each f all the
translates f + C for constants C , problem (1.4) has the following
interpretation:

minimize D(Zf) over all f ∈ C such that S(Zf) = 0, (1.5)

where D and S are the deviation measure and statistic associated
with the error measure E . In such generality, and with additional
features as well,11 this is a new result, but it builds in part on our
earlier theorem in [9] for the case of linear regression functions f .

Factor models for simplifying work with random variables or-
dinarily rely on standard least-squares regression, which corre-
sponds here to E being the L2 norm in (1.3), so that D(Zf) is σ(Zf)
and S(Zf) is µ(Zf). Suppose, for instance, that the ‘‘costs’’ in (1.1)
have the form

Xi(x) = gi(x, V1, . . . , Vr)

with respect to random variables Vk. (1.6)

The random variables Vk may have various interdependences
which can be treated by thinking of them as reflecting the
outcomes of certain other, more ‘‘primitive’’, random variables
W1, . . . ,Ws. This can suggest approximating them through regres-
sion as

Vk ≈ V̂k = fk(W1, . . . ,Ws)

for fk ∈ Ck and an error measure Ek, (1.7)

which leads to approximating Xi(x) by

X̂i(x) = gi(x, V̂1, . . . , V̂r) for i = 0, 1, . . . ,m. (1.8)

In the optimization problem (1.2), this replaces the objective and
constraint functions Ri(Xi(x)) by different functions Ri(X̂i(x)).
How will that change the solution? What guarantee is there that
a solution to the altered problem will be close to a solution to the
original problem?

That question has received very little attention so far, although
we raised it in [9] as suggesting that the error measures Ek in (1.7)
should be ‘‘tuned’’ somehow to the quantification of risk by Ri.
We did show there, at least, that if gi(x, V1, . . . , Vm) = x1V1 +

· · · + xmVm, the Ek’s should be the error measure Ei in the same
quadrangle as the risk measure Ri. Then the expressions Ri(Xi(x))
and Ri(X̂i(x)) will be closer to each other as functions of x than
otherwise. Although we do not pursue that further in this survey,
we hope that the quadrangle framework we furnish will help to
stimulate more research on the matter.

In the plan of the paper after this introduction, wewill first pass
in Section 2 to examples of quadrangles that help to underscore
our intentions and provide guidance for theory and applications.
This is a compromise in which we, and the reader, are held back
to some extent by the postponement of precise definitions and
assumptions that only come in Section 3. It is an unusual way
of proceeding, but we take this path from the conviction that
providingmotivation in advance of technical details is essential for
conveying the attractions of this wide-ranging subject.

11 See the Regression Theorem in Section 5. In general, S can assign an interval of
values, so the constraint in (1.5) would better be written as 0 ∈ S(Zf).

Section 3 showcases the Quadrangle Theorem which supports
the formulas and relationships in Diagrams 1–3 and specifies the
key properties of the quantifiers R, D , V and E that propagate
through the scheme. Although some connections have already
been indicated elsewhere, this result is new in its generality and
creation of the entire quadrangle with V and its associated utility
U. Also new in Section 3 in similar degree are the Scaling Theorem,
the Mixing Theorem and the Reverting Theorem, which furnish
means of constructing additional instances of quadrangles from
known ones.

Interpretations and results beyond the basics in Section 3 are
provided in Section 4 as an aid to more specialized applica-
tions. The main contribution there is the Expectation Theorem,
concerned with the ‘‘expectation quadrangles’’ we are about to
describe. In particular, it enables us to justify a number of the ex-
amples in Section 2 and show how they can be extended. Section 5
presents in more detail the role of the risk quadrangle in applica-
tions to optimization, as in problem (1.2), and generalized regres-
sion as in problem (1.4).12 The Convexity Theorem indicates how
‘‘convex dependence’’ of the random variables Xi(x) in (1.1) with
respect to x passes over to convexity of the expressions Ri(Xi(x))
in (1.2) under natural assumptions onRi. The Regret Theorempro-
vides a far-reaching new generalization of a well known device
from [6] for facilitating the solution of optimization problems (1.2)
when Ri is a CVaR risk measure. The Regression Theorem in Sec-
tion 5 handles problem (1.4) on level beyond anything previously
attempted.

Duality will occupy our attention in Section 6. Each of the
quantifiers R, D , E , V , has a dual expression in the presence of
‘‘closed convexity’’, a property wewill build into them in Section 3.
This is presented in the Envelope Theorem. Such dualizations shed
additional light onmodelingmotivations. Although the dualization
of a risk measure R has already been closely investigated, its
advantageous coordination with the dualization of V is new here
together with its echoes in D and E .

Expectation quadrangles. Many examples, but by no means all,
will fall into the category that we call the expectation case of the
risk quadrangle. The special feature in this case is that

E(X) = E[e(X)], V(X) = E[v(X)],
U(Y) = E[u(Y)],

(1.9)

for functions e and v on (−∞,∞) related to each other by

e(x) = v(x)− x, v(x) = e(x)+ x, (1.10)

and on the other hand, v corresponding to relative utility u through

v(x) = −u(−x), u(y) = −v(−y). (1.11)

The V ↔ E correspondence in Diagram 3 holds under (1.9), while
(1.10) ensures that V(X) = −U(−X) and U(Y) = −V(−Y). The
consequences for the S, R and D components of the quadrangle,
as generated by the other formulas in Diagram 3, will be discussed
in Section 4.

Expected utility is a central notion in decision analysis in eco-
nomics and likewise in finance, cf. [10]. Expected error expressions
similarly dominate much of statistics, cf. [11]. Expectation quad-
rangles provide the connection to those bodies of theory in the de-
velopment undertaken here. However, the quadrangle scheme also
reveals serious limitations of the expectation case. Many attractive
examples do not fit into it, as will be clear in the sampling of Sec-
tion 2. Even expressions U(Y) = E[u0(Y − Y0)], giving expected

12 Other issues in statistical ‘‘estimation’’, such as the convergence of approxima-
tions based on sampling are not taken up here despite their great importance in the
long run. This is due to the lack of space and, in some cases, the imperfect state of
current knowledge. Interesting research challenges abound.

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 37

u0-utility relative to a benchmark gain Y0, can fail to be directly rep-
resentable as U(Y) = E[u(Y)] for a utility function u. Departure
from expected utility and expected error is therefore inevitable, if
the quadrangle relationships we are exploring are to reach their
full potential for application. This widening of perspective is an-
other of the contributions we are aiming at here.

2. Some examples showing the breadth of the scheme

Before going into technical details, we will look at an array
of examples aimed at illustrating the scope and richness of the
quadrangle scheme and the interrelationships it reveals. In each
case the elements correspond to each other in the manner of
Diagram 3. Some of the connections are already known but have
not all been placed in a single, comprehensive picture.

The first example ties classical safety margins in the risk
measure format in optimization and reliability engineering to the
standard tools of least-squares regression. It centers on the mean
value of X as the statistic. The scaling factor λ > 0 allows the
safety margin to come into full play: having X adequately ≤C is
interpreted as having µ(X) at least λ standard deviation units≤C .
Through ‘‘regret’’ a link ismade to an associated ‘‘utility’’. However,
as will be seen in Section 3, this quadrangle lacks an important
property of ‘‘coherency’’.

Example 1 (A Mean-based Quadrangle (With λ > 0 as a Scaling
Parameter)).

S(X) = EX = µ(X) = mean
R(X) = µ(X)+ λ σ(X) = safety margin tail risk
D(X) = λ σ(X) = standard deviation, scaled
V(X) = µ(X)+ λ∥X∥2 = L2-regret, scaled
E(X) = λ∥X∥2 = L2-error, scaled.

Regressionwith this E corresponds through (1.5) tominimizing
the standard deviation of the error Zf = Y − f (X1, . . . , Xn) subject
to the mean of the error being 0.

Already here we have an example that is not an expectation
quadrangle. Perhaps that may seem a bit artificial, because the
L2-norm could be replaced by its square. That would produce a
modified quadrangle giving the same statistic:

Example 1′ (Variance Version of Example 1).

S(X) = EX = µ(X)
R(X) = µ(X)+ λ σ 2(X)
D(X) = λ σ 2(X)
V(X) = µ(X)+ λ∥X∥22 = E[v(X)] for v(x) = x+ λx2

E(X) = λ∥X∥22 = E[e(x)] for e(x) = λx2.

However, some properties would definitely change. The first
version has R(X + X ′) ≤ R(X) + R(X ′), which is a rule often
promoted for measures of risk as part of ‘‘coherency’’ (as explained
in Section 3), but this fails for the second version (although
‘‘convexity’’ persists). A new quadrangle variant of Examples 1 and
1′ with potentially important advantages will be introduced in
Example 7.

The next example combines quantile statistics with concepts
coming from riskmanagement in finance and engineering. By tying
‘‘conditional value-at-risk’’, on the optimization side, to quantile
regression (in contrast to least-squares regression) as pioneered in
statistics by Koenker and Bassett [12], it underscores a unity that
might go unrecognized without the risk quadrangle scheme.

The key in this case is provided by the (cumulative) distribu-
tion function FX (x) = prob {X ≤ x} of a random variable X and
the quantile values associated with it. If, for a probability level
α ∈ (0, 1), there is a unique x such that FX (x) = α, that x is the

α-quantile qα(X). In general, however, there are two values to con-
sider as extremes:

q+α (X) = inf{x | FX (x) > α},

q−α (X) = sup{x | FX (x) < α}.
(2.1)

It is customary, when these differ, to take the lower value as ‘‘the’’
α-quantile, noting that, because FX is right-continuous, this is the
lowest x such that FX (x) = α. Here, instead, we will consider the
entire interval between the two competing values as the quantile,

qα(X) = [q−α (X), q
+

α (X)], (2.2)

bearing inmind that this interval usually collapses to a single value.
That approach will fit better with our way of defining a ‘‘statis-
tic’’ by the argmin notation. Also important to understand, in our
context of interpreting X as a ‘‘cost’’ or ‘‘loss’’, is that the notion
of value-at-risk in finance coincides with quantile. There is an up-
per value-at-risk VaR+α (X) = q+α (X) along with a lower value-at-
risk VaR−α (X) = q−α (X), and, in general, a value-at-risk interval
VaRα(X) = [VaR+α (X),VaR

−

α (X)] identical to the quantile interval
qα(X).

Besides value-at-risk, the example coming under consideration
involves the conditional value-at-risk of X at level α ∈ (0, 1) as
defined by

CVaRα(X) = expectation of X in its α-tail, (2.3)

which is also expressible by

CVaRα(X) =
1

1− α

 1

α

VaRτ (X)dτ . (2.4)

The second formula is due to Acerbi [13] in different terminology,
while the first follows the pattern in [5], where ‘‘conditional
value-at-risk’’ was coined.13 Due to applications of risk theory
in areas outside of finance, such as reliability engineering, we
believe it is advantageous to maintain, parallel to value-at-risk
and quantile, the ability to refer to the conditional value-at-risk
CVaRα(X) equally as the superquantile qα(X). We will be helped
here and later by the notation

X = X+ − X− with X+ = max{0, X}, X− = max{0,−X}.

Example 2 (A Quantile-based Quadrangle (at Any Confidence Level
α ∈ (0, 1))).

S(X) = VaRα(X) = qα(X) = quantile
R(X) = CVaRα(X) = qα(X) = superquantile
D(X) = CVaRα(X − EX) = qα(X − EX)

= superquantile-deviation

V(X) =
1

1− α
EX+ = average absolute loss, scaled14

E(X) = E


α

1− α
X+ + X−


= normalized Koenker–Bassett error.

This is an expectation quadrangle with

e(x) =
α

1− α
max{0, x} +max{0,−x},

v(x) =
1

1− α
max{0, x}, u(y) =

1
1− α

min{0, y}.

13 The α-tail distribution of X corresponds to the upper part of the distribution of
X having probability 1 − α. The interpretation of this for the case when FX has a
jump at the α quantile is worked out in [6].
14 Average absolute loss as ‘‘regret’’, and as inspiration for the terminology we are
introducing here more broadly, goes back to [14] in stochastic programming.

38 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

The original Koenker–Bassett error expression differs from the one
here by a positive factor. Adjustment is needed to make it project
to the desired D . With respect to this measure of error, regression
has the interpretation in (1.5) that theα-superquantile (orα-CVaR)
deviation of Zf is minimized subject to the α-quantile of Zf
being 0.

The targeting of average loss as the source of ‘‘regret’’ in Exam-
ple 2 is interesting because of the role that average loss has long
had in stochastic optimization, but also through the scaling feature.
In the past, such scaling might have been thought immaterial, but
this quadrangle shows that it identifies a particular loss quantile
having a special role.

Example 2 confirms the motivations in Section 1 for looking at
entire quadrangles. Consider a stochastic optimization problem in
the form of (1.2). It is tempting, and common in many applica-
tions, to contemplate taking Ri to be a quantile qαi . The constraint
Ri(Xi(x)) ≤ ci would require then that x be chosen so that the ran-
dom ‘‘cost’’ Xi(x) is ≤ci with probability at least αi. However, this
apparently natural approach suffers from the fact that qαi(Xi(x))
may be poorly behaved as a function of x as well as subject to the
indeterminacy, or discontinuity, associated with (2.2). That could
hamper computation and lead to instability of solutions.

An alternative to a quantile would be to take Ri to be a
superquantile q̄αi . The constraint Ri(Xi(x)) ≤ ci, as an expression
of Xi(x) being ‘‘adequately’’ ≤ci, is then more conservative and
has an interpretation in terms of ‘‘buffered probability of failure’’,
cf. [15]. Moreover it is better behaved and able to preserve
convexity of Xi(x)with respect to x, if present. A further advantage
in optimization from such an approach is seen from the projection
from V to R on the left side of the quadrangle:

q̄αi(Xi(x)) ≤ ci ⇐⇒ Ci +
1

1− αi
E[max{0, Xi(x)− Ci}] ≤ ci

for a choice of Ci ∈ R.

Thus, a superquantile (or CVaR) constraint can be reformulated
as something simpler through the introduction of another deci-
sion variable Ci alongside of x.15 In some situations the expectation
term in the reformulation can even be handled through linear pro-
gramming. This first came out in [5], but the point to be empha-
sized here is that such a device is not limited to superquantiles.
The same effect can be achieved with a risk measure Ri and regret
measureVi pair from any quadrangle (with ‘‘regularity’’), replacing
Ri(Xi(x)) ≤ ci by Ci+Vi(Xi(x)−Ci) ≤ ci, and the variable Ci ends up
then in optimality asSi(Xi(x)); see the Regret Theorem in Section 5.

