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Abstract

Product quality for plastic injection molding process is highly related with the settings for its process parameters.
Additionally, the product quality is not simply based on a single quality index, but multiple interrelated quality indices.
To find the settings for the process parameters such that the multiple quality indices can be simultaneously optimized
is becoming a research issue and is now known as finding the efficient frontier of the process parameters. This study
considers three quality indices in the plastic injection molding: war page, shrinkage, and volumetric shrinkage at
ejection. A digital camera thin cover is taken as an investigation example to show the method of finding the efficient
frontier. Solidworks and Moldflow are utilized to create the part’s geometry and to simulate the injection molding
process, respectively. Nine process parameters are considered in this research: injection time, injection pressure,
packing time, packing pressure, cooling time, cooling temperature, mold open time, melt temperature, and mold
temperature. Taguchi’s orthogonal array L27 is applied to run the experiments, and analysis of variance is then used to
find the significant process factors with the significant level 0.05. In the example case, four process factors are found
significant. The four significant factors are further used to generate 34 experiments by complete experimental design.
Each of the experiments is run in Moldflow. The collected experimental data with three quality indices and four
process factors are further used to generate three multiple regression equations for the three quality indices,
respectively. Then, the three multiple regression equations are applied to generate 1,225 theoretical datasets. Finally,
data envelopment analysis is adopted to find the efficient frontier of the 1,225 theoretical datasets. The found datasets
on the efficient frontier are with the optimal quality. The process parameters of the efficient frontier are further
validated by Moldflow. This study demonstrates that the developed procedure has proved a useful optimization
procedure that can be applied in practice to the injection molding process.

Keywords: Injection molding; Taguchi’s orthogonal array; Mutiple regression analysis; Data envelopment analysis;
Optimization
Introduction
Along with the rapid progress of production techniques for
high-tech products, better and better quality of products is
required for the survival in the current market. Besides pro-
viding various functions, the trend of the design for plastic
products is light, thin, short, and small. Therefore, the
setting of process parameters for plastic products has a re-
markable influence on their quality (Huang and Tai 2001).
Injection molding is one of the most important tech-

niques for polymer processing (to manufacture plastic
products) because of its high speed for molding and its
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capability of manufacturing complex geometric shapes of
products. Besides, injection molding is capable of mass pro-
duction, so it is widely used for many products, especially
for electronic products, such as computers and communi-
cation products. Injection molding is usually adopted to
produce thin parts or thin covers for these products.
Currently, there are two categories for the setting of

process parameters for injection molding: one is based
on the technicians’ previous experience and the other
takes advantage of mold flow analysis softwares, such as
Moldflow (used in this study) to find the initial values
for process parameters (by running various simulations
on these moldflow analyses). However, no method can
quickly find the reasonable combination of process pa-
rameters. In addition, trial and error is required for both
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Figure 1 The geometry.
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methods, and the process of trial and error consumes a
significant amount of time and cost. Therefore, both
methods cannot meet the requirement of the current
market.
Researchers have applied various kinds of methods, e.g.,

artificial neural network and/or fuzzy logic (Liao et al.
2004a, b; Kurtaran et al. 2005; Ozcelik and Erzurumlu
2006), genetic algorithm (Kurtaran et al. 2005; Ozcelik
and Erzurumlu 2006), design of experiments (Huang and
Tai, 2001; Liao et al. 2004a, b), and response surface
method (Ozcelik and Erzurumlu 2005; Kurtaran and
Erzurumlu 2006; Chen et al. 2010) to optimize the initial
process parameter setting of plastic injection molding.
However, most studies focus on the single optimal com-
bination of process parameters by different optimization
Figure 2 The finite element model. Courtesy of Moldflow Corporation.
techniques. It is well known that when multiple quality
characteristics are considered, the trade-off relationships
exist among these quality characteristics, and these rela-
tionships make the task of finding the optimal combin-
ation rather complicated if not impossible. Instead of
finding a single optimal combination of process parame-
ters, this research seeks the efficient frontier of process pa-
rameters by data envelopment analysis (DEA).
The remainder of this paper is organized as follows:

the ‘Literature review on the optimization of process
parameters for injection molding’ section will review re-
lated work in the literature. The properties of the ma-
terial and product used in this paper will be addressed
in the ‘Materials and product’ section. The ‘Experimental
design and methodology’ section will discuss the experi-
mental design and the procedure of finding the efficient
frontier of process parameters. Finally, the summary
and concluding remarks are provided in the ‘Summary
and conclusions’ section.

