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Abstract It is important to share demand information

among the members in supply chains. In recent years,

production and inventory systems with advance demand

information (ADI) have been discussed, where advance

demand information means the information of demand

which the decision maker obtains before the corresponding

actual demand arrives. Appropriate production and inven-

tory control using demand information leads to the

decrease of inventory and backlog costs. For a single stage

system, the optimal base stock and release lead time have

been discussed in the literature. In practical production

systems the manufacturing system has multiple processes.

The multiple stage production and inventory system with

ADI, however, has been analyzed by simulation or

assuming exponential processing time. That is, their theo-

retical analysis and optimization of release lead time and

base stock level have little been obtained because of its

difficulty. In this paper, theoretical analysis of a two-stage

production inventory system with advance demand infor-

mation is developed, where the processing time is assumed

deterministic and identical; demand arrival process is

Poisson, and an order base stock policy is adopted. Using

the analytical results, optimal release lead time and optimal

base stock levels for minimizing the average cost on the

holding and backlog costs are explicitly derived.

Keywords Advance demand information � M/D/1 queue �
Order base stock policy

Introduction

In production systems, the amount of items produced at

each period and work-in-processes or finished products

must be controlled appropriately. Many studies on control

of production and inventory systems have been developed.

In most of the studies, the demand for products is assumed

to happen at the arrival of demand information.

In recent years, production and inventory systems with

advance demand information have been discussed. Here,

advance demand information (ADI) means the information

of demand which the decision maker obtains before the

corresponding actual demand arrives. Appropriate pro-

duction and inventory control using ADI from downstream

to the upstream makes the decrease of amount of products

in inventory and backlogs.

It is important to share demand information among the

members in supply chains. In many automakers, a car is

produced after the demand happens. On the other hand, in

recently developed internet retails, products are delivered

later after demand is received. Therefore, the time lag

exists between item requirement and its delivery to the

customer. Efficient use of this time lag leads to the

appropriate production and inventory control.

In a single stage production and inventory system, the

effect of ADI has been developed in the literature. Milgrom

and Roberts (1988) consider a single period random

demand model and show the optimal level of investment of

ADI. Hariharan and Zipkin (1995) discuss the supplier

model with continuous review order base stock policy and

Poisson arrivals of orders. Here, the order base stock policy

means that the inventory position is kept in the system by

replenishment order based on the advance demand infor-

mation. In Karaesmen et al. (2003), processing times are

assumed to follow a general distribution, and an
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approximate scheme for generalization of Buzacott and

Shanthikumar (1993, 1994) is proposed. Karaesmen et al.

(2004) develop the value of advance demand information

for M/G/1 or M/M/1 make-to-stock queue with constant

demand lead time. Bernstein and Decroix (2015) examine

the impact of different types of advance demand informa-

tion, volume information and mix information in a multi-

product system. They find that mix and volume information

are complements.

In a single stage system, the optimality of base stock

policy, optimal base stock levels, and optimal demand lead

time have also been discussed. Gallego and Özer (2001)

consider a single stage inventory system with exogenous

demand, under periodic review and stochastic finite

demand lead time, and when replenishing time is greater

than the maximum of possible demand lead time, it is

proven that the order base stock policy is optimal. Buzacott

and Shanthikumar (1993, 1994) discuss the continuous

review of one stage production inventory system with

deterministic lead time and finite capacity, where the pro-

cessing times have an exponential distribution. They show

that in this system, optimal demand lead time and costs

decreases in the number of base stocks.

Liberopoulos (2008) considers a single stage production

and inventory system under an order base stock policy and

continuous review, and analyzes the tradeoff between

demand lead time and optimal numbers of base stocks

theoretically. The optimal integer-value base stock level

minimizing the average cost is developed and it is shown

that increasing demand lead time leads to the decrease of

the optimal number of base stocks. In particular, tradeoffs

have been developed in detail for cases that the replen-

ishment process is represented as M/D/1, M/M/1 and M/D/

? queues. Gayon et al. (2009) consider a production

inventory system with imperfect advance demand infor-

mation with Poisson arrivals, exponential lead times and

multiple classes, and show a state dependent base stock

policy is optimal. Yokozawa and Nakade (2012) consider a

M/D/1 base stock system with advance demand informa-

tion, and the relationship between release lead time and

demand lead time is discussed theoretically. Karaesmen

(2013) discusses the value of advanced demand informa-

tion in a single stage system with multiple customers.

Assuming that each of customers has normal distributed

demand, he gives the optimal order quantity for the system

with and without ADI under inventory sharing and no

inventory sharing. He also discusses them under capaci-

tated supply with and without inventory and capacity

sharing.