The fact that the D–E side of the quadrangle in Example 2 cor-
responds to quantile regression has important implications aswell.
It was explained in Section 1 that factormodelsmight be employed
to replace Xi(x) by some X̂i(x) through regression, and that evi-
dence suggests selecting for this regression the error measure Ei
in the same quadrangle as the risk measure Ri. It follows that, in
an optimization problem (1.2) with objective and constraints of
superquantile/CVaR type, quantile regression is perhaps most ap-
propriate, at least in some linearmodels,16 and should even be car-
ried out at theαi threshold chosen for each i.17 Another observation
is that quantile regression at level αi turns intominimization of the
superquantile/CVaR deviation measure Dαi(X) = q̄αi(X − EX) for
X = Zf in (1.4). This is laid out in general by the Regression Theo-
remof Section 5. Only the quadrangle scheme is capable of bringing
all this together.

15 Minimizing qα0 (X0(x)) in x converts likewise to minimizing C0 +
1

1−α0
E[max

{0, X0(x)− C0}] in x and C0 .
16 This is a fertile topic for more research.
17 Again, this is an insight applicable not only to Example 2, but to any of the other
quadrangles that will come up.

The special case of Example 2 in which the quantile is the me-
dian is worth looking at directly. It corresponds to the error mea-
sure being the L1-norm in contrast to Example 1, where the error
measure was the L2-norm. This furnishes a statistical alternative
to least-squares regression in which the mean is replaced by the
median, which may in some situations be a better way of center-
ing a random cost.18 Regression comes out then in (1.5) as mini-
mizing the mean absolute deviation of the error random variable
Zf subject to it having 0 as its median.

Example 3 (A Median-based Quadrangle (the Quantile Case for α =
1
2)).

S(X) = VaR1/2(X) = q1/2(X) = median
R(X) = CVaR1/2(X) = q1/2(X)

= ‘‘supermedian’’ (average in median-tail)
D(X) = E|X − q1/2(X)| = mean absolute deviation

V(X) = 2EX+ = L1-regret
E(X) = E|X | = L1-error.

For the sake of comparison, it is instructive to askwhat happens
if the error measure E on the estimation side, and in potential
application to generalized regression, is the L∞-norm. This leads
to our fourth example, which emphasizes the case where X is
(essentially) bounded.

Example 4 (A Range-based Quadrangle (with λ > 0 as a Scaling
Parameter)).

S(X) =
1
2
[sup X + inf X] = center of range of X (if bounded)

R(X) = EX +
λ

2
[sup X − inf X] = range-buffered risk, scaled

D(X) =
λ

2
[sup X − inf X]

= radius of the range of X (maybe∞), scaled
V(X) = EX + λ sup |X | = L∞-regret, scaled
E(X) = λ sup |X | = L∞-error, scaled.

This is not an expectation quadrangle. Having X adequately ≤C
means here that X is kept below C by amargin equal to λ times the
radius of the range of X . The interpretation of regression provided
by (1.5) is that the radius of the range of Zf is minimized subject to
its center being at 0.

The example offered next identifies both as the statistic and as
the risk the ‘‘worst cost’’ associated with X . It can be regarded as
the limit of the quantile-based quadrangle in Example 2 as α→ 1.

Example 5 (A Worst-case-based Quadrangle).

S(X) = sup X = top of the range of X (maybe∞)
R(X) = sup X = yes, the same as S(X)
D(X) = sup X − EX

= span of the upper range of X (maybe∞)

V(X) =

0 if X ≤ 0
∞ if X ≰ 0 = worst-case-regret

E(X) =

E|X | if X ≤ 0
∞ if X ≰ 0 = worst-case-error.

This is another expectation quadrangle but with functions of
unusual appearance:

18 Furthermore, this quadrangle and the other quantile quadrangles in Example 2
will be seen to exhibit the ‘‘coherency’’ that was lacking in Example 1, and for that
matter, Example 1′ .

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 39

e(x) =

−x if x ≤ 0
∞ if x > 0, v(x) =


0 if x ≤ 0
∞ if x > 0,

u(y) =

−∞ if y < 0
0 if y ≥ 0.

The ‘‘range’’ of X here is its essential range, i.e., the smallest closed
interval inwhich outcomesmust liewith probability 1. Thus, in Ex-
ample 5, the inequality R(X) ≤ C gives the risk-measure code for
insisting that X ≤ C with probability 1. The regret measure V(X)
assigns infinite penalty when this is violated, but no disincentive
otherwise. The regression associated with the quadrangle in Ex-
ample 5 is one-sided. It corresponds in (1.5) to minimizing |EZf |
subject to sup Zf = 0.

A major attraction of the risk measure in Example 5 is that, on
the surface at least, it apparently bypasses having to think about
probabilities. This is the central theme of so-called ‘‘robust op-
timization’’.19 However, a generalization can be made in which
some additional probabilistic insights are available, and the ap-
praisal of ‘‘worst’’ is distributed over different visions of the fu-
ture tied to a coarse level of probability modeling. The details will
not be fully understandable until we begin posing risk in the rig-
orous framework of a probability space in Section 3 (and all the
more in Section 6), but we proceed anyway here to a suggestive
preliminary formulation. It depends on partitioning the underlying
uncertainty about the future into several different ‘‘sets of circum-
stances’’ k = 1, . . . , r having no overlap20 and letting

pk = probability of the kth set of circumstances,
with pk > 0, p1 + · · · + pr = 1,

supkX = worst of X under circumstances k,

for k = 1, . . . , r, (2.5)
EkX = conditional expectation of X under circumstances k.

The last implies, of course, that p1E1X + · · · + prErX = EX .

Example 6 (A Distributed-worst-case-based Quadrangle (With Re-
spect to (2.5))).

S(X) = p1sup1X + · · · + prsuprX
R(X) = p1sup1X + · · · + prsuprX = yes, the same as S(X)
D(X) = p1[sup1X − E1X] + · · · + pr [suprX − ErX]

V(X) =

0 if p1sup1X + · · · + prsuprX ≤ 0,
∞ if p1sup1X + · · · + prsuprX > 0

E(X) =

E|p1sup1X + · · · + prsuprX |
if p1sup1X + · · · + prsuprX ≤ 0,
∞ if p1sup1X + · · · + prsuprX > 0.

This novel example is again not an expectation quadrangle.
Moreover, unlike the previous cases, the quantifiers in Example 6
are not ‘‘law-invariant’’, i.e., their effects on X depend on more
than just the distribution function FX . It should be noted that
expectations only enter the elements on the right side of this
quadrangle. As far as optimization is concerned, by itself, there
are no assumptions about probability structure other than the first

19 In that subject, probabilistic assessments typically enter nevertheless through
construction of an ‘‘uncertainty set’’ consisting of the future states or scenarios
deemed worthy of consideration in the worst-case analysis. That uncertainty set
can be identified as theΩ set in the probability-space underpinnings of risk theory
explained in Section 3.
20 Technically this refers to ‘‘events’’ as measurable subsetsΩk of the probability
spaceΩ introduced in the next section. Formore, see also (6.10) andwhat precedes
it. In the context of ‘‘robust optimization’’, one can think of the chosen ‘‘uncertainty
set’’ Ω being partitioned into a number of smaller uncertainty sets Ωk to which
relative probabilities can be assigned. By admitting various degrees of fineness
in the partitioning (fields of sets providing ‘‘filters of information’’), a bridge is
provided between different layers of probability knowledge.

line of (2.5). This can be regarded as a compromise between the
starkness of Example 5 and a full-scale probability model.

We turn now to an example motivated especially from the esti-
mation side. It concerns an expectation quadrangle which interpo-
lates between Examples 1′ and 3 by looking at an error expression
like the one in Huber’s modification of least-squares regression in
order to mollify the influence of outliers. We introduce a scaling
parameter β > 0 and make use of the β-truncation function

Tβ(x) =


β when x ≥ β,
x when − β ≤ x ≤ β,
−β when x ≤ −β.

Example 7 (A Truncated-mean-based Quadrangle (with Scaling
Parameter β > 0)).

S(X) = µβ(X) = value of C such that E[Tβ(X − C)] = 0
R(X) = µβ(X)+ E[v(X − µβ(X))] for v as below
D(X) = E[e(X − µβ(X))] for e as below

V(X) = E[v(X)] with v(x) =


−
β

2
when x ≤ −β

x+
1
2β

x2 when |x| ≤ β

2x−
β

2
when x ≥ β

E(X) = E[e(X)] with e(x) =


|x| −

β

2
when |x| ≥ β

1
2β

x2 when |x| ≤ β

= Huber-type error.

In the limit of µβ(X) as β → ∞, we end up with just EX , as
in Examples 1 and 1′. For the deviation measure D in Example 7,
one can think of 2βD(X) as the β-truncation σ 2

β (X) of σ 2(X).
It approaches that variance as β → ∞. In the corresponding
regression, interpreted through (1.5), σ 2

β (Zf) is minimized subject
toµβ(Zf) = 0 for the error random variable Zf . This contrasts with
minimizing σ 2(Zf) subject to µ(Zf) = 0 in Examples 1 and 1′.

As a quadrangle, Example 7 is brand new. Its noteworthy
feature, as contrasted with the limiting case in Example 1′, is that
its v(x) is a nondecreasing convex function of x.21 In consequence,
V and R will be ‘‘monotonic’’ (as defined in Section 3) and their
dualizations (in Section 6) will fit into a framework of probability
which the dualizations coming out of Example 1′ cannot attain.

The next quadrangle, again in the expectation case, looks very
different. The log-exponential risk measure at the heart of it is
a recognized tool in risk theory in finance,22 but its connection
with a form of generalized regression, by way of the D–E side
of the quadrangle, has not previously been contemplated. As in
Examples 5 and 6, the risk R(X) equals the statistic S(X).

Example 8 (A Log-Exponential-Based Quadrangle).

S(X) = log E[exp X]
= expression dual to Boltzmann–Shannon entropy23

R(X) = log E[exp X] = yes, the same as S(X)
D(X) = log E[exp(X − EX)] = log-exponential deviation
V(X) = E[exp X − 1] = exponential regret ←→ U(Y)

= E[1− exp(−Y)]
E(X) = E[exp X − X − 1] = (unsymmetric) exponential error.

21 And the associated utility u(y)will be a nondecreasing concave function of y.
22 This is called entropic risk in [10].
23 The ‘‘exp’’ notation is adopted so as not to conflict with the convenient use of
‘‘e’’ for error integrands in (1.9).

40 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

Regression here can be interpreted through (1.5) as minimizing
log E[exp(Zf − EZf)] = log E[exp Zf] − EZf subject to log E[exp Zf]
= 0, or equivalently minimizing |EZf | subject to E[exp Zf] = 1
(since the latter implies exp EZf ≤ 1, hence EZf < 0).

The regret V in Example 8 is paired with an expected utility
expression that is commonly employed in finance: we are in the
expectation case with

e(x) = exp x− x− 1, v(x) = exp x− 1,
u(y) = 1− exp(−y).

Such utility pairing is seen also in the coming Example 9, which fits
the expectation case with

e(x) =


log

1
1− x

− x if x < 1

∞ if x ≥ 1,

v(x) =


log

1
1− x

if x < 1

∞ if x ≥ 1,

u(y) =

log(1+ y) if y > −1
−∞ if y ≤ −1.

Example 9 (A Rate-Based Quadrangle).

S(X) = r(X) = unique C ≥ sup X − 1

such that E


1
1− X + C


= 1

R(X) = r(X)+ E

log

1
1− X + r(X)


D(X) = r(X)+ E


log

1
1− X + r(X)

− X


V(X) = E

log

1
1− X


←→ U(Y) = E[log(1+ Y)]

E(X) = E

log

1
1− X

− X

.

We have dubbed this quadrangle ‘‘rate-based’’ because, in the
utility connection, log(1 + y) is an expression applied to a rate of
gain y (which of necessity is>−1); cf. [16, Chapter 15], for the role
of this in finance. Correspondingly in log 1

1−x , we are dealing with
a rate of loss.

The next two examples in this section lie again outside
the expectation case and present a more complicated picture
where error and regret are defined by an auxiliary operation
of minimization. The first concerns ‘‘mixed’’ quantiles/VaR and
superquantiles/CVaR. The idea, from the risk measure perspective,
is to study expressions of the type

R(X) =
 1

0
CVaRα(X)dλ(α) (2.6)

for any weighting measure λ on (0, 1) (nonnegative with total
measure 1). In particular, if λ is comprised of atoms with weights
λk > 0 at points αk for k = 1, . . . , r , with λ1 + · · · + λr = 1, one
gets

R(X) = λ1CVaRα1(X)+ · · · + λrCVaRαr (X). (2.7)

The question is whether this can be placed in a full quadrangle in
the format of Diagrams 1–3.

Incentive comes from the fact that such risk measures have a
representation as ‘‘spectral measures’’ in the sense of [13], which

capture preferences in terms of ‘‘risk profiles’’.24 We proved in [21,
Proposition 5] (echoing our working paper [22]) that, as long as
the weighting measure λ satisfies

 1
0 (1 − α)

−1dλ(α) < ∞, the
risk measure in (2.7) can equivalently be expressed in the form

R(X) =
 1

0
VaRτ (X)φ(τ)dτ

with φ(τ) =

(0,τ]

(1− α)−1dλ(α), (2.8)

where the function φ, defined on (0, 1), gives the risk profile.25

The risk profile for a single ‘‘unmixed’’ risk measure CVaRα is
the function φα that has the value 1/(1 − α) on [α,∞) but 0 on
(0, α); this corresponds to formula (2.4). Moreover the risk profile
for a weighted CVaR sum as in (2.7) would be the step function
φ = λ1φα1 + · · · + λrφαr .

Although the quadrangle that would serve for a general weight-
ing measure in (2.6) is still a topic of research, the special case in
(2.7) is accessible from the platform of [9], which will be widened
in Section 4 (in the Mixing Theorem).

Example 10 (A Mixed-Quantile-based Quadrangle (For any Confi-
dence Levels αi ∈ (0, 1) and Weights λk > 0,

r
k=1 λk = 1)).

S(X) =
r

k=1

λkqαk(X) =
r

k=1

λkVaRαk(X)

= a mixed quantile26

R(X) =
r

k=1

λkqαk(X) =
r

k=1

λkCVaRαk(X)

= a mixed superquantile

D(X) =
r

k=1

λkqαk(X − EX)

=

r
k=1

λkCVaRαk(X − EX)

= the corresponding mixture of
superquantile deviations

V(X) = min
B1,...,Br


r

k=1

λkVαk(X − Bk) |

r
k=1

λkBk = 0


= a derived balance of the regrets

Vαk(X) =
1

1− αk
EX+

E(X) = min
B1,...,Br


r

k=1

λkEαk(X − Bk) |

r
k=1

λkBk = 0


= a derived balance of the errors

Eαk(X) = E


αk

1− αk
X+ + X−


.