Literature review on the optimization of process
parameters for injection molding
The literature of optimization for injection molding is
briefly addressed in this section. Kim and Lee (1997)
discussed different geometries for plastic parts to im-
prove the parts’ warpage by Taguchi’s orthogonal experi-
ment design. To avoid producing flaws of silver streaks
for automobile plastic bumpers, Taguchi’s optimization
method is utilized to decide the optimal values for the
process parameters by Chen et al. (1997). The same
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Figure 3 The runner system with the cooling channel. Courtesy of Moldflow Corporation.

Table 1 Material properties of GE Cycoloy C2950 PC/ABS

Material property Value

Recommended mold surface temperature (°C) 70

Recommended melt temperature (°C) 275

Melt density (g/cm3) 0.97618

Solid density (g/cm3) 1.1161

Eject temperature (°C) 113

Maximum shear stress (MPa) 0.4

Maximum shear rate (s−1) 40,000

Mold thermal conductivity (W/m °C) 29

Elastic module (MPa) 200,000

Poisson’s ratio 0.33
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optimization method was also used by several works
(Huang and Tai 2001; Liu and Chen 2002; Liao et al.
2004a, b; Oktem et al. 2007) to find the optimal combi-
nations of process parameters for different plastic prod-
ucts. In these works, warpages and shrinkages of plastic
parts were usually considered as their quality indices.
Moldflow, a mold flow analysis software, was used to
simulate a real injection machine by Erzurumlu and
Ozcelik (2006). Several techniques including the Taguchi’s
method, the neural networks, and the genetic algorithm
were combined to optimize the process parameters.
The response surface methodology (RSM) is another

popular method to optimize the process parameters in
the literature. The complete model of RSM was first
established by Box and Wilson (1951). To improve two
quality indices, within-wafer non-uniformity and the re-
moval rate, of the chemical–mechanical planarization
process in semiconductor manufacturing, dual RSM was
proposed by Fan (2000) to optimize five process parame-
ters. In order to avoid the difficulty of minimizing both
quality indices, one was treated as the primary response
put in the objective function and the other was the sec-
ondary response placed in the constraint. Two works
developed RSM combined with different optimization
techniques (Ozcelik and Erzurumlu 2006; Chiang and
Chang 2007). Chen et al. (2010) applied dual RSM to im-
prove the quality of plastic injection molding. Warpage is
the primary response (and is treated as the objective func-
tion), while shrinkage is the secondary response (and is
then set as the constraint) in their work.
For multiple quality indices, the above two classes of

optimization focus on searching the single optimal com-
bination of process parameters. However, it is known that
the trade-off relationships exist among multiple quality in-
dices, so the searching task of the single optimum is not
easy. Castro et al. (2007) used DEA technique to find the
efficient frontier when six quality indices (related with the
part’s geometry) were considered. This research proposes
to combine several techniques including experimental de-
sign, analysis of variance (ANOVA), multiple regression
analysis, and DEA to find the efficient frontier of the
process parameters when three essential quality indices,
warpage, shrinkage, and volumetric shrinkage at ejection,
are under consideration simultaneously.
Materials and product
This study demonstrates how to determine the efficient
frontier of process parameters for injection molding by
taking an example of the thin cover of a digital camera.
The CAD software, Solidworks, is the first to prepare
the geometry of the product as shown in Figure 1.
Next, the commercial CAE simulation software tool,

Moldflow, is utilized to create the finite element model
and uses the finite element and finite difference method
to solve pressure, flow, and temperature fields of injection
molding (Walsh 1993; Mackerle 2005; Shoemaker 2006).
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Table 2 Key process parameters and their ranges of
operation

