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A multiple objective approach for joint ordering
and pricing planning problem with stochastic
lead times
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Abstract

The integration of marketing and demand with logistics and inventories (supply side of companies) may cause
multiple improvements; it can revolutionize the management of the revenue of rental companies, hotels, and
airlines. In this paper, we develop a multi-objective pricing-inventory model for a retailer. Maximizing the retailer's
profit and the service level are the objectives, and shortage is allowed. We present the model under stochastic lead
time with uniform and exponential distributions. Since pricing is important and influences demand, the demand is
considered as a general function of price. The multiple-objective optimization model is solved using the weighting
method as well as the L-P metric method. Concerning the properties of a nonlinear model, a genetic algorithm is
taken into account to find the optimal solutions for the selling price, lot size, and reorder point. Finally, numerical
examples with sensitivity analysis regarding key parameters are provided.

Keywords: Multi-objective nonlinear optimization; Pricing; Stochastic lead time; L-P metric method;
Genetic algorithm
Introduction
Planning and inventory control is one of the major is-
sues in industrial engineering; it is also one of the inevit-
able activities in each organization. Therefore, there
exist several studies in this research area. Here, we in-
vestigate two general groups of papers. The first group
considers inventory models with pricing. The integration
of inventory and pricing policies leads to the joint
optimization of the whole system and maximization of
the total profit. Selling price consumer selection can
gravitate to the customers. Lee (2011) considered two
pricing policies based on two service levels. The author
concluded that increasing the price leads some cus-
tomers towards low service levels with lower prices.
Whitin (1955) was the first researcher to formulate a
newsboy model with price effect. In that model, the
probability distribution of demand depended on the unit
selling price where price was a decision variable. Abad
(2003, 2008), Dye (2007), and Dye and Hsieh (2010)
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assumed deteriorating items and allowable shortage.
They presented models that considered the price as a
decision variable. Abad (2003, 2008) and Dye (2007)
considered demand as a general function of price.
Mukhopadhyay et al. (2004) and Esmaeili (2009) studied
infinite planning horizon where shortage was not
allowed. Mukhopadhyay considered demand to be a
nonlinear function of price, while in the model of
Esmaeili, demand was a general function. The annual
profit of the manufacturer is maximized to determine
the selling price, marketing expenditure, and lot size.
Sana (2011) presented a stochastic inventory in which
demand was considered to be dependent on the random
selling price. Dye and Hsieh (2013) studied an advanced
sales system with deteriorating items where prices were
dependent on demand. They showed that advanced sales
price is lower than the spot sales price. Sadjadi et al.
(2012) used geometric programming (GP) to obtain opti-
mal lot sizing, pricing, and marketing decisions such
that the profit is maximized. However, using a single ob-
jective function is the major shortcoming of the models.
Most inventory models aggregate several cost concepts

and service requirements into a single objective and use
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Table 1 Comparison between the most relevant models in literature

Research papers Objective
function

Objective function Pricing Demand Lead time Solution method

Sheikh Sajadieh and
Akbari Jokar (2009)

Single Cost minimization Not
considered

Constant Stochastic
(uniform)

Exact

Sheikh Sajadieh
et al. (2009)

Single Cost minimization Not
considered

Constant Stochastic
(exponential)

Exact

Esmaeili (2009) Single Profit maximization Considered Price
dependent

Constant Exact

Tsou (2008) Multiple Cost minimization, frequency of stock out
occasions, and number of items stocked out

Not
considered

Stochastic Constant TOPSIS and MOPSO
algorithm

Dye and Hsieh
(2013)

Single Profit maximization Considered Price
dependent

Constant Exact

Proposed model Multiple Profit maximization and service level Considered Price
dependent

Stochastic
(uniform and
exponential)