In practical production systems, the manufacturing

system has multiple processes. The multiple stage pro-

duction and inventory system with ADI, however, has been

analyzed either by simulation or by assuming exponential

processing time. Karaesmen et al. (2003) and Liberopoulos

and Tsikis (2003) propose a framework for production

policies with advance demand information for multistage

production inventory system, although they do not derive

the optimal base stock level. Liberopoulos and Kouk-

oumialos (2005) investigate a two-stage production and

inventory system with ADI. They assume the processing

time to be exponentially distributed, and use simulation to

evaluate control parameters and derive the optimal values

numerically. Claudio and Krishnamurthy (2009) investi-

gate multistage system with ADI under Kanban control

with simulation. The benefit of integrating advance demand

information with Kanban is obtained in many cases by

numerical experiments.

Thus, several researches on multistage production and

inventory systems has been developed, but the result is

only obtained by simulation, or assuming the exponential

distributed processing time, which is not observed in

practice. That is, there seems no literature on the theoret-

ical analysis and optimization on multistage production and

inventory system because of its complexity. In this paper,

theoretical analysis of two-stage production inventory

system with advance demand information is developed

under a framework on the two-stage model given in

Karaesmen et al. (2003). In our model, the processing time

is assumed deterministic and identical, demand arrival

process is Poisson and an order base stock policy is

adapted. Deterministic processing time is more accept-

able in practice compared with exponential distribution.

The base stock level and release lead time for each process

are decision variables, and we want to derive optimal

values to minimize average cost on inventory and backlog

cost. If the system is fully developed, then it hardly has

errors for processing, and thus the processing time is

deterministic. A base stock order policy is easily installed

in the production and inventory system because the policy

is easily established by sending information on withdraw of

each finished item to all upstream stations. Through theo-

retical analysis, explicit expressions on optimal release

lead time and optimal base stock levels are obtained for

each demand lead time.

The organization of this paper is as follows. In

‘‘Model’’, the production and inventory system is descri-

bed, and a relationship between finishing times of pro-

cesses in both processes is discussed. In ‘‘Optimal base

stock level’’, optimal amounts of base stocks are investi-

gated for given release lead time. In ‘‘Optimal release lead

time of process 2’’, optimal release lead time of process 2 is

developed, and in ‘‘Optimal release lead time of process

1’’, optimal release lead time of process 1 is discussed, and

thus pairs of optimal base stock levels and optimal release

lead time are derived for given demand lead time. ‘‘Opti-

mal release lead time and optimal base stock level’’
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summarizes results of ‘‘Optimal release lead time of pro-

cess 1’’ and gives optimal base stock levels and release lead

time explicitly, and theoretically, for each demand lead

time, which is listed in Table 5. ‘‘Numerical experiments’’,

the relationship between the optimal average cost and

demand lead time, is demonstrated through a few numer-

ical examples.

Model

Model description

The two-stage production and inventory model with a

single product is considered under continuous time review.

Figure 1 shows the model.

Advance demand information arrives at the system in a

Poisson process with arrival rate k: Each information

requires one product T periods later. This time T is called

demand lead time. The information cannot be declined

after the demand information arrives.

Processes 1 and 2 follow the order base stock policy.

The amounts of base stocks are defined as S12 and S2,

respectively, which take values of nonnegative integers and

S12 � S2. The difference S1 ¼ S12 � S2, which is also a

nonnegative integer, is called the amount of base stock of

process 1 in the following of this paper.

Replenishment order for process 1 is made at t0 periods

ð0� t0 � TÞ after the demand information arrival, and thus

this order is done L1ð¼ T � t0Þ periods before arrival of its
requirement for product. There are assumed to be enough

materials before process 1, and one part is entered imme-

diately when the replenishment order is made. L1 is called

release lead time of process 1, and this replenishment order

is called ‘order 1’. When the processing is completed at

process 1, then the item is placed in an inventory space of

work-in-process. After t0 þ t1 periods from the arrival of

advance demand, that is, L2ð¼ T � t0 � t1Þ periods before
the arrival of requirement for product, replenishment order

at process 2 is made, where 0� t1 � T � t0, and L2 is called

release lead time of process 2. If there is no work-in-pro-

cess, then the order waits for the finishing of process, and if

there is a work-in-process, then it is taken and the

replenishment order for process 2 is made. We call this

replenishment order ‘‘order 2’’. When the process for an

item is finished in process 2 it is placed in an inventory

space of finished items. At T periods later from demand

information arrival, the actual demand for finished item

arrives. Thus, the k-th demand information in turn causes

the k-th order 1, the k-th demand for work-in-process, the

k-th order 2 and the k-th demand for a finished item. Pro-

cessing time at each process is constant d, and thus the

process 1 is modeled as an M/D/1 queue. Arrival rate of

demand is given by k, where 0\k\1=d. Let q ¼ kd.
Holding costs are incurred for work-in-process after pro-