Parameter Variable Initial
value

Range of
operation

Injection time INT (x1) 1 s 0.5 to 1.5 s

Injection pressure INP (x2) 120 MPa 100 to 140 MPa

Packing pressure PP (x3) 100 MPa 80 to 120 MPa

Packing time PT (x4) 10 s 7.5 to 12.5 s

Cooling time COTI (x5) 19 s 14 to 24 s

Coolant temperature COTE (x6) 25°C 20°C to 30°C

Mold open time MOO (x7) 5 s 4 to 6 s

Melt temperature MET (x8) 275°C 270°C to 280°C

Mold surface
temperature

MOTE (x9) 70°C 65°C to 75°C
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The setting in Moldflow to simulate production of the
parts is described below.
Figure 2 shows the finite element model of the plastic

part, and Figure 3 is the runner system with the cooling
channel. The material used in this paper is GE Cycoloy
C2950 PC/ABS (Gardena, CA, USA), and the simulating
molding machine used is Roboshot 330i (330 tons, 8.90 oz,
44 mm) high speed/pressure (Milacron, Cincinnati, OH,
USA). Table 1 lists the main properties of the material.
This paper discusses nine key process parameters which

are suggested in the literature (Chen and Turng 2005;
Chen et al. 2010) because these parameters are most likely
Figure 4 The nodes measured for the quality of parts.
to affect products’ quality. Table 2 shows nine process
parameters and their ranges of operation suggested by
Moldflow. Three indices of quality, warpage, shrinkage,
and volumetric shrinkage at ejection, are considered in
this paper.
The warpages are measured at four reference nodes,

and the shrinkages are measured at four edges in this
paper; these nodes and edges are depicted in Figure 4 of
the XY horizontal plane. In Figure 4, four reference
nodes N1991, N1962, N1955, and N2261 are shown,
while four edges are formed by these four nodes and are
denoted by E1, E2, E3, and E4, respectively.
Experimental design and methodology
This section presents how to design the experiment as well
as the procedure to determine the efficient frontier of
process parameters. In the ‘Experimental design’ subsection,
the experimental design will be addressed. To effectively
find the efficient frontier, ANOVA will be firstly executed
to determine the significant process parameters out of the
original nine process parameters in ‘Finding significant
process parameters by ANOVA’ subsection. The complete
design of experiment with four significant process parame-
ters is again executed on Moldflow to have better accuracy
of the following regression equations. Then, response re-
gression model will be established in which only significant
process parameters are considered in ‘Setting up the re-
gression response model to create the complete dataset’
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Table 3 Results of ANOVA

N1991 N1962 N1955 N2261 E1 E2 E3 E4 Volume U

INT ◎ ●

INP ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ●

PP ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ●

PT ◎ ●

COTI

COTE

MOO

MET

MOTE

Figure 6 The normal probability plot for shrinkage.
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subsection. This subsection will also present how to create
the complete dataset for finding the efficient combina-
tions. Finally, ‘Determining the efficient frontier of process
parameters by DEA’ subsection will discuss how to find
the efficient frontier by DEA.
Experimental design
The Taguchi experimental design with orthogonal
array is an efficient experimental design for fraction
factorial design (Rose 1989; Montgomery 2005). Be-
cause there are nine process parameters considered in
this research, complete experimental design is just too
expensive to execute. Therefore, this research adopts
the Taguchi experimental design with orthogonal
array, L27, to perform the experiment on Moldflow.
The experimental results of L27 is shown in Appendix A.
Three levels of each process parameters are assigned to
lower bound, mid-point, and upper bound of the range of
operation listed in Table 2; for example, levels 1, 2 and 3
of injection time x1 are 0.5, 1 and 1.5 s, respectively.
Figure 5 The normal probability plot for warpage.
Finding significant process parameters by ANOVA
In order to simplify the regression equations (and thus
simplify the following procedure), ANOVA is firstly exe-
cuted to find significant process parameters to affect the
parts’ three quality indices which will only be considered
in the regression equations. The results are shown in
Table 3. Each node represents the warpage at this node,
each edge means the shrinkage at this edge, and the
volume is the volumetric shrinkage at ejection in Table 3.
The symbol ‘◎’ means the corresponding process par-
ameter significantly affects the quality index under the
significant level 0.05 in the figure. The last column of
Table 3, U, is remarked by ‘●’ if the corresponding
process parameter significantly affects at least one qual-
ity index. From Table 3, only four process parameters
are significant to affect at least one quality index, and
Figure 7 The normal probability plot for volumetric shrinkage
at ejection.
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Table 4 Levels of process parameters