L-P metric,
Weighting and GA
algorithm
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traditional methods to solve them. Nonetheless, one of
the significant characteristics of modern business is the
multiple criteria context of retail industries.
In the second group, the decision maker seeks to

maximize or minimize two or more objectives simultan-
eously. This group of models has been applied in several
fields, but few of these multi-objective problems have
dealt with inventory control optimization.
Padmanabhan and Vart (1990) solved a multi-objective

inventory model with deteriorating items and stock-
dependent demand by a nonlinear goal programming
method. Agrell (1995) proposed a multi-objective inven-
tory model with three objective functions. These objec-
tives included minimization of average total relevant
annual cost, annual average frequency of stock out occa-
sions, and annual average number of times stock out.
Figure 1 Case1 r > bD.
Considering lot size and safety factor as decision vari-
ables, it is assumed that planning horizon is infinite, de-
mand has a normal distribution, and shortage is allowed.
Later Tsou (2008, 2009) and Moslemi and Zandieh
(2011) considered Agrell's model. However, nondomi-
nated solutions of a reorder point and order size have
been obtained using multi-objective particle swarm
optimization algorithm (MOPSO). Moreover, TOPSIS
was used to rank the nondominated solutions using the
preference of decision makers (Tsou 2008). Tsou (2009)
involved MOPSO and multi-objective electromagnetism-
like optimization (MOEMO) algorithms to obtain non-
dominated solutions of lot size and safety stock.
Moslemi and Zandieh (2011) created some strategies
based on the MOPSO algorithm in continuous review
stochastic inventory control system.
Many researchers have considered deterioration in a

multi-item multi-objective inventory model under a
Figure 2 Case2 r ≤ bD.
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Figure 3 L > T.

Figure 4 Proposed genetic algorithm.

Table 2 Optimal results of model with uniform lead time

Method Weights of objectives P* Q* r* Z* SL*

Weighting 89 107 32 64,444 0.4055

L-P metric, p = 1 W1 = 0.2 88 197 79 63,476 0.9987

L-P metric, p = 2 W2 = 0.8 88 181 79 63,508 0.9987

Weighting 90 107 31 65,107 0.3938

L-P metric, p = 1 W1 = 0.4 90 198 78 64,808 0.9909

L-P metric, p = 2 W2 = 0.6 90 179 78 64,845 0.9909

Weighting 90 108 29 65,108 0.3684

L-P metric, p = 1 W1 = 0.6 90 196 78 64,812 0.9909

L-P metric, p = 2 W2 = 0.4 90 176 78 64,850 0.9909
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fuzzy environment. For instance, Roy and Maiti (1998)
maximized profit and minimized wastage cost; while
the demand was dependent on the inventory level, plan-
ning horizon was finite and shortage was allowed. To
obtain optimal solution, they used fuzzy nonlinear pro-
gramming (FNLP) and fuzzy additive goal programming
(FAGP) methods considering budget and space con-
straints. However, Mandal et al. (2005) included storage
space, number of orders, and production cost in their
model and achieved optimal solution by applying GP. In
addition, Maity and Maiti (2008) and Islam (2008) pre-
sented a multi-item multi-objective inventory model
under fuzzy inflation and discounting. Maity and Maiti
(2008) assumed that time horizon is finite, shortage is
allowed, and demand is dependent on advertisement.
They have used utility function method (UFM) and gen-
eralized reduced gradient (GRG) methods to obtain op-
timal solution. Islam (2008) considered an infinite
planning horizon under the limitation of space capacity
and total shortage cost constraints with demand uni-
formly distributed and dependent on the marketing
Table 3 Optimal results of model with exponential lead
time