24 Such profiles occur in ‘‘dual utility theory’’, a subject addressed by Yaari [17]
and Roell [18] and recently revisited with greater rigor by Dentcheva and
Ruszczyński [19]. Their integrals are the ‘‘concave distortion’’ functions seen in
finance and insurance theory, cf. [10,20].
25 This function φ is right-continuous and nondecreasing with φ(0+) = 0,
φ(1−) <∞ and

 1
0 φ(τ)dτ = 1. Conversely, any function φ with those properties

arises from a unique choice of λ as described. The cited sources have a reversed
formula due to X being gain-oriented instead of loss-oriented, as here.
26 This kind of sum, in which some of the terms could be intervals, is to be
interpreted in general as referring to all results obtained by selecting particular
values within those intervals.

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 41

The case of a general weighting measure may be approximated
this way arbitrarily closely, as can very well be seen through the
corresponding risk profiles. When the measure is concentrated in
finitelymanypoints, the corresponding profile functionφ in (2.8) is
a step function, and vice versa, as alreadynoted. An arbitrary profile
function φ (fulfilling the conditions indicated above in a footnote)
can be approximated by a profile function that is a step function.

A highly interesting use for the quadrangle of Example 10 is the
mixed quantile approximation of a superquantile. According to (2.4),
the value q̄α(X) = CVaRα(X) can be obtained by calculating the
integral of qτ (X) = VaRτ (X) over τ ∈ [α, 1]. Classical numerical
approaches introduce a finite subdivision of the interval [α, 1] and
replace the integrand by a nearby step function or piecewise linear
function based on the quantiles marking that subdivision. It is
easy to see that the value of the integral for that approximated
integrand is actually a mixed quantile expression. The conclusion
is that versions of the quadrangle of Example 10 can serve as
approximations to a superquantile-based quadrangle parallel to
the quantile-based quadrangle of Example 2.27 In this manner,
superquantile regression, in which the statistic is a superquantile
instead of a quantile, can be carried out.

Although the mixed superquantile/CVaR risk measures R in
Example 10 have a well recognized importance in expressing
preferences toward risk, through the profiles explained above,28
the identification in this quadrangle of a corresponding ‘‘optimally
mixed’’ regret measure V for such R is new. The associated error
measure E is the one thereby indicated for use in regression
approximations where this kind of risk measure is involved.

It is worth emphasizing that the min expressions for V and E
in Example 10 are no impediment at all in practice when applied
to optimization or regression. For instance, the trick explained
after Example 2 for simplifying a superquantile/CVaR constraint
through the introduction of an additional decision variable works
here aswell. The only difference is that stillmore decision variables
corresponding to the B’s in the quadrangle are introduced, too.

The following example likewise offers something new as far
as risk measures and potential applications in regression are
concerned, although the ‘‘statistic’’ in question has already come
up in mortgage pipeline hedging; see [24].

Example 11 (A Quantile-Radius-Based Quadrangle (For any α ∈
(1/2, 1) and λ > 0)).

S(X) =
1
2
[qα(X)− q1−α(X)] =

1
2
[VaRα(X)− VaR1−α(X)]

= the α-quantile radius of X, or
1
2
-two-tail-VaRα of X

R(X) = EX +
λ

2
[qα(X)+ qα(−X)]

= EX +
λ

2
[CVaRα(X)+ CVaRα(−X)]

= reverted CVaRα, scaled

D(X) =
λ

2
[qα(X)+ qα(−X)]

=
λ

2
[CVaRα(X)+ CVaRα(−X)]

= the α-superquantile radius of X, scaled

V(X) = EX +min
B


λ

2(1− α)
E [[B+ X]+ + [B− X]+]− B


= α-quantile-radius regret in X, scaled

27 In [23], direct expressions for the elements of this quadrangle are produced.
28 See also the theoretical developments in [10, Chapter 4.5].

E(X) =
λ

2(1− α)
min

B
E [[B+ X]+ + [B− X]+]

= α-quantile-radius error in X, scaled.

This example will be justified and extended in Section 3 (through
the Reverting Theorem).

As the final example in this section, we offer a generalization of
Example 2 to the ‘‘higher-ordermoment riskmeasures’’ introduced
in [8] and further analyzed recently in [25]. The ‘‘quantile’’
terminology does not come from those works and is only imposed
here in suggestion of the strong parallels with the earlier quantile-
based quadrangle, which would be the case where p = 1.

Example 12 (A Higher-Order Quantile-Based Quadrangle (For α ∈
(0, 1), p ∈ (1,∞))).

S(X) = q(p)α (X) = p-moment quantile

R(X) = q(p)α (X) = p-moment superquantile

D(X) = q(p)α (X − EX) = p-moment superquantile-deviation

V(X) =
1

1− α
∥X+∥p = p-normed absolute loss, scaled

E(X) =
1

1− α
∥X+∥p − EX = p-moment quantile error.

The p-moment quantile q(p)α (X) is known to be characterized by the
equation

(1− α)p−1 = ∥(X − q(p)α (X))+∥p−1/∥(X − q(p)α (X))+∥p.

For this and other properties, see [8].
What considerations have to be faced in constructing further

quadrangle examples? For instance, is there a full quadrangle with
R(X) = EX , or with R(X) = VaRα(X) = qα(X)? The answer is
yes in both cases, provided that VaRα(X) and qα(X) (which can be
intervals in our setting) are replaced by VaR−α (X) and q−α (X), say,
but the resulting quadrangles are ‘‘not interesting’’. For R(X) =
EX , we must have D(X) ≡ 0 in accordance with Diagram 3. An
associatedmeasure of error would be E(X) = |EX |, which is paired
with V(X) = EX + |EX | = 2max{0, EX}. Then S(X) = EX and
offers us nothing new.

For R(X) = VaR−α (X), on the other hand, we have D(X) =
VaR−α (X − EX) and could take E(X) = VaR−α (X − EX) + |EX | and
correspondingly V(X) = VaR−α (X)+ 2max{0, EX}. However, then
we merely have S(X) = EX . Some different and more interesting
V(X)might project onto R(X) = VaR−α (X) through the formula in
Diagram 3, but this remains to be seen.29

In a similar vein, it might be wondered whether the expression
VaRα(X) − VaR1−α(X) appearing as the statistic of Example 10
could serve as the deviation measure D(X) in some quadrangle,
since it is nonnegative and vanishes for constant X . Again the
answer is yes, but perhaps only trivially.

Anyway, the most important guideline for additional quadran-
gle examples is that the quantifiers must fit with the descriptions
in Diagram 2, which have yet to be fleshed out with appeals to spe-
cific mathematical properties. That is our task in the coming sec-
tion. Those properties have to make sense in applications and lead
to a sturdy methodology, and the real trouble with R(X) = EX
and R(X) = VaR−α (X) as measures of risk is that they fall short of
meeting such a standard. The Quadrangle Theorem of the coming
Section 3, our central result, will therefore not apply to them.

29 No claim is made about there being a unique E projecting onto some D , or
a unique V projecting onto some R, and indeed that must not be hoped for. The
real issue instead is that of determining an ‘‘natural’’ antecedent with valuable
characteristics. For instance, any risk measure R can be projected from V(X) =
R(X)+ λ|EX | and any deviation measure from E(X) = D(X)+ λ|EX | for arbitrary
λ > 0, with the pointless consequence that S(X) = EX .

42 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

3. The main properties and relationships

This section is devoted to laying a rigorous foundation for the
elements of the risk quadrangle and their interconnections. It also
furnishes tools for generating additional quadrangles from given
ones.

Inworkingwith randomvariableswe adopt the standardmodel
in probability theory, which interprets them as functions on a
probability space. Specifically, we suppose there is an underlying
space Ω with elements ω standing for future states, or scenar-
ios, along with a measure which assigns probabilities to various
subsets of Ω . There is no loss of generality in this, but technicali-
ties come in which we wish to avoid getting too occupied with at
present.30 Random variables from now on are functions X : Ω →
R, but we restrict attention to those for which E[X2

] <∞, indicat-
ing this by X ∈ L2(Ω). Here E is the expectation with respect to
the background probability measure onΩ .31

Any X ∈ L2(Ω) also has E|X | < ∞, so that EX is well de-
fined and finite. Furthermore, the variance σ 2(X) = E[X − EX]2
and its square root, the standard deviation σ(X), are well defined
and finite.32 These expressions characterize the natural (‘‘strong’’)
convergence in L2(Ω) of a sequence of random variables Xk to a
random variable X:

L2- lim
k→∞

Xk
= X ⇐⇒ lim

k→∞
∥Xk
− X∥2 = 0

⇐⇒ lim
k→∞

E[Xk
− X] = 0 and

lim
k→∞

σ(Xk
− X) = 0. (3.1)

In many applications Ω may consist of finitely many elements
ω, each having a positive probability weight. The choice of norm
makes no difference then, because L2(Ω) is finite-dimensional.33

The quantifiers R, D , V and E , all of which assign numerical
values, possibly including +∞,34 to random variables X , are said
to be ‘‘functionals’’ onL2(Ω). Some of the properties that come up
may be shared, so it is expedient to state them in terms of a general
functional F : L2(Ω)→ (−∞,∞]:

• F is convex if F ((1− τ)X + τX ′) ≤ (1− τ)F (X)+ τF (X ′) for
all X, X ′, and τ ∈ (0, 1).35
• F is positively homogeneous if F (0) = 0 and F (λX) = λF (X)

for all λ ∈ (0,∞).
• F is subadditive if F (X + X ′) ≤ F (X)+ F (X ′) for all X, X ′.
• F is monotonic (nondecreasing, here) if F (X) ≤ F (X ′) when

X ≤ X ′.36
• F is closed if, for all C ∈ R, the set {X | F (X) ≤ C} is closed.37

30 More explanation is provided in Section 6, which also offers motivation and
examples for readers who might not be so familiar with this way of thinking.
31 The inner product between two elements X and Y of L2(Ω) is ⟨X, Y ⟩ = E[XY].
32 It might be wondered whywe insist on boundedness of secondmoments when
requiring only E|X | <∞would cover a larger class of random variables. The main
reason is that this leads to a simpler exposition in Section 6, when we come to the
dualization of risk in terms of sets of probability densities Q (having Q ≥ 0, EQ =
1). With the finiteness of E|X | as the only requirement we would be limited there
to bounded densities Q . It would be better really if we could draw on all possible
densities Q , but that would force us to go to the opposite extreme of requiring X to
be essentially bounded. The choice made here is a workable compromise.
33 In finite dimensions, all norms give the same convergence.
34 This feature helps to make our choice of L2(Ω) as the underlying space much
less restrictive than might be imagined.
35 In expressions like this, a sum of values in (−∞,∞] is∞ if any of them is∞.
Also, λ∞ =∞ for λ > 0.
36 This inequality is to be interpreted in the ‘‘almost sure’’ sense, meaning that the
set of ω ∈ Ω for which X(ω) ≤ X ′(ω) has probability 1.
37 This property is also called lower semicontinuity. A subset of L2(Ω) is closed
when it contains all limits of its sequences in the sense of (3.1). For convex sets,
weak limits give the same closedness as those strong limits.

Convexity will be valuable for much of what we undertake.
Positive homogeneity is a more special property which, in the
study of risk, was emphasized more in the past than now. An
elementary fact of convex analysis is that

F convex+ positively homogeneous
⇐⇒ F subadditive+ positively homogeneous. (3.2)

The combinations in (3.2) are equivalent to sublinearity:

F


k

λkXk


≤


k

λkF (Xk)

for λk ≥ 0.38
Other important consequences of convexity emerge only in

combination with closedness. One that will be applied in several
ways is the following rule coming out of convex analysis.39

If F is closed convex, and if X0, Y , c, make the function
f (t) = F (X0 + tY)− tc be bounded above for t ∈ [0,∞),

then F (X + tY)− tc ≤ F (X) for all X and t ∈ [0,∞). (3.3)

An immediate consequence, for instance, is that40

for F closed convex: if F (X) ≤ 0
whenever X ≤ 0, then F is monotonic. (3.4)

To assist with closedness, it may help to note that this property
of F holds when F is continuous,41 and moreover, as long as F
does not take on∞, that stronger property is automatic in broad
circumstances of interest to us. Namely,42

F is continuous on L2(Ω)

when


F is finite, convex, and closed, or
F is finite, convex, and monotonic, or
F is finite, convex, andΩ is finite.

(3.5)

Closedness can also approached through so-called ‘‘weak’’ conver-
gence in place of the ‘‘strong’’ convergence described by (3.1), since
the closedness of convex sets is known to be the same either way.
Weak convergence of Xk to X means that E[XkQ] → E[XQ] for all
Q ∈ L2. In fact it suffices in this to restrict attention to Q ≥ 0
with EQ = 1, inasmuch as linear combinations of such Q fill up all
of L2. That will be especially meaningful in Section 6, where Q of
this type will be interpreted as the density with respect to P0 of an
alternative probability measure P .

Measures of risk. The role of a measure of risk, R, is to assign
to a random variable X , standing for an uncertain ‘‘cost’’ or ‘‘loss’’,
a numerical value R(X) that can serve as a surrogate for overall
(net) cost or loss. However, the assignment must meet reasonable
standards in order to make sense.

The class of coherent measures of risk has attracted wide
attention in finance in this regard. A functional R belongs to
this class, as introduced in [1], if it is convex and positively
homogeneous (or equivalently by (3.2) subadditive and positively
homogeneous), as well as monotonic, and, in addition, satisfies43

R(X + C) = R(X)+ C for all X and constants C . (3.6)

38 Under the convention, if necessary, that 0∞ = 0.
39 Apply Theorem 8.6 of [26] to the function f (s, t) = F ((1− s)X0 + sX + tY).
40 Consider the case of (3.3) with X0 = 0, Y ≤ 0, and c = 0.
41 Continuity of F means that F (Xk)→ F (X)whenever Xk

→ X as in (3.1).
42 For the first: [27, Corollary 8B]. For the second: [28, Proposition 3.1]. For the
third: [26, Theorem 10.1], recalling that L2(Ω) is finite-dimensional when Ω is
finite.
43 A slightly different, but ultimately equivalent property was originally
formulated in [1]. Note that positive homogeneity enables theunits ofmeasurement
of X to be the same as those of R(X).