Process parameter L1 L2 L3 L4 L5 L6 L7

Injection pressure (MPa) 100 110 120 130 140

Injection time (s) 0.5 0.67 0.84 1 1.17 1.34 1.5

Packing pressure (MPa) 80 86.67 93.34 100 106.67 113.34 120

Packing time (s) 7.5 8.75 10 11.25 12.5

Table 6 The reference counts of the efficient DMUs

DMU Reference count

560 773

840 624

871 402

1,151 182

1,186 47

1,187 0

1,188 0

1,189 0

1,190 0

Table 5 DMUs on the efficient frontier

DMU Score

560 100

840 100

871 100

1,151 100

1,186 100

1,187 100

1,188 100

1,189 100

1,190 100
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hence only these four parameters are considered in the
regression analysis in the next subsection.

Setting up the regression response model to create the
complete dataset
To obtain a more complete efficient frontier for the
process parameters, more data are required. The regres-
sion model, the response surface model, is utilized to
create more data. In order to have better forecasting
accuracy of the regression model, the complete experi-
ment design with four significant process factors is
executed again on Moldflow before the regression equa-
tions are established. The results are shown in the
Appendix B.
The results of the complete experiment design with

four significant process factors are then utilized to set
up the second-order response surface model by the
regression analysis of statistics software, SPSS. Three re-
sponse surface equations for three quality indices are
found below:

Warp ¼ 1:45−0:011 INP−0:238 INT−0:00823 PP

þ0:000046 INP2þ 0:108 INT2þ 0:000016 PP2

−0:00176 INP � INT þ 0:00001 INP � PP
þ0:00211 INT � PP;

ð1Þ

Shrink ¼ 1:32−0:0145 INPþ 0:35 INTþ 0:000086 INP2

þ0:0603 INT2−0:000013 PP2−0:00593 INP � INT

−0:000026 INP � PPþ 0:00122 INT � PP;
ð2Þ

and

Volume ¼ 27:0−0:348 INPþ 0:00165 INP2þ 2:74 INT2

−0:00035 PP2−0:0751 INP � INT−0:000613 INP � PT
þ0:0369 INT � PPþ 0:0839 INT � PT:

ð3Þ

The normal probability plots are provided in Figures 5,
6, 7 to justify the validity of the regression analysis.
To find a more complete efficient frontier of process

parameters, more data are required. Regressed response
surface equations, Equations 1, 2, 3, are exploited to create
more data points. Because DEA software, Banxia Frontier
Analyst 3, has the limitation on the maximal number of
data points (also called decision making units (DMUs)),
the design of data points to be created is explained below.
Based on the results of ANOVA, because injection time
and packing pressure are more significant than the other
two process parameters, there are seven levels selected for
these two process parameters and five levels for the other
two parameters. Therefore, there are 5 × 7 × 7 × 5 = 1,225
data points to be created by Equations 1, 2, 3. The levels
of each process parameter are listed in Table 4. Note that
in Table 4, all levels of each parameter all fall its range of
operation in Table 2.

Determining the efficient frontier of process parameters
by DEA
DEA is a technique to evaluate the relative efficiency of
many DMUs by analyzing multiple inputs and multiple
outputs of each DMU. Its goal is to find the efficient
DMUs, also called efficient frontier in the literature of
DEA. This research uses the standard DEA Charnes,
Cooper, and Rhodes (CCR) (Charnes et al. 1978) model
to find the efficient frontier of DMUs which is created
in the previous subsection. The mathematical model of
DEA CCR is briefly outlined below. Suppose that there
are K DMUs, each of which consumes N inputs and
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Table 7 Levels of process parameters for efficient DMUs

DMU

560 840 871 1,151 1,186

Process parameter INP 120 130 130 140 140

INT 0.67 0.84 1 1.17 1.34

PP 120 120 120 120 120

PT 12.5 12.5 7.5 7.5 7.5

COTI 19 19 19 19 19

COTE 25 25 25 25 25

MOO 5 5 5 5 5

MET 275 275 275 275 275

MOTE 70 70 70 70 70

Quality index
(forecasting)