Method Weights of objectives P* Q* r* Z* SL*

Weighting 89 107 32 64,444 0.4055

L-P metric, p = 1 W1 = 0.2 88 197 79 63,476 0.9987

L-P metric, p = 2 W2 = 0.8 88 181 79 63,508 0.9987

Weighting 90 107 31 65,107 0.3938

L-P metric, p = 1 W1 = 0.4 90 198 78 64,808 0.9909

L-P metric, p = 2 W2 = 0.6 90 179 78 64,845 0.9909

Weighting 90 108 29 65,108 0.3684

L-P metric, p = 1 W1 = 0.6 90 196 78 64,812 0.9909

L-P metric, p = 2 W2 = 0.4 90 176 78 64,850 0.9909
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Table 4 Sensitivity analysis of the uniform model with
respect to C - weighting method

c = 6 9 12 15

P* 82 88 94 100

Q* 110 108 108 107

r* 30 30 29 28

Z* 63,038 64,602 66,095 67,515

SL* 0.3738 0.3792 0.3720 0.3646

Table 5 Sensitivity analysis of the uniform model with
respect to h - weighting method

h = 2 4 6 8

P* 84 88 92 95

Q* 160 120 101 92

r* 40 31 27 23

Z* 61,251 63,827 66,377 68,244

SL* 0.5008 0.3919 0.3447 0.2958

Table 6 Sensitivity analysis of the uniform model with
respect to π - weighting method

π = 15 25 35 45

P* 60 80 100 120

Q* 121 112 106 100

r* 13 26 31 35

Z* 43,543 58,314 71,505 83,105

SL* 0.1539 0.3224 0.4036 0.4797

Table 7 Sensitivity analysis of the uniform model with to
respect α - weighting method

α = 0.5 1.5 2.5 3.5

P* 90 90 90 90

Q* 118 111 105 98

r* 36 32 27 23

Z* 75,859 68,691 61,524 54,395

SL* 0.3927 0.3854 0.3629 0.3498

Table 8 Sensitivity analysis of the uniform model with
respect to C - L-P metric method (p = 2)

c = 6 9 12 15

P* 82 87 94 100

Q* 178 178 172 167

r* 80 79 77 75

Z* 62,774 63,670 65,846 67,280

SL* 0.9968 0.9963 0.9878 0.9766

Table 9 Sensitivity analysis of the uniform model with
respect to h - L-P metric method (p = 2)

h = 2 4 6 8

P* 83 88 92 95

Q* 178 176 172 169

r* 80 79 77 76

Z* 60,507 63,645 66,050 67,757

SL* 0.9992 0.9987 0.9829 0.9774

Table 10 Sensitivity analysis of the uniform model with
respect to π - L-P metric method (p = 2)

π = 15 25 35 45

P* 60 80 100 120

Q* 192 188 169 161

r* 84 80 76 72

Z* 43,197 58,020 71,271 82,902

SL* 0.9943 0.9921 0.9896 0.9868

Table 11 Sensitivity analysis of the uniform model with
respect to α - L-P metric method (p = 2)

α = 0.5 1.5 2.5 3.5

P* 90 90 90 90

Q* 203 183 163 143

r* 91 82 73 64

Z* 75,549 68,422 61,295 54,167

SL* 0.9926 0.9875 0.9812 0.9732

Hosseini et al. Journal of Industrial Engineering International Page 4 of 14#CITATION
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF


Table 12 Sensitivity analysis of the uniform model with
respect to C - L-P metric method (p = 1)

c = 6 9 12 15

P* 82 87 94 100

Q* 201 198 193 188

r* 80 79 77 75

Z* 62,730 63,632 65,806 67,241

SL* 0.9968 0.9963 0.9878 0.9766

Table 14 Sensitivity analysis of the uniform model with
respect to π - L-P metric method (p = 1)

π = 15 25 35 45

P* 60 80 100 120

Q* 256 201 192 178

r* 84 80 76 71

Z* 43,065 57,955 71,228 82,876

SL* 0.9943 0.9921 0.9869 0.9731

Hosseini et al. Journal of Industrial Engineering International Page 5 of 14#CITATION
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF
cost. To minimize inventory, marketing, and production
costs, the optimal solution was obtained using the GP
method. A significant shortcoming of all these models
is that they only regard a deterministic lead time. How-
ever, the lead time in the real world is usually a random
variable. Moreover, the lead time has an effective role in
determining the optimal policy of inventory models. Re-
cently, Hosseini et al. (2012) presented a multi-objective
model with uniformly distributed lead time to optimize
retailing activities.
Price and service level are important factors in