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 43

Closedness of R was not mentioned in [1], but the context there
supposed R to be finite (and actually Ω finite, too), so that
closedness and even continuity of R were implied by coherency
through (3.5).44 Subsequent researchers considered dropping the
positive homogeneity, and with it the term ‘‘coherent’’, speaking
then of a ‘‘convex measure of risk’’ or a ‘‘convex risk function’’,
cf. [10,28].45 However, without denying the importance of these
ideas, we will organize assumptions and terminology a bit
differently here. The crucial role that EX has in the fundamental risk
quadrangle is our guide, alongwith the importance of ‘‘closedness’’
in dealing with functionals that might take on∞.46

By a regular measure of risk we will mean a functional R with
values in (−∞,∞] that is closed convexwith

R(C) = C for constants C (3.7)

and furthermore

R(X) > EX for nonconstant X . (3.8)

Property (3.8) is aversity to risk.47 Observe that (3.7) implies the
seemingly stronger property (3.6) of [1] by the rule in (3.3)48 and
therefore entails

R(X − EX) = R(X)− EX for all X (3.9)

in particular. An advantage of stipulating (3.7) in place of (3.6)
lies in motivation. The surrogate cost value that a measure of risk
should assign to a random variable that always comes out with the
value C ought to be C itself.

In all of the Examples 1–12 above, R is a regular measure
of risk, and in Examples 1–3, 5–6, 10–12, R is also positively
homogeneous. In examples 2–3, 5–10 and 12, R is monotonic,
but in Examples 1, 4 and 11 it is not. Only the risk measures in
Examples 2–3, 5–6, 10 and 12 are coherent in the sense of [1]. For
R = q̄α = CVaRα in Example 2, this was perceived from several
angles that eventually came together; see [31,32,6]. For R = q̄(p)α
in Example 12, the coherency was established by Krokhmal [8].

An example of a coherent measure of risk that is not regular
is R(X) = EX , which lacks aversity. On the other hand, R(X) =
VaR−α (X) fails to be a regular measure of risk by lacking closedness,
convexity and the aversity in (3.8), in general, although it does have
positive homogeneity, satisfies (3.6) and is monotonic. It fails to be
a coherent measure of risk through the absence of convexity.

Measures of deviation. The role of a measure of deviation, D ,
is to quantify the nonconstancy (as the uncertainty) in a random
variable X .49 By a regular measure of deviation we will mean a
functional D with values in [0,∞] that is closed convexwith

D(C) = 0 for constants C,
but D(X) > 0 for nonconstant X . (3.10)

44 Coherency was extended to generalΩ in [29] with X restricted to L∞(Ω) and
R still finite-valued, in which case R is likewise continuous by Ruszczyński and
Shapiro [28, Proposition 3.1]. That framework was also maintained in [10].
45 In our view, the idea behind ‘‘coherency’’ is oriented to monotonicity plus
convexity. In [30], risk measures satisfying the axioms of coherency except for this
positive homogeneity were called coherent in the extended sense.
46 Another reason is that the ‘‘convex risk measure’’ terminology insists on
monotonicity, but we want a framework that, for the sake of broad understanding,
encompasses some risk measures without monotonicity, such as R(X) = µ(X) +
λσ(X).
47 Risk measures satisfying this condition were introduced as averse measures of
risk in [21]. A constant random variable X ≡ C has R(X) = EX by (3.7).
48 In (3.3) with F = R and X0 = 0, first take Y ≡ C and c = C for any C . Since
(3.7) givesR(0+ tC)− tC = 0, it follows thatR(X+C)−C ≤ R(X) for all X and C .
Applying this next to X + C and−C in place of X and C , get R(X)+ C ≤ R(X + C),
hence an equation.
49 Deviationmeasures as a special class of functionalswere introduced in [22]with
follow-up in [21].

The measures of deviation in Examples 1–12 all fit this prescrip-
tion. Note that symmetry is not required: perhaps D(−X) ≠
D(X).

Measures of error. The role of ameasure of error, E , is to quantify
the nonzeroness in a random variable X .50 By a regular measure
of error we will mean a functional E with values in [0,∞] that is
closed convexwith

E(0) = 0 but E(X) > 0 when X ≢ 0 (3.11)

and satisfies for sequences of random variables {Xk}
∞

k=1 the
condition that

lim
k→∞

E(Xk) = 0 H⇒ lim
k→∞

EXk
= 0. (3.12)

The latter requirement,meaning that randomvariables X with |EX |
bounded away from 0 cannot be arbitrarily close to 0 as measured
by E(X), will enter into the projection from E to D that is featured
on the right side of the quadrangle. It is equivalent actually to the
seemingly stronger property that E(X) ≥ ψ(EX) for a convex
function ψ on (−∞,∞) having ψ(0) = 0 but ψ(t) > 0 for t ≠
0.51 In common situations it holds automatically, as for instance
whenΩ is finite,52 or in the expectation case with E(X) = E[e(X)]
for a convex function e on (−∞,∞) having e(0) = 0 but e(x) > 0
for x ≠ 0.53 In Examples 1–12 every measure of error is regular,
but some cases can have E(−X) ≠ E(X).

Measures of regret and relative utility. The role of a measure of
regret,V , is to quantify the displeasure associatedwith themixture
of potential positive, zero and negative outcomes of a random
variable X that stands for an uncertain cost or loss. Regret in this
sense is close to the notion of an overall penalty, but it might
sometimes come out negative and therefore act as a reward. As
mentioned in the introduction, regret is the flip side of relative
utility. Measures of regret V correspond to measures of relative
utility U through

V(X) = −U(−X), U(Y) = −V(−Y), (3.13)

where Y denotes a randomvariable oriented toward uncertain gain
instead of loss. Everything said about regret could be conveyed
instead in the language of utility, but that would trigger switches
of orientation between loss and gain together with tedious minus
signs coming from (3.13).

By a regular measure of regret we will mean a functional V with
values in (−∞,∞] that is closed convex, has the aversity property
that

V(0) = 0 but V(X) > EX when X ≢ 0, (3.14)

and satisfies for sequences of random variables {Xk
}
∞

k=1 the
condition that

lim
k→∞
[V(Xk)− EXk

] = 0 H⇒ lim
k→∞

EXk
= 0. (3.15)

The limit condition parallels the one in (3.12) and likewise is
automatic when Ω is finite, or in the expectation case where
V(X) = E[v(X)] for a convex function v on (−∞,∞) having
v(0) = 0 but v(x) > x for x ≠ 0. All the measures of regret in
Examples 1–12 are regular.

As with measures of risk R, there is strong incentive for asking
V also to be monotonic. That additional property holds for the
measures of regret in Examples 2–3, 5–10 and 12, but not in
Examples 1, 4 and 11.54

50 Measures of error in such general terms were introduced in [9].
51 From (3.12) the function ψ(t) = inf{E(X) | EX = t} has these properties.
52 The finite-dimensionality of L2(Ω) and the closed convexity E in combination
with (3.11) ensure then that the lower level sets of E are compact.
53 Then E[e(X)] ≥ e(EX) by Jensen’s Inequality.
54 There is potential motivation sometimes for working without such monotonic-
ity, as will be explained in Section 5.

44 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

By a regular measure of relative utilitywewill mean a functional
U having the ‘‘flipped’’ properties that correspond to those of a
regular measure of regret V through (3.13).55

Quadrangle Theorem. (a) The relations D(X) = R(X) − EX and
R(X) = EX + D(X) give a one-to-one correspondence between
regular measures of risk R and regular measures of deviation D . In
this correspondence, R is positively homogeneous if and only if D is
positively homogeneous. On the other hand,

R is monotonic if and only if D(X) ≤ sup X − EX for all X . (3.16)

(b) The relations E(X) = V(X) − EX and V(X) = EX + E(X) give
a one-to-one correspondence between regular measures of regret V
and regularmeasures of error E . In this correspondence,V is positively
homogeneous if and only if E is positively homogeneous. On the other
hand,

V is monotonic if and only if E(X) ≤ E[−X] for X ≤ 0. (3.17)

(c) For any regular measure of regret V , a regular measure of risk R
is obtained by

R(X) = min
C
{C + V(X − C)} . (3.18)

If V is positively homogeneous, R is positively homogeneous. If V is
monotonic, R is monotonic.
(d) For any regular measure of error E , a regular measure of deviation
D is obtained by

D(X) = min
C
{E(X − C)} . (3.19)

If E is positively homogeneous, D is positively homogeneous. If E
satisfies the condition in (3.17), namely E(X) ≤ E[−X] for X ≤ 0,
then D satisfies the condition in (3.16), namely D(X) ≤ sup X − EX
for all X .
(e) In both (c) and (d), as long as the expression being minimized is
finite for some C, the set of C values forwhich theminimum is attained
is a nonempty, closed, bounded interval.56 Moreover when V and E
are paired as in (b), the interval comes out the same and gives the
associated statistic:

argmin
C
{C + V(X − C)} = S(X) = argmin

C
{E(X − C)},

with S(X + C) = S(X)+ C . (3.20)

This theorem integrates, in a new and revealingway, various re-
sults or partial results that were separately developed elsewhere,
and in many instances only for positively homogeneous quanti-
fiers. The correspondence between R and D in part (a) was of-
ficially presented in [21] after being laid out much earlier in the
unpublished report [22].57 The results in parts (d) and (e) about
projecting from E to D come from [9], where they were employed
in generalized linear regression.58 The observation in part (b) im-
mediately translates them to the results in parts (c) and (e) about

55 More details on this will be provided in Section 4.
56 Typically this interval reduces to a single point.
57 As in thoseworks, even though they only looked at the positively homogeneous
case, the justification of (3.17) follows by applying (3.4) toF = R. The justification
of (3.13) works the same way with F = V in (3.4).
58 The only real effort in the proof of the projection claims is in showing that, when
D comes from (3.19), theminimumover C is attained andD inherits the closedness
of E . This draws on (3.12). The argument in [9] utilized positive homogeneity, but
it is readily generalized as follows through the existence under (3.12) of a convex
function ψ with ψ(0) = 0, ψ(t) > 0 for t ≠ 0, such that E(X) ≥ ψ(EX). The level
sets {t | ψ(t) ≤ c} are then bounded.

Observe first that if a sequence of finite error values E(X − Ck) approaches
the minimum with respect to C , it is a bounded sequence and therefore, since
E(X − Ck) ≥ ψ(EX − Ck), the sequence of expected values E[X − Ck

] is bounded.

projecting from V to R. However, a general version of (c) in the
positively homogeneous case was separately developed earlier,
without that connection, by Krokhmal [8].

Although the parallel between E → D and V → R, which ties
the two sides of the quadrangle fully together, is mathematically
elementary, it has not come into focus easily despite its conceptual
significance. That, especially, is where the theorem innovates.
What was absent in the past was the broad concept of a measure
of regret, not limited to an expectation, and the realization it could
anchor a fourth corner in the relationships, thereby serving as a
conduit for bringing in ‘‘utility’’ beyond expected utility.

Risk measure formulas of type (3.18) with accompaniment in
(3.20) have gradually emerged without any thought that they
might be connected somehow with generalized regression. The
first such formula was presented in [5] and its follow-up [6],59

CVaRα(X) = min
C


C +

1
1− α

E[X − C]+


,

VaRα(X) = argmin
C


C +

1
1− α

E[X − C]+


.

(3.21)

We later learned that the ‘‘argmin’’ part of this was already
known in the statistics of quantile regression, cf. [12,33], but with
the minimization expression differing from ours by a positive
factor; the associated ‘‘min’’ quantity got no attention in that
subject. In those daysweweremainly occupiedwith the numerical
usefulness of (3.21) in solving problems of stochastic optimization
involving VaR and CVaR and were looking no further in the
direction of statistics.

Earlier, on a different frontier, the concept of ‘‘optimized
certainty equivalent’’ was defined in [34] by a trade-off formula
very much like the one for getting S from V but focused on
expected utility (‘‘normalized’’) and maximization, instead of
general regret and minimization. It was applied to problems of
optimization in [35] and subsequently [36]. Much later in [7],
once the theory of risk measures had come into development, the
‘‘min’’ quantity in the trade-off received attention alongside of the
‘‘argmin’’, and (3.21) could be cast as a special case of their previous
work with expected utility. An important feature of that work,
brought out further in [7], was duality with notions of information
and entropy.60

In [8] amuchwider class of trade-off formulas for riskmeasures
was studied with the aim of generalizing (3.21) through V-type
expressions not restricted to the expectation case. In that research,
as in [7], no connectionswith statistical theorywere contemplated.
In other words, the bottom line of the quadrangle was still out of
sight.

It is convenient to speak of the quantifiers at the corners of
the fundamental quadrangle, under the relations in Diagram 3,
as constituting a quadrangle quartet (R,D,V, E) with statistic
S. In the regular case portrayed in the Quadrangle Theorem,
it is a regular quadrangle quartet. The most attractive case
adds monotonicity to R and V along with the corresponding

Then the sequence { Ck
}
∞

k=1 is bounded, so a subsequence will converge to some C .
That C gives the minimum, due to the closedness of E .
Next fix a value c ∈ R and suppose that Xk

→ X with D(Xk) ≤ c for k = 1,
2, The issue is whether D(X) ≤ c . For each k there is a Ck with D(Xk) =

E(Xk
− Ck), and those error values are bounded then by c . In consequence, the

sequence of values E[Xk
− Ck
] is bounded. Since Xk

→ X , hence EXk
→ EX , it

follows that a subsequence of { Ck
}
∞

k=1 has to converge to some C , in which case the
corresponding subsequence of { Xk

− Ck
}
∞

k=1 converges to X − C . The closedness of
E ensures that E(X − C) ≤ c and hence D(X) ≤ c , as required.
59 In some papers in this area the random variables X were taken as representing
uncertain ‘‘gains’’ instead of ‘‘losses’’. The resulting formulas are of course
equivalent in that case, but minus signs have to be juggled in the translation.
60 Here, see the end of Section 6.

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 45

properties of D and E in (3.16) and (3.17); we will then call the
quartet monotonic. On the other hand, in the case where the four
quantifiers are positively homogeneous we will speak of a quartet
with positive homogeneity.

Although good examples of regular quadrangle quartets with
and without monotonicity have been provided in Section 2, the
question arises of how additional examples might be constructed.
We round out this section with three results which can assist in
that direction.

The first one is elementary but puts into the proper perspective
of an entire quadrangle the operation of blending risk with
expectation that is seen in the formula it gives for R(X). Such
blending, for instance with R0(X) = CVaRα(X), has gained some
attention in finance.

Scaling Theorem. Let (R0,D0,V0, E0) be a regular quadrangle
quartet with statistic S0 and consider any λ ∈ (0,∞). Then a regular
quadrangle quartet (R,D,V, E) with statistic S is given by

S(X) = S0(X),
R(X) = (1− λ)EX + λR0(X), D(X) = λD0(X), (3.22)
V(X) = (1− λ)EX + λV0(X), E(X) = λE0(X).