Warp. 0.0964 0.0930 0.0906 0.0997 0.1065

Shrink. 0.1397 0.1076 0.0814 0.0436 0.0126

Vol. 1.9019 1.9418 2.0416 2.3027 2.5442

Quality index (real) Warp. 0.0796 0.0720 0.0780 0.0820 0.1114

Shrink. 0.1232 0.9250 0.0835 0.0597 −0.0948

Vol. 2.0650 1.9610 2.0680 2.8260 3.3670

Chen et al. Journal of Industrial Engineering International 2013, : Page 7 of 11
http://www.jiei-tsb.com/content///

2013, 9:25
http://www.jiei-tsb.com/content/9/1/25
produces M outputs. Then, the DEA CCR model can be
established as follows:

Max HK′ ¼

XM

m¼1

UmYk′m

XN

n¼1

VnXk′n
Figure 8 The plot of DEA.
such that

XM

m¼1

UmYkm

XN

n¼1

VnXkn

≤1

Um;Vn ≥ε > 0
m ¼ 1; 2;…;M
n ¼ 1; 2;…;N
k ¼ 1; 2;…;K ;

where Ykm is the value of the mth output generated by
the kth DMU, Xkn is the value of the nth input con-
sumed by the kth DMU, Vn and Um are Xkn’s and Ykm’s
weights, respectively, whose values are determined by
solving the model, Hk is the relative efficiency of the kth
DMU, and ε is a small positive number. After solving
the CCR DEA model, a DMU is on the efficient frontier
if its relative efficiency, Hk, is equal to 1.

Three quality indices, warpage, shrinkage, and volu-
metric shrinkage at ejection, are considered in this
paper. Among these three indices, warpage is treated as
the output, while shrinkage and volumetric shrinkage at
ejection are two inputs in the DEA model. Because the
output in DEA model needs to be maximized and warp-
age is apparently the minimized quality index, the trans-
formation, 1-warpage, is adopted.
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Table 8 Relatively efficient DMUs

DMU Score

44 100

45 100

840 100

871 100

1,151 100

54 97.82

52 97.80

53 97.13

43 96.88

560 94.19

DMUs in italics represent the efficient ones suggested in this study.
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The DEA software, Banxia Frontier Analyst 3, is used to
find the efficient frontier of process parameters. The
dataset used is the dataset of 1,225 data points created in
the previous subsection. Each data point is treated as a
DMU. After running Banxia Frontier Analyst 3, data
points on the efficient frontier are found in Table 5. There
are nine DMUs on the efficient frontier, among which five
DMUs have at least one reference count as shown in
Table 6. Therefore, these five DMUs with positive refer-
ence counts are treated as the efficient frontier of process
parameters in this paper. The levels of each process par-
ameter for these five DMUs are shown in Table 7, where
the forecasting value of a quality index is its value derived
from the corresponding regression equations and the real
value of a quality index means its value by re-running
Moldflow on this combination of process parameters. The
plot of DEA results is shown in Figure 8.
To verify the efficiency of five DMUs found in this

paper, we re-run Moldflow on each DMU and then the
results are compared with those of 34 = 81 data points
which are utilized to set up the regression equations in
‘Setting up the regression response model to create the
complete dataset’ subsection. The comparison is accom-
plished by executing DEA on 5 efficient DMUs found in
this paper and 81 data points. The results are shown in
Tables 8 and 9. From Table 9, it can be observed that
Table 9 Efficient DMUs with positive counts