cess 1 and before process 2, and finished items, whose cost

rates are given by h1 and h2, respectively. It is assumed that

0 � h1 � h2. Note that if h1 [ h2, then processed item in

process 1 should be delivered to process 2 immediately,

and thus, optimal release lead time of process 1 become the

same as that of process 2, which is similar with a single

stage production system with processing time 2d [this is

Fig. 1 Two-stage production and inventory system with order base stock policy
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also discussed in Karaesmen et al. (2003)]. The backlog

cost is also incurred for demand for finished items, whose

cost rate is given by bð[ 0Þ.
We give notations defined above in the following.

h1: holding cost rate per unit time per unit work-in-

process, h2: holding cost rate per unit time per unit finished

item, 0� h1 � h2, b : backlog cost rate per unit time per

unit backlog, b[ 0, d: process time at process 1 and at

process 2, k: arrival rate of demand, 0 \k\1=d; q ¼ kd;
T : demand lead time, t0: the delay of the replenish order at

process 1 from the arrival of demand information, t1: the

time interval between the replenish orders at processes 1

and 2 for each demand, L1: release lead time at process 1,

L1 ¼ T � t0, L2: release lead time at process 2,

L2 ¼ T � t0 � t1, S1: the number of base stocks at process

1, S2: the number of base stocks at process 2.

We also define the notations in the following.

aðkÞ: the k-th arrival epoch of demand information,

r1ðkÞ: the k-th occurrence time of order 1, r2ðkÞ : the k-th

occurrence time of order 2, b1ðkÞ: the starting time of

process induced by the k-th order at process 1, b2ðkÞ: the
starting time of process induced by the k-th order at

process 2, WðkÞ: the k-th sojourn time at process 1,

which is the time interval from the occurrence of the

k-th order 1 to the completion of the k-th processing at

process 1,

EðkÞ ¼ Wð0Þ � aðkÞ:

The problem is to derive explicit expressions on optimal

release lead time L1 and L2, and amount of base stocks

S1; S2; for minimizing the average cost per unit time. The

expression on the average cost is discussed in ‘‘Average

cost’’.

Preliminary results

Before investigation on optimal release lead time and base

stock level, the preliminary results on this model are dis-

cussed in this section.

The k-th ‘‘order 1’’ is caused by the k-th advance

demand information at time aðkÞ þ t0, that is,

r1ðkÞ ¼ aðkÞ þ t0. At epoch aðkÞ þ t0 þ t1, the k-th arrival

of work-in-process at process 2 is induced by the demand

information. Since the order base stock policy is adopted,

the corresponding item is processed at process 1 by the

k � S1-th order. This means that if aðkÞ þ t0 þ
t1\b1ðk � S1Þ þ d, the order 2 is postponed until

b1ðk � S1Þ þ d, and if aðkÞ þ t0 þ t1 � b1ðk � S1Þ þ d, then

the order 2 occurs immediately.

Since process time d is the same for process 1 and

process 2, the finishing time of process at process 2 is t1
periods later from the finishing time of processing at

process 1 when either S1 [ 0 or {S1 ¼ 0 and t1 � d} holds,

and d periods later when S1 ¼ 0 and t1\d. Thus, the

starting time of processing at process 2 b2ðkÞ is given by

b2ðkÞ ¼ b1ðkÞ þ zðt1; S1Þ

where

zðt1; S1Þ ¼
t1 S1 [ 0; or S1 ¼ 0; t1 � d

d S1 ¼ 0; t1\ d

�
: ð1Þ

The arrival epoch of the zeroth demand information is

set as 0, thus að0Þ ¼ 0. Since the demand arrives in a

Poisson process with rate k, it follows that

PðaðkÞ� xÞ ¼ 1�
Xk�1

j¼0

ðkxÞ j

j!
e�kx x[ 0; k ¼ 1; 2; . . .

ð2Þ

In a steady state, the limiting distribution of WðkÞ fol-

lows a waiting time distribution of M/D/1 queue PðW � xÞ,
where W is a waiting time in a steady state in a M/D/1

queue. This is well-known and given as follows (Erlang

1909).

PðW � xÞ ¼ ð1� qÞ
Xm
k¼0

f�kðx� ðk þ 1ÞdÞgk

k!
ekðx�ðkþ1ÞdÞ

� ðmþ 1Þd� x\ðmþ 2Þd;m� 0;

PðW � xÞ ¼ 0; x\d ð3Þ

Then we have the following proposition.