attracting customers and increasing their satisfaction
(Liang et al. 2008). Therefore, in this paper, a multi-
objective inventory model is presented which includes
the retailer's profit and service level. With infinite plan-
ning horizon and allowable shortage, we assume that
lead time has uniform and exponential distribution
while demand is a general function of price. Selling
price, lot size, and reorder point are obtained by maxi-
mizing both the retailer's profit and service level. Gen-
etic algorithm (GA) is used since the model is complex
and nonlinear. In the end, a numerical example is pro-
vided along with sensitivity analysis on key parameters
including shortage, purchasing and holding costs, and
demand elasticity. A comparison between the proposed
model and the most relevant models in the literature
has been provided in Table 1.
This paper is organized as follows: In the ‘Model for-

mulation and assumption’ section, notation, assump-
tions, and mathematical model are provided. Solution
Table 13 Sensitivity analysis of the uniform model with
respect to h - L-P metric method (p = 1)

h = 2 4 6 8

P* 83 88 92 95

Q* 201 198 193 192

r* 80 79 77 76

Z* 60,497 63,614 66,000 67,680

SL* 0.9992 0.9987 0.9829 0.9774
algorithm is presented in the ‘Solution procedure’ sec-
tion. The ‘Numerical example and sensitivity analysis’
section includes the numerical example and sensitivity
analysis on the key parameters of the model. Finally, the
suggestions and results obtained from this study are
presented in the ‘Conclusions’ section.

Model formulation and assumptions
This section introduces the notations, assumptions,
decision variables, and input parameters of our model.

Notation
The following is the notation:

� P selling price (decision variable)
� Q lot size (decision variable)
� r reorder point (decision variable)
� C purchase cost (US$ per unit)
� A ordering cost (US$ per order)
� h holding cost (US$ per unit)
� π shortage cost (US$ per unit)
� L lead time
� T duration of inventory cycle
� D(P) demand rate; for simplicity, we let D ≡D(P)
� Sr sales revenue
� TC expected total cost
� Z retailer's profit
� SL service level

Assumptions
The proposed models are based on the following
assumptions:

1- Planning horizon is infinite.
2- Shortage is allowed and completely back-ordered.
3- Similar to the models proposed by Abad (2003,

2008), Dye (2007), and Esmaeili (2009), demand is
represented by a general function of price.

4- The lead time is stochastic and follows uniform and
exponential distribution.

5- Inventory is continuously reviewed.
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Figure 5 Effect of key parameters on (a) Q, (b) P, (c) Z, (d) r, and (e) SL (uniform model, weighting method).
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6- The customers are myopic and thus make a
purchase immediately if the price is below their
willingness to pay without considering future prices.

Mathematical model
In this section, the multi-objective inventory model, in-
cluding the retailer's profit and service level with uni-
form and exponential lead time, is presented.

Modeling with uniform distribution
Consider a retailer who is going to maximize the profit
and attract the customers to increase their satisfaction.
Therefore, the model would be a multi-objective inventory
model with two objectives. By maximizing the service level
and the retailer's profit, the optimal selling price, lot size,
and reorder point (P, Q, and r) are to be obtained. The
costs include purchasing, ordering, holding, and shortage.
The lead time is stochastic and follows a uniform distribu-
tion with parameters a and b (L ~U [a, b]). Therefore, its
probability density is as follows:
f l Lð Þ ¼ 1
b− a

a ≤ 1 ≤ b: ð1Þ

Since the lead time is assumed to be a random vari-
able, two cases can occur during each cycle time (Sheikh
Sajadieh and Akbari Jokar 2009; Taleizadeh et al. 2010).
In the first case, the reorder point is greater than the
maximum demand during lead time. Therefore, the re-
tailer does not face any shortage (Figure 1). In the sec-
ond case, the ordering point is smaller than or equal to
the maximum demand during lead time; it is probable to
face shortage (Figure 2).
The annual profit function of the model is expressed

as the retailer's profit = sales revenue − purchase cost −
ordering cost − holding cost − shortage cost, which re-
spectively are as follows:

Sr ¼ PD ð2Þ
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Figure 6 Effect of key parameters on (a) Q, (b) P, (c) Z, (d) r, and (e) SL (uniform model, L-P metric method p = 1).
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TC P;Q; rð Þ

¼ CDþ DA
Q

þ Dh
Q

Zr=D
a

rl −
Dl2

2

� �
f l Lð Þdl

þ rh
Q

Zb

a

Q−Dð Þf l Lð Þdl þ h
2Q

Zb

a

Q−Dlð Þ2f l Lð Þdl

þ r2h
2Q

Zb

r=D

f l Lð Þdl þ π

2Q

Zb

r=D

Dl − rð Þ2f l Lð Þdl

ð3Þ
Table 15 Sensitivity analysis of the uniform model with
respect to α - L-P metric method (p = 1)

α = 0.5 1.5 2.5 3.5

P* 90 90 90 90

Q* 228 206 192 161

r* 91 82 73 64

Z* 75,499 68,378 61,240 54,136

SL* 0.9926 0.9875 0.9812 0.9732
By substituting Equation 1 in Equation 3, we have

Z P;Q; rð Þ ¼ PD−CD−
DA
Q

− hr

−
h 2r2 − 3rD2a2 þ D3a3
� �

6DQ b− að Þ þ hrD aþ bð Þ
2Q

−
h Q−Db−Dað Þ

2
−
hD2 a2 þ abþ b2

� �
6Q

−
hr2 Db− rð Þ
2DQ b− að Þ−

π Db− rð Þ3
6DQ b− að Þ

ð4Þ
Table 16 Sensitivity analysis of the exponential model
with respect to C - the weighting method

c = 6 9 12 15

P* 82 88 94 100

Q* 127 127 127 127

r* 32 30 28 27

Z* 62,903 64,470 65,965 67,388

SL* 0.5495 0.5316 0.5129 0.5049
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Table 17 Sensitivity analysis of the exponential model
with respect to h - the weighting method

h = 2 4 6 8

P* 84 88 92 95

Q* 187 143 122 110

r* 49 33 24 18

Z* 61,172 63,711 66,235 68,084

SL* 0.7068 0.5658 0.4581 0.3705

Table 18 Sensitivity analysis of the exponential model
with respect to π - weighting method

π = 15 25 35 45

P* 60 80 100 120

Q* 129 127 127 125

r* 13 24 33 38

Z* 4,345 5,819 7,136 8,294

SL* 0.2649 0.4485 0.5765 0.6471

Table 19 Sensitivity analysis of the exponential model
with respect to α - weighting method

α = 0.5 1.5 2.5 3.5

P* 90 90 90 90

Q* 144 136 126 118

r* 35 30 26 21

Z* 75,701 68,551 61,403 54,255

SL* 0.5339 0.5144 0.5028 0.4720

Table 20 Sensitivity analysis of the exponential model
with respect to C - L-P metric method (p = 2)

c = 6 9 12 15

P* 82 88 94 100

Q* 421 411 398 383

r* 168 164 159 153

Z* 61,792 63,394 64,936 66,415

SL* 0.9848 0.9842 0.9831 0.9814

Table 21 Sensitivity analysis of the exponential model
with respect to h - L-P metric method (p = 2)

h = 2 4 6 8

P* 84 88 92 95

Q* 512 418 388 384

r* 199 167 155 153

Z* 60,697 62,875 64,998 66,345

SL* 0.9931 0.9853 0.9809 0.9804

Table 22 Sensitivity analysis of the exponential model
with respect to π - L-P metric method (p = 2)