DMU Reference count

840 62

1,151 12

871 9

45 9

44 1
among five efficient DMUs found in this paper, three
DMUs are still on the efficient frontier and one DMU is
relatively highly efficient with 94.18% DEA score. Only
DMU 1,186 is not quite efficient with 71.28% DEA
score, and this may be due to the error of the regression
equation at this DMU. It is fair to suggest that the error
induced by the regression equation at most of the points
is fairly small. Therefore, the efficient frontier of process
parameters found by this paper with only 108 (=27 + 81)
repeats of experiments can really provide good combina-
tions of process parameters for decision making.
Summary and conclusions
Part quality for plastic injection molding is often evalu-
ated by multiple interrelated quality indices, and each
quality index is highly related with process parameters.
This paper proposes a method of finding the complete
efficient frontier of process parameters with only a few
times of experiments when multiple quality indices are
considered for plastic injection molding. The thin front
cover of a digital camera is provided as the example of
executing the method. Based on the literature, nine
process parameters are considered in this research. The
experimental design with the Taguchi orthogonal L27 is
used to run the experiment on Moldflow. ANOVA is
then executed to find significant parameters to affect the
part’s quality indices, and the results show that four out
of nine parameters are significant with the significant
level 0.05. In order to set up the complete efficient fron-
tier of DEA analysis, more data are required, and the re-
gression equations are used to create them. To have
good accuracy of the multiple regressed equations, the
complete experimental design with 34 times (only four
significant process parameters are considered) of experi-
ments is again executed on Moldflow. The multiple re-
gression equations are then set up and are used to
produce the dataset for DEA analysis. The results of
DEA analysis shows that the five combinations are on
the efficient frontier.
To show the efficiency of these combinations suggested

in this paper, DEA analysis is again conducted on them as
well as the results of the experiments of 34 times used for
establishing multiple regression equations. The results show
that only one combination is not as efficient mainly because
of the error of the regressed equations at this combination.
Hence, the method proposed here is believed indeed can
find the efficient frontier of process parameters with only a
few times of experiments.
The classic DEA method, CCR, is used in this paper;

in the future, some other DEA methods, such as BCC,
can be used, and the performance of each method can
be compared. Another possible future research topic is
to evaluate the performance of Moldflow analysis.
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Table 10 Experimental results of L27 array

N1991 N1962 N1955 N2261 E1 E2 E3 E4 Volume

1 0.2222 0.2118 0.2151 0.203 0.4014 0.1292 0.3728 0.171 4.384

2 0.2137 0.2027 0.2077 0.1953 0.3856 0.1226 0.3598 0.1619 4.346

3 0.2185 0.2082 0.2126 0.2001 0.395 0.1273 0.3681 0.1666 4.379

4 0.1436 0.1322 0.1392 0.125 0.2532 0.0529 0.2346 0.0913 3.281

5 0.1513 0.1416 0.1466 0.133 0.2675 0.0643 0.2475 0.1006 3.468

6 0.1416 0.1301 0.137 0.1223 0.2491 0.0516 0.2308 0.0896 3.154

7 0.1032 0.0902 0.098 0.0821 0.173 0.0035 0.1579 0.0379 3.936

8 0.0927 0.0798 0.0877 0.0693 0.1497 −0.0153 0.1321 0.0187 4.095

9 0.0986 0.0867 0.0947 0.0783 0.165 −0.0014 0.1503 0.0341 3.973

10 0.1602 0.1564 0.1612 0.1521 0.2877 0.0609 0.2717 0.1046 4.337

11 0.1455 0.1416 0.1412 0.1356 0.262 0.0564 0.2432 0.0959 3.938

12 0.1414 0.1365 0.1354 0.1301 0.2526 0.0504 0.2309 0.0896 3.989

13 0.0697 0.0593 0.0776 0.0559 0.083 −0.0475 0.0739 −0.013 2.063

14 0.0677 0.0593 0.0718 0.0542 0.091 −0.0379 0.0797 −0.0041 2.018

15 0.0735 0.0618 0.0824 0.0575 0.0873 −0.0491 0.0779 −0.0126 2.086

16 0.1367 0.1358 0.1243 0.1288 0.2529 0.0685 0.2254 0.1026 3.593

17 0.1352 0.134 0.1249 0.1289 0.2506 0.0647 0.2261 0.0994 3.369

18 0.131 0.1303 0.1192 0.1246 0.243 0.059 0.2161 0.0937 3.526

19 0.1446 0.1537 0.1601 0.1062 0.2521 0.0288 0.2252 0.0535 7.185

20 0.1339 0.1483 0.1488 0.1027 0.247 0.0297 0.2139 0.0475 6.509

21 0.1216 0.1423 0.144 0.1021 0.2177 0.0251 0.1904 0.0434 6.474

22 0.1563 0.1809 0.1834 0.1507 0.3036 0.0629 0.2963 0.0983 7.855

23 0.15 0.1893 0.1672 0.1452 0.3118 0.0546 0.2718 0.0897 7.12

24 0.1786 0.2015 0.1828 0.1496 0.35 0.0686 0.3018 0.106 7.41

25 0.0673 0.0611 0.0939 0.0325 0.0558 −0.0288 0.0621 −0.0166 3.294

26 0.0951 0.0826 0.1094 0.051 0.1015 −0.0014 0.1003 −0.0039 3.055

27 0.0794 0.0698 0.0991 0.0393 0.0651 −0.0164 0.0728 −0.0138 3.21

Appendix A
The results of L27 are presented in Table 10.