Another is given by

S(X) = λS0(λ
−1X),

R(X) = λR0(λ
−1X), D(X) = λD0(λ

−1X), (3.23)
V(X) = λV0(λ

−1X), E(X) = λE0(λ
−1X).

Monotonicity and positive homogeneity are preserved in these
constructions, except that monotonicity requires λ ≥ 1 in (3.22).

Scaling as in (3.22) is present in Examples 1 and 1′, and could
very well be added to Examples 2 and 3. The alternative form in
(3.23) provides an enrichment to Examples 8 and 9.

Mixing Theorem. For k = 1, . . . , r let (Rk,Dk,Vk, Ek) be a reg-
ular quadrangle quartet with statistic Sk, and consider any weights
λk > 0 with λ1 + · · · + λr = 1. A regular quadrangle quartet
(R,D,V, E) with statistic S is given then by

S(X) = λ1S1(X)+ · · · + λrSr(X),
R(X) = λ1R1(X)+ · · · + λrRr(X),
D(X) = λ1D1(X)+ · · · + λrDr(X), (3.24)

V(X) = min
B1,...,Br


r

k=1

λkVk(X − Bk) |

r
k=1

λkBk = 0


,

E(X) = min
B1,...,Br


r

k=1

λkEk(X − Bk) |

r
k=1

λkBk = 0


.

Moreover (R,D,V, E) is monotonic if every (Rk,Dk,Vk, Ek) is
monotonic, and (R,D,V, E) is positively homogeneous if every
(Rk,Dk,Vk, Ek) is positively homogeneous.

This generalizes a result in [9] which dealt only with positively
homogeneous quantifiers.61 The quadrangle in Example 10 illus-
trates it for a particular case.

61 The proof is essentially the same as in that case, the main task being to
demonstrate thatR andD are closed and theminimum over B1, . . . , Br is attained.
The argument follows the pattern we have indicated above for the projection part
of the Quadrangle Theorem, making use of bounds Ek(X) ≥ ψk(EX) coming from
the lines after (3.12).

Reverting Theorem. For i = 1, 2, let (Ri,Di,Vi, Ei) be a regular
quadrangle quartet with statistic Si. Then a regular quadrangle
quartet (R,D,V, E) with statistic S is given by

S(X) =
1
2
[S1(X)− S2(−X)],

R(X) = EX +
1
2
[R1(X)+R2(−X)],

D(X) =
1
2
[D1(X)+D2(−X)] =

1
2
[R1(X)+R2(−X)], (3.25)

V(X) = EX +min
B


1
2
[V1(B+ X)+ V2(B− X)] − B


,

E(X) = min
B


1
2
[E1(B+ X)+ E2(B− X)]


.

Positive homogeneity is preserved in this construction, but not
monotonicity.

Example 11 illustrates a case where (R1,D1,V1, E1) and (R2,
D2,V2, E2) coincide. The proof of the Reverting Theorem takes
advantage of bounds Ei(X) ≥ ψi(EX) produced from (3.12).62

A further operation that can be performed on risk measures is
‘‘inf-convolution’’, cf. [37]. This could likewise be articulated in a
theorem along these lines.

4. Further model-promoting results and interpretations

The general facts in Section 3 will be supplemented in this
section by more detail in the expectation case. Claims made about
the examples of expectation quadrangles in Section 2 will in that
way be confirmed. Insight will be provided also into the pattern of
regret versus utility, even outside the expectation case, and how it
can affect the D–E side of the quadrangle.

In relying on (3.13) for a one-to-one correspondence between
regular measures of regret V and regular measures of relative
utility U, we are in particular replacing the convexity of V with
the concavity of U and requiring, for a random variable Y oriented
toward gain, that

U(0) = 0 but U(Y) < EY when Y ≢ 0. (4.1)

This is where the term ‘‘relative’’ comes in. The gain in Y needs
to be viewed as gain relative to some benchmark. That contrasts
with the way utility theory is ordinarily articulated in terms of
the ‘‘absolute’’ utility of an outcome. But practitioners appreciate
nowadays that investors, for instance, are highly influenced by
benchmarks in their attitudes toward gain or loss.

The case of expected utility, focused on E[u(Y)] for a one-
dimensional utility function u giving u(y) for a sure gain y, serves
well in explaining this. A large body of traditional theory in finance,
laid out authoritatively in [10], looks toward maximizing such an
expression under various side conditions in putting together a
good portfolio. The utility function u captures the preferences of
an investor, and the expectation deals with the uncertainty when
the gain y turns into a randomvariableY . Standard functionsuhave
logarithmic forms and the like, and there is often nothing ‘‘relative’’
about them.

In order to have a functional U(Y) = E[u(Y)] satisfy (4.1) and
be closed concave,63 the natural specialization is to require u to be

62 It starts with a direct calculation of the minimum of E(X − C) over C with the
minB expression for E inserted. A change of variables C1 = C − B, C2 = −C − B,
shows that this yields the claimed S, and D . The corresponding R and V are
confirmed then from the quadrangle formulas.
63 Closed concavity requires the ‘‘upper’’ level sets of type ≥c to be closed for all
c ∈ R, in contrast to closed convexity, which requires all ‘‘lower’’ level sets of type
≤c to be closed.

46 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

a function of ywith
u closed concave and u(0) = 0 but u(y) < ywhen y ≠ 0. (4.2)
Again, the sense in that would come from a benchmark interpre-
tation, namely that y no longer stands for an amount of money
received in the future but rather an increment (positive or nega-
tive) to some reference amount. A utility function satisfying (4.2),
but with ‘‘<’’ weakened to ‘‘≤’’, is a normalized utility in the ter-
minology of [7]. Normalization to create these properties is always
possible in the expectation case because, in theory, as far as gen-
erating a preference ordering for y values is concerned, a utility u
is only determined up to translations and an arbitrary scaling fac-
tor.64For our quadrangle scheme, however, such normalization is
not merely a convenience but essential. Expected utility depends
not only on the ordering induced by u on (−∞,∞), but also on the
‘‘curvature’’ aspects of u, and the choice of a benchmark can have a
large impact on that, apart from some special cases.

A utility function u satisfying (4.2) is paired with a regret
function v satisfying
v closed convex and v(0) = 0 but v(x) > x when x ≠ 0 (4.3)
under the correspondence65

v(x) = −u(−x), u(y) = −v(−y). (4.4)
The properties in (4.3) are needed for V(X) = E[v(X)] to be
a regular measure of regret. They are crucial moreover in the
correspondence between V and E at the bottom of the quadrangle
in making E(X) = E[e(X)] be a regular measure of error paired
with V(X) = E[v(X)] under the relations
e(x) = v(x)− x, v(x) = x+ e(x), (4.5)
which entail having
e closed convex and e(0) = 0 but e(x) > 0 when x ≠ 0. (4.6)

The condition on the utility function u in (4.2) implies that
u′(0) = 1when u is differentiable at 0, but it is important to realize
that u might not be differentiable at 0, and this could even be
desirable. From concavity, u is sure at least to have right derivatives
u′
+
(y) and left derivatives u′

−
(y) satisfying u′

−
(y) ≥ u′

+
(y), usually

with equality, but still maybe with u′
−
(0) > u′

+
(0). This would

mean that, in terms of relative utility, the pain of a marginal loss
relative to the benchmark is greater than pleasure of a marginal gain
relative to the benchmark. Just such a disparity in reactions to gains
and losses is seen in practice and reflects, at least in part, the
observations in [38].

In translating this from a concave utility function u to a convex
regret function v as in (4.3), we have, of course, right derivatives
v′
+
(x) and v′

−
(x) satisfying v′

−
(x) ≤ v′

+
(x), usually with equality,

but perhapswith v′
−
(0) < v′

+
(0). However, somethingmore needs

to be understood in connection with the ability of v to take on∞
andhow that affects thewayderivatives are treated in the formulas
of the theorem below.

The convexity of v implies that the effective domain dom v =
{x | v(x) < ∞} is an interval in (−∞,∞) (not necessarily closed
or bounded). If x is the right endpoint of dom v, the definition of
the right derivative naturally gives v′

+
(x) = ∞; but just in case

of doubt in some formula, this is also the interpretation to give of
v′
+
(x) when x is off to the right of dom v.66 Likewise, if x is the left

endpoint of dom v, or further to the left, then v′
−
(x) = −∞.

These are the patterns also for an error function e as in (4.6).
For the fundamental quadrangle of risk, the consequences of

these facts in the expectation case are summarized as follows.

64 Outside of the expectation case, it is still possible to shift to U(0) = 0 as a
‘‘normalization’’, but rescaling is insufficient to get to U(Y) ≤ EY .
65 In this correspondence the graphs of v and u reflect to each other through the
origin of R2 .
66 The issue is that a random X might produce such an outcome with probability
0, and yet one still needs to know how to think of the formula.

Expectation Theorem. For functions v and e on (−∞,∞) related
by (4.5), the properties in (4.3) amount to those in (4.6) and ensure
that the functionals

V(X) = E[v(X)], E(X) = E[e(X)], (4.7)

form a corresponding pair consisting of a regular measure of regret
and a regular measure of error.67 For X ∈ V = domV = dom E let
C+(X) = sup{C | X − C ∈ V } and C−(X) = inf{C | X − C ∈ V }.
The associated statistic S in the quadrangle generated from V and E
is characterized then by

S(X) =

C | E[e′

−
(X − C)] ≤ 0 ≤ E[e′

+
(X − C)]


=

C | E[v′

−
(X − C)] ≤ 1 ≤ E[v′

+
(X − C)]


(4.8)

subject to themodification that, in both cases, the right side is replaced
by∞ if C ≤ C−(X) and the left side is replaced by−∞ if C ≥ C+(X).
The quadrangle is completed then by setting

D(X) = E[e(X − C)] and
R(X) = C + E[v(X − C)] for any/all C ∈ S(X).

(4.9)

Having V and R be monotonic corresponds (in tandem with convex-
ity) to having v(x) ≤ 0when x < 0, or equivalently e(x) ≤ −x when
x < 0. Positive homogeneity holds in the quadrangle if and only if v
and e have graphs composed of two linear pieces kinked at 0.

Beyond the aspects of this theorem that are already evident,
the key ingredient is establishing (4.8). This is carried out by
calculating that the right and left derivatives of the convex function
φ(C) = E[e(X − C)] from their definitions and noting that C
belongs to argminφ if and only if φ′

−
(C) ≤ 0 ≤ φ′

+
(C). In

situations where v and e are differentiable, the double inequalities
in (4.8) can be replaced simply by the equations E[e′(X − C)] = 0
and E[v′(X − C)] = 1.

We proceed now to illustrate the Expectation Theorem by
applying it to justify the details of the examples in Section 2 that
belong to the expectation case.

Quantile-based quadrangle, Example 2 (including Example 3):

e(x) =
α

1− α
max{0, x} +max{0,−x},

v(x) =
1

1− α
max{0, x}, u(y) =

1
1− α

min{0, y}.

We have V = L2(Ω), C+(X) = ∞, C−(X) = −∞, and

v′
+
(x) =

 1
1− α

if x ≥ 0,

0 if x < 0,
v′
−
(x) =

 1
1− α

if x > 0,

0 if x ≤ 0,

with a gap between left and right derivatives occurring only at
x = 0. Then with F−X (C) denoting the left limit of FX at C (the right
limit F+X (C) being just FX (C)), we get

E[v′
−
(X − C)] =

1
1− α

prob {X > C} = 1− FX (C),

E[v′
+
(X − C)] =

1
1− α

prob {X ≥ C} = 1− F−X (C).

It follows thereby from (4.8) that S(X) = {C | F−X (C) ≤ α ≤
FX (C)} and thereforeS(X) = qα(X). Applying (4.10) yieldsR(X) =
C + 1

1−α E max{0, X − C} = C + 1
1−α


(C,∞)(x− C)dFX (x). Since the

probability of (C,∞) is 1−FX (C), this equals 1
1−α [(FX (C)−α)]C+

[C,∞) xdFX (x), which is the expectation of X with respect to its

67 Also, V corresponds then to a regular measure of relative utility U given by
U(Y) = E[u(Y)] under (4.4) via (4.2).

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 47

‘‘α-tail distribution’’ as defined in [6] and used there to properly
define qα(X) even under the possibility that FX (C) > α.

Worst-case-based quadrangle, Example 5:

e(x) =

−x if x ≤ 0
∞ if x > 0, v(x) =


0 if x ≤ 0
∞ if x > 0,

u(y) =

−∞ if y < 0
0 if y ≥ 0.

We have V = L2
−
(Ω), C+(X) = ∞, C−(X) = sup X . In the v part

of (4.8) the left side equals 0 always and the right side equals 0 if
C < sup X but (through the prescribed modification) equals∞ if
C = sup X . Therefore, C = sup X is the unique element of S(X)
(when that is finite).

Truncated-mean-based quadrangle, Example 7:

e(x) =


|x| −

β

2
if |x| ≥ β,

1
2β

x2 if |x| ≤ β,

v(x) =


−
β

2
if x ≤ −β,

x+
1
2β

x2 if |x| ≤ β,

2x−
β

2
if x ≥ β,

u(y) =


2y+

β

2
if y ≤ −β,

y−
1
2β

y2 if |y| ≤ β,

β

2
if y ≥ β.

This time, V = L2(X), so C+(X) = ∞ and C−(X) = −∞. The
statistic is determined by solving E[e′(X − C)] = 0 for C , and this
gives the result described because

βe′(x) = Tβ(x) =


β if x ≥ β,
x if − β ≤ x ≤ β,
−β if x ≤ −β.

Log-exponential-based quadrangle, Example 8:

e(x) = exp x− x− 1, v(x) = exp x− 1,
u(y) = 1− exp(−y).

Here V = {X | E[exp X] < ∞}. Because E[exp(X − C)] = exp
(−C)E[exp X], we have C+(X) = ∞ and C−(X) = −∞ for any
X ∈ V , so the need for a modification of the bounds in (4.8) is
avoided. Indeed, since v′(x) = exp x, we just have an equation
to solve for C , namely E[exp(X − C)] = 1. This equation can be
rewritten as E[exp X] = exp C , which yields C = log E[exp X]
as S(X). Substituting that into C + V(X − C), we get R(X) =
log E[exp X] and the quadrangle is confirmed.

Rate-based quadrangle, Example 9:

e(x) =


log

1
1− x

− x if x < 1,

∞ if x ≥ 1,

v(x) =


log

1
1− x

if x < 1,

∞ if x ≥ 1,

u(y) =

log(1+ y) if y > −1,
−∞ if y ≤ −1.