π = 15 25 35 45

P* 60 80 100 120

Q* 446 432 398 341

r* 178 172 159 136

Z* 42,156 57,104 70,349 82,190

SL* 0.9852 0.9860 0.9841 0.9759

Table 23 Sensitivity analysis of the exponential model
with respect to α - L-P metric method (p = 2)

α = 0.5 1.5 2.5 3.5

P* 90 90 90 90

Q* 512 441 388 384

r* 201 176 154 127

Z* 74,296 67,374 60,399 53,473

SL* 0.9875 0.9856 0.9841 0.9790

Table 24 Sensitivity analysis of the exponential model
with respect to C - L-P metric method (p = 1)

c = 6 9 12 15

P* 82 88 94 100

Q* 512 432 421 416

r* 215 195 192 187

Z* 61,340 62,528 64,717 66,168

SL* 0.9935 0.9928 0.9927 0.9923
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Table 25 Sensitivity analysis of the exponential model
with respect to h - L-P metric method (p = 1)

h = 2 4 6 8

P* 84 88 92 95

Q* 478 443 389 385

r* 215 199 175 173

Z* 60,696 62,701 64,786 66,183

SL* 0.9954 0.9935 0.9885 0.9883

Table 27 Sensitivity analysis of the exponential model
with respect to α - L-P metric method (p = 1)

α = 0.5 1.5 2.5 3.5

P* 90 90 90 90

Q* 512 454 389 347

r* 230 204 175 156

Z* 74,152 67,204 60,288 53,267

SL* 0.9934 0.9926 0.9909 0.9913
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The second objective is the retailer's service level. It is
the probability of not facing shortage during the lead
time, which presented is as follows:

SL P; rð Þ ¼ p lD ≤ rð Þ ¼
ZD
0

f 1 Lð Þdl ¼ r
D b−að Þ : ð5Þ

Modeling with exponential distribution
In this section, we obtain the optimal selling price, lot
size, and reorder point (P, Q, and r) while the lead time
has an exponential distribution with parameter λ (L ~
exp (λ)) and the following probability density function:

f L lð Þ ¼ λe−λl 0≤ 1 < ∞ ð6Þ
Therefore, in addition to the two cases shown in

Figures 1 and 2, there is a probability that the delivery is
received after the cycle time which is depicted in Figure 3
(Sheikh Sajadieh et al. 2009).
The expected total cost is given by

TC P;Q; rð Þ ¼ CDþ DA
Q

þ h
Zr=D
0

Q
2
þ r −DL

� �
f L lð Þdl

þ
Zr þ Qð Þ
D

r
D

π DL−rð Þ2 þ h Qþ r −DLð Þ2
2Q

" #
f L lð Þdl

þ
Z∞
r þ Qð Þ
D

π DL− r −
Q
2

� �
f L lð Þdl:

ð7Þ
Table 26 Sensitivity analysis of the exponential model
with respect to π - L-P metric method (p = 1)

π = 15 25 35 45

P* 60 80 100 120

Q* 512 441 416 392

r* 209 198 187 176

Z* 41,843 56,861 70,168 81,873

SL* 0.9929 0.9926 0.9923 0.9920
Substituting Equation 6 in Equation 7, we have

TC P;Q; rð Þ ¼ CDþ DA
Q

þ h r þ Q
2
−
D
λ

� �

þ D2 π þ hð Þ
λ2Q

e−
rλ
D−e−

rþQð Þλ
D

� �
: ð8Þ

Thus, the annual profit is calculated as follows:

Z P;Q; rð Þ ¼ D P −Cð Þ−DA
Q

− h r þ Q
2
−
D
π

� �

−
D2 π þ hð Þ

λ2Q
e−

rλ
D−e−

rþQð Þλ
D

� �
:

ð9Þ

In order to calculate the service level, we can write

SL P; rð Þ ¼ P lD ≤ rð Þ ¼
Z r

D

0

f l Lð Þdl

¼ 1− exp −
λr
D

� �
: ð10Þ

Solution procedure
There are different methods to change a multi-objective
optimization to a single-objective optimization. In this
paper, we apply the weighting method that is useful
and simple in concept and implementation. Also, the
L-P metric method which is one of the famous
methods of MCDM is applied in this paper. In this
technique, the objective functions have the most prox-
imity to their ideal values. These methods are ex-
plained respectively.