C
hen

et
al.Journalof

IndustrialEngineering
International2013,:

Page
9
of

11
http://w

w
w
.jiei-tsb.com

/content///
2013, 9:25

http://w
w

w
.jiei-tsb.com

/content/9/1/25

http://www.jiei-tsb.com/content/9/1/25


Table 11 Moldflow execution results

Warpage Shrinkage Volume shrinkage at ejection

1 0.2185 0.395 4.379

2 0.2182 0.3944 4.378

3 0.2169 0.3922 4.364

4 0.1611 0.2867 3.611

5 0.161 0.2863 3.61

6 0.1601 0.2847 3.596

7 0.1154 0.1973 2.724

8 0.1156 0.1969 2.723

9 0.1145 0.1951 2.706

10 0.2006 0.3635 4.08

11 0.2003 0.3629 4.079

12 0.1998 0.3622 4.078

13 0.1451 0.2556 3.288

14 0.1452 0.2551 3.287

15 0.1448 0.2545 3.286

16 0.0982 0.1632 2.25

17 0.098 0.1629 2.251

18 0.0978 0.1626 2.249

19 0.2271 0.4148 4.56

20 0.2264 0.4134 4.516

21 0.2253 0.4117 4.503

22 0.1612 0.2931 3.683

23 0.1607 0.2919 3.642

24 0.1596 0.2905 3.627

25 0.1111 0.1965 2.683

26 0.1103 0.195 2.642

27 0.1092 0.1931 2.264

28 0.1952 0.3589 4.869

29 0.195 0.3589 4.879

30 0.1981 0.3646 4.958

31 0.1472 0.265 4.016

32 0.1471 0.2651 4.023

33 0.1487 0.2679 4.073

34 0.1068 0.1776 3.158

35 0.107 0.1776 3.163

36 0.1084 0.1805 3.2

37 0.136 0.2522 3.551

38 0.1335 0.2447 3.509

39 0.1332 0.2471 3.506

40 0.0982 0.1743 2.926

41 0.096 0.1696 2.882

42 0.0957 0.1691 2.883

43 0.078 0.0835 2.068

44 0.0775 0.0779 2.048

Table 11 Moldflow execution results (Continued)

45 0.0778 0.0772 2.054

46 0.1528 0.2846 3.924

47 0.153 0.2847 3.939

48 0.1517 0.2827 3.921

49 0.1068 0.197 3.146

50 0.1074 0.1973 3.155

51 0.1063 0.1952 3.138

52 0.0674 0.1021 2.015

53 0.0678 0.1027 2.028

54 0.0677 0.1007 2.014

55 0.2068 0.3438 7.623

56 0.1449 0.2523 3.853

57 0.2079 0.3452 6.844

58 0.1528 0.2605 4.782

59 0.1465 0.2469 4.573

60 0.1712 0.2751 6.899

61 0.1617 0.2321 7.921

62 0.1614 0.2345 6.631

63 0.1618 0.2355 8.349

64 0.1954 0.3269 7.239

65 0.1214 0.2301 3.745

66 0.1751 0.3106 6.779

67 0.1362 0.1936 4.24

68 0.1366 0.194 4.355

69 0.1352 0.1922 4.284

70 0.108 0.0802 3.177

71 0.1049 0.0744 3.16

72 0.1049 0.0746 3.165

73 0.1021 0.1438 3.199

74 0.1003 0.1455 3.186

75 0.1004 0.1425 3.197

76 0.1011 0.078 3.2

77 0.0982 0.0732 3.206

78 0.0981 0.0721 3.21

79 0.1165 −0.063 3.203

80 0.1137 −0.0656 3.22

81 0.1132 −0.0662 3.224

Appendix B
The results of 81 are presented in Table 11.
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