Here V = {X < 1 | E[log 1
1−X] < ∞}, so C+(X) = 1 − sup X and

C−(X) = −∞. Because v is differentiable (where finite), we have

an equation to solve in (4.8): E[1
1−(X−C)] = 1. The solution is the

statistic S(X).
Quadrangles from kinked utility and regret. More examples

beyond the differentiable case of the Expectation Theorem can be
produced by starting from an ‘‘absolute’’ utility function u0(y0)
that is differentiable, increasing and strictly concave, introducing
a benchmark value B, and a ‘‘kink’’ parameter δ > 0, and defining

u(y) =
u0(y+ B)− u0(B)

u′0(B)
+ δmin{0, y}. (4.10)

This will satisfy u(0) = 0 and u(y) < y when y ≠ 0, and it will be
differentiable when y ≠ 0, but have

u′
+
(0) = 1 but u′

−
(0) = 1+ δ. (4.11)

The kink parameter δ models the extra pain experienced in
falling short of the benchmark, in contrast to the milder pleasure
experienced in exceeding it. From this u it is straightforward to
pass to the corresponding v, e, and the full quadrangle associated
with them by the theorem. In general, that quadrangle will depend
on both B and δ, but in special situations like CARA or HARA
utilities68 the B dependence can drop out or reduce to simple
rescaling.

The surprising fact is that all suchmanipulations are propagated
by the quadrangle scheme into applications not just to risk
management and optimization but also to statistical estimation.
Those applications will be discussed further in Section 5.

General interpretations of the quadrangle ‘‘statistic’’. Returning
finally to the general level of the correspondenceU↔ V between
relative utility and regret in (3.13) we look at ways of interpreting
the trade-off formula R(X) = minC {C + V(X − C)}. Through a
change of variables Y = −X , W = −C , switching loss to gain, this
corresponds to

−R(−Y) = max
W
{W +U(Y −W)}. (4.12)

Considerations were focused in [7] on the expectation case, but an
interpretation suggested there works well for (4.12) in general. To
begin with, note that in addingW to U(Y −W) it is essential that
W bemeasured in the same units asU(Y−W), andmoreover they
have to be the same units as those of Y . A simple case where this
makes perfect sense is the one in which the units are money units,
like dollars. ThenW represents an income that is certain, whereas
Y − W is residual income that is uncertain; U assigns to that
uncertain income an equally desirable amount of certain income
in something akin to a discount. This leads, in [7], a W giving the
max in (4.12) being called an optimized certainty equivalent for Y .

Much the same can be said about the regret version of trade-off,
R(X) = minC {C+V(X−C)}. There, C is a loss that is certain, X−C
is a residual loss that is uncertain. The regret measure V assigns to
X − C an amount of money that could be deemed adequate as im-
mediate compensation for taking on the burden of X − C . It is pos-
sible to elaborate this with ideas of insurance, insurance premium,
‘‘deductibles’’, and so forth. For some insurance interpretations in
the utility context of (4.12), see [7].

Although these ‘‘min’’ formulas and interpretations are natural
in their own right, the special insight from the risk quadrangle,
namely that they have a parallel life in theoretical statistics, is new.

68 See [10, pp. 68–69].

48 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

5. Quadrangle roles in optimization and regression

Applications involving the quantifiers on both sides of the risk
quadrangle have provided key motivation and guidance for the
theory that has been laid out. The purpose of this section is to
explain that background and indicate advances that the theory
now brings.

Optimization. Risk in the sense quantified by a risk measure
R is central in the management and control of cost or loss. For
a hazard variable X , the crucial issue there is how to model a
‘‘soft’’ upper bound, i.e., a condition that the outcomes of X be
‘‘adequately’’ ≤C for some C . As already explained in Section 1,
the broad prescription for handling this is to pass to a numerical
inequality R(X) ≤ C through some choice of a risk measure R,
and many possibilities for R have been offered. Of course C can be
taken to be 0 without any real loss of generality.

A choice of R corresponds to an expression of preferences
toward risk, but it might not yet be clear why some measures of
risk are better motivated or computationally more tractable than
others. The key challenge is that most applications require more
than just looking at R(X) for a single X , as far as optimization
is concerned. Usually instead, there is a random variable that
depends on parameters x1, . . . , xn. We have X(x1, . . . , xn) and
it becomes important to know how the numerical surrogate
R(X(x1, . . . , xn)) depends on x1, . . . , xn. This is where favorable
conditions imposed on R, like convexity and monotonicity, are
indispensable.

Motivations in optimization modeling are important in partic-
ular. For insight, consider first a standard type of deterministic op-
timization problem,without uncertainty, in which x = (x1, . . . , xn)
is the decision vector, namely

minimize f0(x) over all x ∈ S ⊂ Rn

subject to fi(x) ≤ 0 for i = 1, . . . ,m. (P)

A decision x selected from the set S results in numerical values
f0(x), f1(x), . . . , fm(x), which can be subjected to the usual tech-
niques of optimization methodology. Suppose next, though, that
these cost-like expressions are uncertain through dependence on
additional variables – random variables – whose realizations will
not be knownuntil later. A decision xmerely results then in random
variables69

X0(x) = f
0
(x), X1(x) = f

1
(x), . . . , Xm(x) = f

m
(x), (5.1)

which can only be shaped in their distributions through the choice
of x, not pinned down to specific values. Now there is no longer a
single, evident answer to how optimization should be viewed, but
risk measures can come to the rescue.

As proposed in [30], one can systematically pass to a stochastic
optimization problem in the format70

minimize f 0(x) = R0(f 0(x)) over x ∈ S

subject to f i(x) = Ri(f i(x)) ≤ 0, i = 1, . . . ,m, (P)

69 We employ underbars in this discussion to indicate uncertainty. The overbars
appearing later emphasize that the random variable depending on x has been
converted to a nonrandom numerical function of x.
70 If taken too literally, this prescription could be simplistic. When uncertainty is
present,much closer attentionmust be paid towhether the objective and constraint
structure in the deterministic formulation itself was well chosen. The effects of
possible recourse actions when constraints are violated may need to be brought in.
Whether riskmeasures should be applied to the fi ’s individually or to a combination
passed through some joint expression must be considered as well.

in which an individually selected ‘‘measure of risk’’ Ri has been
combined with each f

i
(x) to arrive at a numerical (nonrandom)

function f i of the decision vector x.71

An issue that must then be addressed is how the properties
of f i(x) with respect to x relate to those of f

i
(x) through the

choice of Ri, and whether those properties are conducive to good
optimization modeling and solvability. This is not to be taken for
granted, because seemingly attractive examples likeRi(X) = EX+
λiσ(X)with λi > 0 or Ri(X) = qαi(X) = VaRαi(X)with 0 < αi <
1 are known to suffer from troubles with ‘‘coherency’’ in the sense
of [1].

Convexity Theorem.72 In problem (P), the convexity of f i(x) with
respect to x is assured if f

i
(x) is linear in x andRi is a regular measure

of risk, or if f
i
(x) is convex in x and Ri is, in addition, a monotonic

measure of risk.73

The huge advantage of having the functions f i be convex is
that then, with the set S also convex, (P) is an optimization
problem of convex type. Such problems are vastly easier to solve in
computation.

The use of Ri(X) = qαi(X) = VaRαi(X) in this setting could de-
stroy whatever underlying convexity with respect to x = (x1, . . . ,
xn)might be available in the problem data, because thismeasure of
risk lacks convexity; it is not regular and not coherent. The short-
coming ofRi(X) = EX+λiσ(X) is different: it fails in general to be
monotonic. The absence of monotonicity threatens the transmittal
of convexity of f

i
(x) to f i(x). However, f i(x) can still be convex in x,

on the basis of the Convexity Theorem, as long as f
i
(x) is linear in

x. This could be useful in applications to financial optimization, be-
cause linearity with respect to x, as a vector of ‘‘portfolio weights’’,
is often encountered there.

Another example of a measure of risk that is regular without
being monotonic is the reverted CVaR in Example 11: Ri(X) =
EX+ λ

2 [CVaRαi(X)+CVaRαi(−X)]. Oncemore, although this choice
would not preserve convexity in general, it would do sowhen f

i
(x)

is linear in x.
A question of modeling motivation must be confronted here.

Why would one ever wish to use in a stochastic optimization
problem (P) a regular risk measure that is not monotonic, even in
applicationswith linearity in x, when somany choices do have that
property? An interesting justification can actually be given, which
could sometimes make sense in finance, at least. The rationale has
to do with skepticism about the data in the model and especially
a wish to not rely too much on data in the extreme lower tail of a
cost distribution. Optimizationwith today’s data will be succeeded
by optimization with tomorrow’s data, all data being imperfect.
It would be wrong to swing very far in response to ephemeral
changes, at least in formulating the objective function f 0(x) =
R0(f 0(x)).

The following idea comes up: replace this objective, in the case
of a regular monotonic measure of risk R0, by a measure of risk

71 The constraint modeling in (P) follows the prescription that Ri(f i(x)) ≤ 0
provides a rigorous interpretation to the desire of having f

i
(x) ‘‘adequately’’≤0, but

themotivation for the treatment of the objective in (P)may be less clear. Actually, it
follows the same prescription. Choosing x to minimize R0(f 0(x)) can be identified
with choosing a pair (x, C0) subject to R0(f 0(x)) ≤ C0 so as to get C0 as low as
possible, and the inequalityR0(f 0(x)) ≤ C0 models having f

0
(x) ‘‘adequately’’≤C0 .

This is valuable in handling the dangers of ‘‘cost overruns’’.
72 This extends, in an elementary way, a principle in [30].
73 Convexity of the random variable f

i
(x)with respect to x refers to having f

i
((1−

λ)x0 + λx1) ≤ (1 − λ)f i(x0) + λf i(x1) as a relation among random variables, i.e.,
with ‘‘almost surely’’ coming in.

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 49

having the form

R̃0(X) = R0(X)+D(X)
for some regular measure of deviation D. (5.2)

This would be another regular measure of risk, even if not mono-
tonic. The deviation termwould be designed to have a ‘‘stabilizing’’
effect.

If a choice likeRi(X) = qαi(X) = VaRαi(X) ought to be shunned
when convexity in (P) is to be promoted, what might be the
alternative? This is a serious issue because risk constraints involv-
ing this choice are very common, especially in reliability engineer-
ing,74 because

qαi(f i(x)) ≤ 0 ⇐⇒ prob {f
i
(x) ≤ 0} ≥ αi. (5.3)

A strong argument can be made for passing from quantiles/VaR
to superquantiles/CVaR by instead taking Ri(X) = qαi(X) =
CVaRαi(X). This has the effect of replacing ‘‘probability of failure’’
by an alternative called ‘‘buffered probability of failure’’, which is
safer and easier to work with computationally; see [15].

The claim that problem-solving may be easier with CVaR than
with VaR could seem surprising from the angle that CVaRα(X) is
defined as a conditional expectation in a ‘‘tail’’ which is dependent
on VaRα(X), yet it rests on the characterization in (3.21). But
we have explained in [6]75 how, in the case of (P) with Ri =

CVaRαi for each i, one can expand CVaRαi(f i(x)) through (3.21)
into an expression involving a auxiliary parameter Ci and go on to
minimize not only with respect to x but also simultaneously with
respect to the Ci’s. This has the benefit not only of simplifying the
overall minimization but also providing, along with the optimal
solution x̄ to (P), corresponding VaRαi(f i(x)) values as the optimal
C̄i’s.

Now we are in position to point out, on the basis of the
risk quadrangle, that this technique has a new and far-reaching
extension.

Regret Theorem. Consider a stochastic optimization problem (P) in
which each Ri is a regular measure of risk coming from a regular
measure of regret Vi with associated statistic Si by the quadrangle
formulas

Ri(X) = min
C
{C + Vi(X − C)},

Si(X) = argmin
C
{C + Vi(X − C)}.

(5.4)

Solving (P) can be cast then as solving the expanded problem

choose x = (x1, . . . , xn) and C0, C1, . . . , Cm to
minimize C0 + V0(f 0(x)− C0) over x ∈ S, Ci ∈ R, (P ′)

subject to Ci + Vi(f i(x)− Ci) ≤ 0 for i = 1, . . . ,m.

An optimal solution (x̄, C̄0, C̄1, . . . , C̄m) to problem (P ′) provides as
x̄ an optimal solution to problem (P) and as C̄i a corresponding value
of the statistic Si(f i(x̄)) for i = 0, 1, . . . ,m.

The Mixing Theorem of Section 3 can be combined with Regret
Theorem.WhenVi is itself expressed by aminimization formula in
extra parameters, these can be brought into (P) as well.

The idea behind the Regret Theorem is not restricted to regret
measures. It can operate just as well for deviation measures in
terms of error measures through the quadrangle principle that

D(X) ≤ c ⇐⇒ E(X − C) ≤ c for a choice of C ∈ R.

74 The article [39] furnishes illuminating background.
75 See also the tutorial paper [30].

Estimation. The topic of generalized regression is next on the
agenda. As explained in Section 1, this concerns the approxima-
tion of a given random variable Y by a function f (X1, . . . , Xn) of
other randomvariables X1, . . . , Xn. By the regression being ‘‘gener-
alized’’ wemean that the difference Zf = Y−f (X1, . . . , Xn)may be
assessed for its nonzeroness by an error measure E different from
the one in ‘‘least-squares’’ as in Example 1, or for that matter even
from the kind in quantile regression, as in Example 2. The case of
generalized linear regression, where the functions f in the approx-
imation are limited to the form

f (x1, . . . , xn) = C0 + C1x1 + · · · + Cnxn
(the linear case), (5.5)

has already been studied in [9], but only for error measures E that
are positively homogeneous. Here we go beyond those limitations
and investigate the problem:

minimize E(Zf) over all f ∈ C,

where Zf = Y − f (X1, . . . , Xn), (5.6)

for given random variables X1, . . . , Xn, Y , and some given class C
of functions f .

TakingC to be the class in (5.5) with respect to all possible coef-
ficients C0, C1, . . . , Cn, would specialize to linear regression, pure
and simple. Then E(Zf) would be a function of these coefficients
and we would be minimizing over (C0, C1, . . . , Cn) ∈ Rn+1. How-
ever, even in the linear case there could be further specialization
through placing conditions on some of the coefficients, such as per-
haps nonnegativity. In fact, a broad example of the kinds of classes
of regression functions that can be brought into the picture is the
following76:

C = all the functions f (x1, . . . , xn)
= C0 + C1h1(x1, . . . , xn)+ · · · + Cmhm(x1, . . . , xn)

for given h1, . . . , hm on Rn and coefficient vectors
(C1, . . . , Cm) in a given set C ⊂ Rm.