Weighting method
Considering a weight for each objective, the new object-
ive function is obtained from the sum of objective func-
tions with the corresponding weights. Therefore, the
model for uniform and exponential lead time would re-
spectively be as follows:
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þW 2: 1− exp −
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L-P metric method
In the L-P metric method, the distance of any present
solution from the ideal solution is minimized (Banke
et al. 2008):

L− P ¼
Xk
j¼1

γ j f j x
�j� �

− f j xð Þ
� �p

( )1
p=

ð13Þ

where x*j shows the ideal solution for optimizing the jth
objective, x is the assumed solution, and Yj indicates the
significance degree for the jth objective. 1 ≤ p ≤∞ is the
parameter that specifies the L-P family. The p value indi-
cates the emphasis level on the existing deviations. There-
fore, the larger the p, the more emphasis will be there on
the largest deviations. The values p = 1, p = 2, and p =∞
are commonly used. In the present approach, we consider
p = 1 and p = 2. When p = 1, the deviation is simply
summed over all attributes, and when p = 2, the metric
measures the shortest geometric distance between two
points, which is a straight line. Other values of p are not as
easily interpreted, but they may be reasonable choices in a
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Figure 8 Effect of key parameters on (a) Q, (b) P, (c) Z, (d) r, and (e) SL (exponential model, weighting method).
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given application. The p value depends on decision maker
measures. The L-P method is affected by the objective
measurement scale. Thus, the following formula is used:

L− P ¼
Xk
j¼1

γ j
f j x

�jð Þ− f j xð Þ
f j x�jð Þ

" #p( )1
p:=

ð14Þ

Therefore, the model for uniform lead time is given by

Min L−P ¼ w1
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If lead time is exponential, we have the following ob-
jective function:
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Genetic algorithm
Most researchers have used genetic algorithm to solve
optimization problems (Taleizadeh et al. 2010; Maiti
et al. 2009; Pasandideh et al. 2011). Considering the
complexity of the nonlinear model, genetic algorithm is
applied to find the optimal solution. GA was first
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Figure 9 Effect of key parameters on (a) Q, (b) P, (c) Z, (d) r, and (e) SL (exponential model, L-P metric method p = 1).
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presented by Holland in 1975 and was developed based
on the principles of genetics and evolution (Haupt and
Haupt 2004). Genetic algorithm begins to work with an
initial population of solutions (chromosomes). New solu-
tions are developed by crossover and mutation operators.
To form the new population, the best solutions will be
selected from the existing population using a fitness func-
tion. The solutions improve from one generation to an-
other so that the desirable solution is obtained gradually.

Chromosome
Chromosome is a series of bits in which the coded forms
of all suitable or unsuitable are placed. A suitable design
of chromosome structure is an important part of genetic
algorithm. In our algorithm, a string is designed with a
length of k in which the first, second, and third one-
thirds indicate reorder point, selling price, and lot size,
respectively.

Population
A group of chromosomes is called a population. The ini-
tial population is generated completely randomly, and
the number of chromosomes in each population be-
comes the population size (N). The value of N is import-
ant and must be specified based on the type of problem
and its coding. In the present paper, the population size
is set to 400 (N = 400).

Crossover
Crossover operator is applied on two parents, and a new
child is generated as a result. We consider a two-point
crossover in the manner that two crossover points are
randomly chosen from the string, and then the two par-
ent chromosomes are interchanged between these points
to produce two new children.

Mutation
The second operator in the genetic algorithm is the mu-
tation operator which prevents the algorithm to fall in
the local optimum. In our algorithm, we use random
mutation.