(5.7)

Motivation for generalized regression comes from applications
in which Y has the cost/loss orientation that we have been
emphasizing in this paper. Underestimation might then be more
dangerous than overestimation, and that could suggest using an
asymmetric error measure E , with E(Zf) ≠ E(−Zf).

Further motivation comes from ‘‘factor models’’ and other such
regression techniques in finance and engineering, which might
have unexpected consequences when utilized in stochastic opti-
mization because of interactions with parameterization by the de-
cision vector x. For instance, if one of the random ‘‘costs’’ f

i
(x)

in problem (P) is estimated by such a technique as g
i
(x), it may

be hard to determine the effects this could have on the optimal
decision. We have argued in [9], and demonstrated with specific
results, that it might be wise to ‘‘tune’’ the regression to the risk
measure Ri applied to f

i
(x) in (P). This would mean passing

around the fundamental quadrangle from Ri to an error measure
Ei in the same quartet.

Regression Theorem. Consider problem (5.6) for random variables
X1, . . . , Xn and Y in the case of E being a regular measure of error
and C being a class of functions f : Rn

→ R such that

f ∈ C H⇒ f + C ∈ C for all C ∈ R. (5.8)

Let D and S correspond to E as in the Quadrangle Theorem.
Problem (5.6) is equivalent then to:

minimize D(Zf) over all f ∈ C such that 0 ∈ S(Zf), (5.9)

76 It should also be kept in mind that a possibly nonlinear change of scale in the
variables, such as passing to logarithms, could be executed prior to this depiction.

50 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

which in the case of a class C as in (5.7) and Hi = hi(X1, . . . , Xn)

comes down to

minimize D(Y − [C1H1 + · · · + CmHm]),

then take C0 ∈ S(Y − [C1H1 + · · · + CmHm]). (5.10)

Moreover if E is of expectation type and C includes a function f
satisfying

f (x1, . . . , xn) ∈ S(Y (x1, . . . , xn))
almost surely for (x1, . . . , xn) ∈ D,

where Y (x1, . . . , xn) = YX1=x1,...,Xn=xn

(conditional distribution),

(5.11)

with D being the support of the distribution in Rn induced by X1,

. . . , Xn,77 then that f solves the regression problem and tracks this
conditional statistic78 in the sense that

f (X1, . . . , Xn) ∈ S(Y (X1, . . . , Xn)) almost surely. (5.12)

The first part of this result generalizes [9, Theorem 3.2] on
linear regression through elementary extension of the same proof.
The specialization in (5.10) relies on D(Z − C0) = D(Z) and
S(Z − C0) = S(Z) − C0. The second part is new. It comes from
the observation that, in the expectation case, if f satisfies (5.11),
then for any other g ∈ C one has

E(Y (x1, . . . , xn)− f (x1, . . . , xn))
≤ E(Y (x1, . . . , xn)− g(x1, . . . , xn))

almost surely for (x1, . . . , xn) ∈ D.

When E is of expectation type, this inequality can be ‘‘integrated’’
over the distribution of (X1, . . . , Xn) to obtain E(Y (X1, . . . , Xn) −

f (X1, . . . , Xn)) ≤ E(Y (X1, . . . , Xn)− g(X1, . . . , Xn)).
Apart from that special circumstance, the question of the

existence of an optimal regression function f ∈ C has not been
addressed in the theorem, because we are reluctant in the present
context to delve deeply into the possible structure of the class C.
But existence in the case of linear regression has been covered
in [9, Theorem 3.1], and similar considerations would apply to the
broader class in (5.7),with the coefficient set C taken to be closed.79

There could be many applications of these ideas, and much
remains to be explored and developed. Some related research
in special cases, largely concerned with quantile regression, can
be seen in [40–42]; see also [39] for further motivation, and
moreover [43].

The measure of error in quantile regression is indeed of
expectation type, so that the second part of our Regression
Theorem can be applied if the class C of functions f is rich enough.
The class of linear functions of X1, . . . , Xn would very likely not
meet that standard, but the class in (5.7) may offer hope through
judicious choice of h1, . . . , hm.

77 Almost surely, in (5.11), refers to this distribution.
78 It is assumed, for this part, that the distribution of Y (x1, . . . , xn) for
(x1, . . . , xn) ∈ D belongs to L2(Ω), and the same then for the random variable
Y (X1, . . . , Xn) obtained from it.
79 Work with the class in (5.7), which does of course satisfy (5.9), can actually
be reduced to the linear case, so that generalized linear theory can be applied.
To do this we can introduce new random variables Wi = hi(X1, . . . , Xn) with
distributions inherited from theXj ’s and carry out linear regression of Y with respect
toW1, . . . ,Wm .

6. Probability modeling and the dualization of risk

More explanation about the view of uncertainty that we take
here may be helpful, especially for the sake of those who would
like to make use of the ideas without having to go too far into the
technicalmathematics of probability theory. Inmodeling uncertain
quantities as random variables, we tacitly regard them as having
probability distributions, but this does not mean we assume those
distributions are directly known. Sampling, for instance, might be
required to learn more, and even then, only approximations might
be available.

The characteristics of a random variable X , by itself, are
embodied in its cumulative distribution function FX , with FX (x) =
prob {X ≤ x}. This induces a probability measure on the real num-
bers R which may or may not be expressible by a density function
f with respect to ordinary integration, i.e., as dFX (x) = f (x)dx. The
lack of a density function is paramount when X is a discrete ran-
dom variable with only finitely many possible outcomes. Then FX
is a step function.

Sometimes the underlying uncertainty being addressed re-
volves aroundobservations of several randomvariablesV1, . . . , Vm,
and their joint distribution. The correspondingprobabilitymeasure
on Rm is induced then by the multivariate distribution function

FV1,...,Vm(v1, . . . , vm)

= prob {(V1, . . . , Vm) ≤ (v1, . . . , vm)} . (6.1)

Functions x = g(v1, . . . , vm) give rise to random variables X =
g(V1, . . . , Vm) having FX (x) = prob {g(V1, . . . , Vm) ≤ x}. Again,
the distribution of (V1, . . . , Vm) need not be describable by a den-
sity function f (v1, . . . , vm). We might be dealing with a discrete
distribution of (V1, . . . , Vm) corresponding to an m-dimensional
‘‘scatter plot’’.

The standard framework of a probability space serves for
handling all these aspects of randomness easily and systematically.
It consists of a setΩ supplied with a probability measure P0 and a
field A of its subsets.80 We think of the elementsω ∈ Ω as ‘‘future
states’’ (of information), or ‘‘scenarios’’. Having a subset A of Ω
belong to A means that the probability of ω being in A is regarded
as known in the present: prob {A} = P0(A). In that way, the field A
is a model for present information about the future. There could be
multistage approaches to such information, in which A is just the
first in a chain of ever-larger collections of subsets ofΩ , but we are
not looking at that. A scenario ω could, in our setting, nonetheless
involve multiple time periods, but we are not going to consider,
here, how additional observations, as the scenario unfolds, might
be put to use in optimization.

Random variables in this framework are functions X : Ω → R,
with future outcomes X(ω), such that, for every x ∈ R, the set
A = {ω | X(ω) ≤ x} belongs to A.81 The expected value of a
randomvariableX is the integral EX =


Ω
X(ω)dP0(ω). As a special

case, the probability space (Ω,A, P0) could be generated by future
observations of some variables V1, . . . , Vm, as above, in which case
Ω would be a subset of Rm with elementsω = (v1, . . . , vm) and P0
would be the probabilitymeasure induced by the joint distribution
function FV1,...,Vm . If P0 has a density function f (v1, . . . , vm) with
respect to ordinary integration, then for X = g(V1, . . . , Vm) one
has EX =


g(v1, . . . , vm)f (v1, . . . , vm)dv1 · · · dvm, but without

such a density, it is not possible to rely this way on dv1 · · · dvm.
That is why, in achieving adequate generality, it is crucial to refer

80 We write P0 for this underlying probability measure in order to reserve P for
general purposes below.
81 The sets A ∈ A are called the ‘‘measurable’’ sets and the functions X in question
the ‘‘measurable’’ functions.

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 51

to a background probability measure P0 as the source of all the
distributions that come up.

Despite that focus, a means is provided for considering alterna-
tives P to P0, and indeed this will be very important in subsequent
discussions of risk and its dualization. Other probability measures
P can enter the picture as long as the expected value EP(X) =
X(ω)dP(ω) can be expressed by E[XQ] =


X(ω)Q (ω)dP0(ω)

for some random variable Q , which is then called the density of P
with respect to P0 with notation Q = dP/dP0.82 For instance, in the
case where Ω has finitely many elements ωk, k = 1, . . . ,N , if P0
gives them equal weight 1/N but P assigns probability pk to ωk,
then Q (ωk) = pkN .

Another point needing emphasis is that little is really lost in
supposing the existence of an underlying probability measure P0,
even if prospects of knowing much about it are low. Convenience
in theory can be served nonetheless. In ‘‘robust optimization’’,
for example, direct probability is in principle avoided, and yet
a so-called uncertainty set has to be constructed. That set, often
identified through rough considerations of probability anyway, can
be identified here with the space Ω . The worst-case risk measure
R(X) = sup X , which is the prime focus of ‘‘robust optimization’’,
is captured anyway as generated by considering all P alternative
to P0 in the above sense, as will be explained below. Similarly,
the ‘‘distributed worst-case’’ risk measure of Example 6 is covered
without having to know very much about P0.

The need to deal securelywith expectations of randomvariables
and certain products of random variables forces some restrictions.
For any randomvariableX , the expressions ∥X∥p introduced earlier
are well defined but could be∞. It is common practice to work
with the spaces83

Lp(Ω) = Lp(Ω,A, P0) =

X | ∥X∥p <∞


,

where L1(Ω) ⊃ · · · ⊃ Lp(Ω) ⊃ · · · ⊃ L∞(Ω). (6.2)

For any X in these spaces, EX is well defined and finite, but the
situation for products of random variables, like XQ above, is more
delicate. While there are options with X in one space and Q in
another, no choice is perfect.

For our purposes here, L2(Ω) has been taken as the platform.
That has the simplifying advantage that E|XQ | < ∞ for any X ∈
L2(Ω) andQ ∈ L2(Ω). However, it doesmean that, in considering
alternative probability measures P with densities Q = dP/dP0 the
restrictionmust bemade to the caseswhere


Ω
(dP/dP0)2(ω)dP0 <

∞. Actually, though, this restriction makes little difference in
the end, because other probability measures can adequately be
mimicked by these (and for finiteΩ is no restriction at all).

Dualization concerns the development of ‘‘dual representa-
tions’’ of various functionals, also called ‘‘envelope representa-
tions’’, which can yield major insights and provide tools for
characterizing optimality. The functionals F may in general take
on∞ as a value (although usually−∞ is excluded), and some no-
tation for handling that is needed. The effective domain of F is the
set

domF = {X ∈ L2(Ω) | F (X) <∞}. (6.3)

WhenF is convex, this set is convex, butF closed convex does not
necessarily entail domF also being closed. The platform for dual-

82 Such measures P are said to be ‘‘absolutely continuous’’ with respect to P0 .
83 When Ω is a discrete set of N elements, these spaces coincide and can be
identified with RN .

ization is a correspondence for closed convex functionals F :84,85

F : L2
→ (−∞,∞] closed convex,

F ≠ ∞ ⇐⇒ ∃G : L2
→ (−∞,∞], G ≢ ∞, with

F (X) = sup
Q∈L2(Ω)

{E[XQ] − G(Q)} for all X .

Moreover the lowest such G is G = F ∗,

where F ∗is closed convex and given by
F ∗(Q) = sup

X∈L2(Ω)

{E[XQ] − F (X)} for all Q .

(6.4)

The functional F ∗ is said to be conjugate to F , which in turn is
conjugate to F ∗ through the first formula in (6.4) in the case of
G = F ∗, namely

F (X) = sup
Q∈L2(Ω)

{E[XQ] − F ∗(Q)} for all X . (6.5)

The nonempty convex set domF ∗ = {Q | F ∗(Q) < ∞} can
replace L2(Ω) in this formula, and similarly domF can replace
L2(Ω) in the first formula of (6, 4). Here are some cases that will
be especially important to us86:

for F closed convex ≢ ∞ :
F (0) = 0⇐⇒ infF ∗ = 0,
F (X) ≥ EX ⇐⇒ F ∗(1) ≤ 0,
F is monotonic⇐⇒ Q ≥ 0

when Q ∈ domF ∗,
F is pos. homog.⇐⇒ F ∗(Q) = 0

when Q ∈ domF ∗,

(6.6)

(where the ‘‘1’’ in the second line refers to the constant r.v. with
value 1). The final case, with positive homogeneity, says that

there is a one-to-one correspondence between nonempty,
closed, convex sets Q ⊂ L2(Ω)

and closed convex pos. homogeneous functionals

F : L2
→ (−∞,∞], given by (6.7)

F (X) = sup
Q∈Q

E[XQ] for all X,where

Q = {Q | E[XQ] ≤ F (X) for all X}.

The second formula in (6.7) identifies Q with domF ∗. Any Q for
which the first formula holds must moreover have domF ∗ as its
closed, convex hull.

Envelope Theorem.87 The functionals J that are the conjugates R∗

of the regular measures of risk R on L2(Ω) are the closed convex
functionals J with effective domains Q = domJ such that

(a) EQ = 1 for all Q ∈ Q,
(b) 0 = J(1) ≤ J(Q) for all Q ∈ Q,

84 See Theorem 5 of [27]; this is the case of L2(Ω) paired with itself through
⟨X,Q ⟩ = E[XQ]. The operationF → F ∗ is called the Legendre–Fenchel transform.
85 Saying F ∗ is ‘‘lowest’’ means here that every G with the indicated property
satisfies G(Q) ≥ F ∗(Q) for all Q ∈ L2 .
86 The first is immediate from (6.5) with X = 1, while the second follows from
(6.4) with Q = 1. In the third, the sufficiency comes from (6.5), and the necessity as
well, because monotonicity of F precludes the existence of a nonmonotonic affine
functional L with L(X) ≤ F (X) for all X . The necessity in the fourth is clear from
(6.4) (because positive homogeneity allows only 0 or ∞ as the supremum); the
sufficiency is obvious from (6.5).
87 Most of the facts in this compilation, which follow from the general properties
of conjugacy as above, are already well understood and have been covered, for
instance, in [10]. The new aspects are the dualization of aversity in condition (c)
and the final assertion, connecting with the dualization of regret.