Stopping criterion
Stopping criterion is the final stage in the genetic algo-
rithm. There are several indexes in this regard. Here, the
maximum generation reproduction rule is used, i.e.,
once the generation counter reaches a certain number,
the algorithm will stop. This rule has been used by sev-
eral researchers. Figure 4 depicts the proposed genetic
algorithm.
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Figure 10 Effect of key parameters on (a) Q, (b) P, (c) Z, (d) r, and (e) SL (exponential model, L-P metric method p = 2).
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Numerical example and sensitivity analysis
In this section, we illustrate the quality of our model by
presenting some examples. We will also perform sensi-
tivity analysis for the key parameters (π, C, h, and α) of
the model. Assume that the retailer faces a linear de-
mand function of D = 1,000 − αp, where α is the demand
elasticity coefficient which is equal to 2. The cost of each
ordering is US$25, while the holding cost for each unit
of items is US$5/year and the shortage cost of each unit
of items is US$30/year; a = 0 and b = 35 (days) if the de-
mand is distributed uniformly, and λ = 17.5 if it is dis-
tributed exponentially. Therefore, the average lead time
is the same in both cases.
We consider p = 1 and p = 2 for the L-P metric method

and different objective weights for the weighting method.
The obtained optimal solution is shown in Tables 2 and 3.

Sensitivity analysis
To select a suitable strategy for the retailer, we consider
the effect of parameters π, C, h, and α on decision variables
and objective functions. The optimal solutions are shown
in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 while the
results of sensitivity analysis are shown in Figures 4, 5, and
6. In addition, the weights of the first and second objective
functions are considered 0.6 and 0.4, respectively.
As it can be seen in the figures and tables, by increasing

the cost parameters, the selling price (p*) and profit (Z*) will
increase. Moreover, when demand elasticity increases, the
lot size (Q*) will decrease. This happens because the higher
the sensitivity of items to the selling price, the more will be
the tangible demand decrease against high price. Moreover,
reorder point has a direct relation with service level.
As Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, and 27 and Figures 6, 7, 8, 9,
and 10 show, the service level in the L-P metric method is
larger while the annual profit of the weighting method is
larger. In addition, in the L-P metric method, the profit is
larger for larger p, but this does not hold for service level.

Conclusions
In this paper, a multi-objective inventory model is presented
which includes the maximization of the retailer's profit along
with the maximization of customer service level. The de-
mand is assumed as a general function of price. In addition,
planning horizon is considered infinite. The stochastic lead
time is assumed to be uniformly and exponentially
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distributed, and the shortage is allowed. The proposed
model is a complex (a multi-objective nonlinear model).
Therefore, the optimal solution of the selling price, lot size,
and reorder point is obtained using the genetic algorithm.
The weighting and L-P metric methods are used to change
a multi-objective function to a single-objective function. Nu-
merical examples and sensitivity analysis on the key parame-
ters (π, C, h, and α) of the model are presented. The results
show that the retailer's profit in uniform distribution is lar-
ger, while lot size and reorder point of the exponential
model is larger. In addition, increasing the cost parameters
will increase the selling price (p*) and the profit (Z*). More-
over, when the demand elasticity (α) increases, the lot size
(Q*) will decrease. In addition, the reorder point has a direct
relation with the service level. In addition, using the L-P
metric method, a higher service level is obtained, but the an-
nual profit of the weighting method is larger.
In the future, it may be interesting to examine a scenario

in which the system deals with stochastic consumer de-
mand as well as stochastic lead time in order to define the
system more accurately. Considering a multi-period sys-
tem and planning of the prices of the product as a dy-
namic pricing may be a scope for future research. The
proposed GA variants that employ various crossover and
mutation operations could be another area of future inter-
est. New solution methodology based on tabu search or
heuristic methods can be developed to obtain new optimal
solutions for the multi-objective problem. In this case,
conducting more numerical tests to justify the developed
algorithm would be necessary. Additionally, uncertainty of
costs and demand parameters can be taken into account
in the model, and new solution methodologies including
uncertainty can be developed via fuzzy models.
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