52 R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53

(c) for each nonconstant X ∈ L2(Ω) there exists Q ∈ Q such that
E[XQ] − EX > J(Q).

The dual representation of R corresponding to J = R∗ is

R(X) = sup
Q∈Q
{E[XQ] − J(Q)} . (6.8)

Here R is positively homogeneous if and only if J(Q) = 0 for all
Q ∈ Q, whereas R is monotonic if and only if Q ≥ 0 for all Q ∈ Q.

If V is a regular measure of regret that projects to R, then Q =
{Q ∈ domV∗ | EQ = 1} and the conjugate J = R∗ has J(Q) =
V∗(Q) for Q ∈ Q, but J(Q) = ∞ for Q ∉ Q.

The error measure E paired with the regret measure V has
E∗(X) = V∗(X + 1). Likewise, the deviation measure D paired with
the risk measure R has D∗(X) = R∗(X + 1).

Risk envelopes and identifiers. The convex set Q in this theorem
is called the risk envelope associatedwithR, and aQ furnishing the
maximum in (6.8) is a risk identifier for X .

Themonotonic case in the theorem combines EQ = 1withQ ≥
0 and thereby allows us to interpret each Q ∈ Q as a probability
density dP/dP0 describing an alternative probability measure P on
Ω . For positively homogeneous R, the J(Q) term drops out of the
representation in (6.8) (by being 0). The formula then characterizes
R(X) as giving the worst ‘‘cost’’ that might result from considering
the expected values E[XQ] = EP [X] over all those alternative prob-
ability measures P having densities Q in the risk envelope Q.

The nonhomogeneous case has a similar interpretation, but
distinguisheswithinQ a subsetQ0 consisting of the densitiesQ for
which J(Q) = 0, which always includes Q ≡ 1 (the density of P0
with respect to itself). DensitiesQ that belong toQ but notQ0 have
J(Q) ∈ (0,∞). In (6.8) that term thendrags the expectationdown.
In a sense, J(Q) downgrades the importance of such densities.

The conjugates V∗ of regular measures of regret V have
virtually the same characterization as the conjugates R∗ in the
theorem. Property (a) is omitted, but on the other hand there is
a provision to enforce the property in (3.15) (in the cases when
it is not guaranteed to hold automatically). This provision is that
V∗(C) <∞ for C near enough to 1.

Some examples of risk envelopes in the positively homogeneous
case, where (6.8) holds with J(Q) omitted, are the following88:

R(X) = EX + λσ(X)←→
Q = {Q = 1+ λY | ∥Y∥2 ≤ 1, EY = 0}

R(X) = CVaRα(X)←→

Q =


Q | 0 ≤ Q ≤

1
1− α

, EQ = 1


R(X) = sup X ←→ Q = {Q | Q ≥ 0, EQ = 1}

R(X) =
r

k=1

λkRk(X)←→

Q =


Q =

r
k=1

λkQk | Qk ∈ Qk


,

where Rk ←→ Qk.

(6.9)

Another illustration comes out of Example 6, which can now be
formalized via (2.5) in terms of a partition ofΩ into disjoint subsets
Ωk of probability pk > 0with supkX being the essential supremum
of X onΩk and EkX being the conditional expectation E[X |Ωk]:

R(X) =
r

k=1

pksupkX ←→

Q =


Q ≥ 0 | pk = E[Q |Ωk] =


Ωk

Q (ω)dP0(ω)

. (6.10)

88 These envelopes were worked out in [22]; see also [21].

The risk envelope Q for the p-order superquantile risk measure of
Example 12 has not specifically been worked out, but strong clues
have been furnished by Dentcheva et al. [25]. The dual expression
derived there indicates that the risk envelope in this case is a union
of risk envelopes formixed quantile riskmeasures like (2.7) (which
are covered by the second and fourth cases of (6.9), except that
finite sums need to be replaced by general ‘‘continuous’’ sums as
in (2.8)).

Examples beyond positive homogeneity, where nonzero values
of J may enter, are simple to work out in the expectation case:

For quadrangles in the Expectation Theorem, with regret
V(X) = E[v(X)], the conjugate J = R∗ of the risk measure
R projected from V is given by

J(Q) =

E[v∗(Q)] if EQ = 1
∞ if EQ ≠ 1 for the function v∗ conjugate to v,

(6.11)
given by v∗(q) = sup

x
{xq− v(x)}.

The properties of v∗ corresponding to those of v in (4.3) are that v∗

is closed convex with v∗(1) = 0, v∗′(1) = 0.

This holds from the description in Envelope Theorem of the J in
projection from V because the functional conjugate to V(X) =
E[v(X)] is V∗(Q) = E[v∗(Q)].89 The dualization of the properties
of v to those of v∗ comes from one-dimensional convex analysis;
see [26].

An especially interesting illustration is furnished by Example 8,
where one has

v(x) = exp x− 1, v∗(q) =

q log q− q if q ≥ 0,
∞ if q < 0, (6.12)

with 0 log 0 = 0, the usual convention. Through (6.11) this yields

R(X) = log E[exp X] ←→

J(Q) =

E[Q logQ] if Q ≥ 0, EQ = 1,
∞ otherwise. (6.13)

Here −J(Q) is a well known expression for the relative entropy
with respect to the probability measure P0 of the probability
measure P having Q = dP/dP0.90

Results in [27] can exploit the general dualization of R to J
through Lagrangian formats for optimization involving R which
generate dual problems. Even more powerful developments of op-
timization duality, tailored to the fine points of financial mathe-
matics, have recently been contributed by Pennanen [44]. Formore
insights on entropic modeling versus risk, see [4], which empha-
sizes the role of deviationmeasuresD in place of risk measuresR.

Also coming out of the Envelope Theorem is further insight into
the degree of nonuniqueness of the error measures E that project
to a specified deviation measure D , or the regret measures V that
project to a specified risk measure R. In the positively homoge-
neous case of V , for instance, the conjugate V∗ has by (6.6) and
(6.7), the simple form that it is 0 on a certain closed, convex set
K but ∞ outside of K; then domV∗ = K . The theorem says
the risk envelope Q determining the risk measure R projected
from V has Q equal to the intersection of K with the hyperplane
{Q | EQ = 1}. That intersection only uses one ‘‘slice’’ of K . Dif-
ferent K ’s that agree for this ‘‘slice’’ will give different V ’s yielding
the same R. Discovering a ‘‘natural’’ antecedent V for R therefore

89 This follows a general rule of convex analysis in [27, Theorem 21]. The ‘‘inner
product’’ in the function space L2(Ω) is ⟨X,Q ⟩ = E[XQ].
90 See [7] formore background. Another name for this is Kullback–Leibler distance.

R.T. Rockafellar, S. Uryasev / Surveys in Operations Research and Management Science 18 (2013) 33–53 53

amounts geometrically to discovering a ‘‘natural’’ extension K of
Q beyond the hyperplane {Q | EQ = 1}.

The Envelope Theorem, as presented here, is based on duality
theory in convex analysis, but the idea of expressing preferences
through functionals defined by a max or min over a set of
probability measures, as a representation of distrust or ambiguity,
is far from new. In finance, the concept is often attributed to
Artzner et al. [1], but in statistics it can be traced to Huber [45]
and his sublinear expectation functionals. There is a strong echo
also in the theory of preferences in economics, where a minimum
of expected utility over a set of probability measures has been
explored from various angles. For that literature, see [46,47], and
their references.

References

[1] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Coherent measures of risk,
Mathematical Finance 9 (1999) 203–227.

[2] R.T. Rockafellar, S. Uryasev, M. Zabarankin, Master funds in portfolio analysis
with general deviationmeasures, Journal of Banking and Finance 30 (2) (2006)
743–778.

[3] R.T. Rockafellar, S. Uryasev, M. Zabarankin, Optimality conditions in portfolio
analysis with general deviation measures, Mathematical Programming, Series
B 108 (2006) 515–540.

[4] B. Grechuk, A. Molyboha, M. Zabarankin, Maximum entropy principle with
general deviation measures, Mathematics of Operations Research 34 (2009)
(2008) 445–467.

[5] R.T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, Journal
of Risk 2 (2000) 21–42.

[6] R.T. Rockafellar, S. Uryasev, Conditional value-at-risk for general loss
distributions, Journal of Banking and Finance 26 (2002) 1443–1471.

[7] A. Ben Tal, M. Teboulle, An old–new concept of convex risk measures: the
optimal certainty equivalent, Mathematical Finance 17 (2007) 449–476.

[8] P.A. Krokhmal, Higher moment coherent risk measures, Quantitative Finance
7 (2007) 373–387.

[9] R.T. Rockafellar, S. Uryasev, M. Zabarankin, Risk tuningwith generalized linear
regression, Mathematics of Operations Research 33 (3) (2008) 712–729.

[10] H. Föllmer, A. Schied, Stochastic Finance, second ed., De Gruyter, New York,
2004.

[11] T. Gneiting, Making and evaluating point forecasts, Journal of the American
Statistical Association 106 (2011) 746–762.

[12] R. Koenker, G. Bassett, Regression quantiles, Econometrica 46 (1978) 33–50.
[13] C. Acerbi, Spectral measures of risk: a coherent representation of subjective

risk aversion, Journal of Banking and Finance 26 (2002) 1505–1518.
[14] R.S. Dembo, A.J. King, Tracking models and the optimal regret distribution in

asset allocation, Applied Stochastic Models 8 (1992) 151–157.
[15] R.T. Rockafellar, J.O. Royset, On buffered failure probability in design and

optimization of structures, Journal of Reliability Engineering and System
Safety 99 (2010) 499–510.

[16] D.G. Luenberger, Investment Science, Oxford University Press, 1998.
[17] M.E. Yaari, The dual theory of choice under risk, Econometrica 55 (1987)

95–115.
[18] A. Roell, Risk aversion in Quiggin and Yaari’s rank-ordermodel of choice under

uncertainty, The Economic Journal, Issue Supplement: Conference papers 97
(1987) 143–159.

[19] D. Dentcheva, A. Ruszczynski, Commonmathematical foundations of expected
utility and dual utility theories, SIAM Journal on Optimization 24 (2013).

[20] G. Pflug, On distortion functionals, Stastistics and Decisions 27 (2009)
201–209.

[21] R.T. Rockafellar, S. Uryasev, M. Zabarankin, Generalized deviations in risk
analysis, Finance and Stochastics 10 (2006) 51–74.

[22] R.T. Rockafellar, S. Uryasev, M. Zabarankin, Deviationmeasures in risk analysis
and optimization, Technical Report 2002-7, Department of Industrial and
Systems Engineering, University of Florida, 2002.

[23] R.T. Rockafellar, J.O. Royset, Random variables, monotone relations, and
convex analysis, Mathematical Programming B (2013) (forthcoming).

[24] Optimization and Risk Management Case Studies with Portfolio SafeGuard
(PSG), in: AORDA—American Optimal Decisions, 2010, See Mortgage Pipeline
Hedging.

[25] D. Dentcheva, S. Penev, A. Ruszczynski, Kusuoka representation of higher-
order dual risk measures, Annals of Operations Research (2013).

[26] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ,
1970.

[27] R.T. Rockafellar, ConjugateDuality andOptimization, in: The Conference Board
of Math. Sciences Series, No. 16, SIAM, Philadelphia, 1974.

[28] A. Ruszczyński, A. Shapiro, Optimization of convex risk functions,Mathematics
of Operations Research 31 (2006) 433–452.

[29] F. Delbaen, Coherent riskmeasures on general probability spaces, in: Advances
in Finance and Stochastics, Essagys inHonour of Dieter Sondermann, Springer-
Verlag, Berlin, 2002, pp. 1–37.

[30] R.T. Rockafellar, Coherent approaches to risk in optimization under uncer-
tainty, in: Tutorials in Operations Research INFORMS 2007, 2007, pp. 38–61.

[31] G. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk,
in: S. Uryasev (Ed.), Probabilistic Constrained Optimization: Methodology and
Applications, Kluwer Academic Publishers, Norwell, MA, 2000.

[32] C. Acerbi, D. Tasche, On the coherence of expected shortfall, Journal of Banking
and Finance 26 (2002) 1487–1503.

[33] R. Koenker, Quantile Regression, in: Econometric Society Monograph Series,
Cambridge University Press, 2005.

[34] A. Ben Tal, M. Teboulle, Portfolio theory for the recourse certainty equivalent
maximizing investor, Annals of Operations Research 31 (1991) 479–499.

[35] A. Ben Tal, A. Ben-Israel, A recourse certainty equivalent for decisions under
uncertainty, Annals of Operations Research 30 (1991) 3–44.

[36] A. Ben Tal, A. Ben-Israel, Duality and equilibrium prices in economics of
uncertainty, Mathematical Methods of Operations Research 46 (1997) 51–85.

[37] P. Barrieu, N. El Karoui, Inf-convolution of risk measures and optimal risk
transfer, Finance and Stochastics 9 (2005) 269–298.

[38] D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk,
Econometrica 57 (1979) 263–291.

[39] S. Samson, S. Thoomu, G. Fadel, J. Reneke, Reliable design optimization under
aleatory and epistemic uncertainties, in: Proceedings of IDETC/DAC 2009,
ASME 2009 International Design Engineering Technical Conferences & 36th
Design Automation Conference, San Diego, California, August 30–September
2, 2009.

[40] A. Trindade, S. Uryasev, Improved tolerance limits by combining analytical and
experimental data: an information integration methodology, The Journal of
Data Science 4 (2006) (2005) 371–386.

[41] A. Trindade, S. Uryasev, Optimal determination of percentiles and allowables:
CVaR regression approach, in: A.J. Kurdila, et al. (Eds.), Robust Optimization-
Directed Design, Springer Publishers, 2006, pp. 179–247.

[42] A. Golodnikov, Y. Macheret, A. Trindate, S. Uryasev, G. Zrazhevski, Statistical
modelling of composition and processing parameters for alloy development:
a statistical model-based approach, Journal of Industrial and Management
Optimization 3 (2007) (view online).

[43] A. Trindade, S. Uryasev, A. Shapiro, G. Zrazhevsky, Financial prediction with
constrained tail risk, Journal of Banking and Finance 31 (2007) 3524–3538.

[44] T. Pennanen, Convex duality in stochastic programming and mathematical
finance, Mathematics of Operations Research 36 (2011) 340–362.

[45] P. Huber, Robust Statistics, Wiley, 1981.
[46] P. Maccheroni, M. Marinacci, A. Rustichini, Ambiguity aversion, robustness,

and the variational representation of preferences, Econometrica 74 (2006)
1447–1498.

[47] T. Strzalecki, Axiomatic foundations of multiplier preferences, Econometrica
79 (2011) 47–73.