Proposition 1 For PðW � xÞ, the waiting time distribu-

tion of M/D/1 queue, it follows that

ZT

T�d

PðW[ xÞdx ¼
1

k
PðW [ TÞ T � d;

d T\d

(
:

The proofs of propositions in this paper are given in

Appendices.

From Liberopoulos (2008), PðEðkÞ[ xÞ is given for

x� 0

PðEðkÞ� xÞ ¼ PðW � xþ kdÞ k ¼ 0; 1; 2. . . ð4Þ

Using Laplace transform of the sojourn time distribution

of M/D/1 queue, we have the following proposition.

Proposition 2 For x\0, we have

PðEð0Þ� xÞ ¼ PðW � xÞ ¼ 0;

PðEðkÞ� xÞ ¼ ð1� qÞ
Xk�1

n¼0

f�kðxþ ndÞgk�1�n

ðk � 1� nÞ! ekðxþndÞ

k ¼ 1; 2; 3; . . .
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In particular, for �d� x\0

PðEðkÞ� xÞ ¼ ð1� qÞ ð�kxÞk�1

ðk � 1Þ! e
kx þ PðW � xþ kdÞ

k ¼ 1; 2; 3. . . ð5Þ

Note that PðEðkÞ� xÞ is continuous in x for

k ¼ 1; 2; 3; . . ., whereas PðEð0Þ� xÞ is continuous except

x ¼ d. From Eqs. (4) and (5), the relationship between

Eðk þ 1Þ and EðkÞ is obtained.

Corollary 1

PðEðk þ 1Þ� xÞ ¼ PðEðkÞ� xþ dÞx� 0; k ¼ 0; 1; 2; . . .

ð6Þ

PðEðk þ 1Þ� xÞ ¼ ð1� qÞ ð�kxÞk

k!
ekx

þ PðEðkÞ� xþ dÞ�PðEðkÞ� xþ dÞ
� d� x\0; k ¼ 0; 1; 2; . . .: ð7Þ

Average cost

We derive the average cost which is the sum of the average

holding cost and backlog cost. The holding cost for the k-th

work-in-process is incurred from the k-th completion of

processing at process 1, b1ðkÞ þ d, to the k þ S1-th finish-

ing time of processing at process 2, b2ðk þ S1Þ þ d. Thus,

by (1) the average cost is given by

kh1
S1

k
þ zðt1; S1Þ

� �
¼ h1fS1 þ kzðt1; S1Þg:

Next, the holding cost for finished products and the

backlog cost are considered. These costs for the S2-th

demand are determined by the difference between the S2-th

demand arrival epoch, aðS2Þ þ T ; and the finishing epoch

of the zeroth process at process 2, b2ð0Þ þ d ¼ b1ð0Þ þ
d þ zðS1; t1Þ ¼ t0 þWð0Þ þ zðS1; t1Þ in steady state, which

is faðS2Þ þ Tg � fb2ð0Þ þ dg ¼ fL1 � zðS1; t1Þg � EðS2Þ.
Thus, a sum of the average holding cost for finished items

and the average backlog cost is given by

kh2E½maxðfL1 � zðS1; t1Þg � EðS2Þ; 0Þ� þ kbE½maxðEðS2Þ
� fL1 � zðS1; t1Þg; 0Þ�

¼ kðh2 þ bÞE½maxðEðS2Þ � fL1 � zðS1; t1Þg; 0Þ�
� kh2E½EðS2Þ� þ kh2fL1 � zðS1; t1Þg

¼ kðh2 þ bÞ
Z1

L1�zðt1;S1Þ

PðEðS2Þ[ xÞdx� kh2E½EðS2Þ�

þ kh2fL1 � zðS1; t1Þg;

where E[X] means the expectation of X. When the release

lead time of process 1 is L1 ¼ T � t0, the release lead time

of process 2 is L2 ¼ L1 � t1 ¼ T � t0 � t1, the amount of

base stocks at process 1 is S1, and the amount of base

stocks at process 2 is S2, the average cost, which is denoted

by CðL1; t1; S1; S2Þ, is given by

CðL1; t1; S1; S2Þ ¼ h1fS1 þ kzðt1; S1Þg � kh2E½EðS2Þ�
þ kh2fL1 � zðt1; S1Þg

þ kðh2 þ bÞ
Z1

L1�zðt1;S1Þ

PðEðS2Þ[ xÞdx;

ð8Þ

where E½EðS2Þ� ¼ E½Wð0Þ � aðS2Þ� ¼ dð2�qÞ
2ð1�qÞ �

S2
k :

In the following, the optimal release lead time and

optimal base stock levels minimizing (8) are developed.

Here, we use parameter t1 instead of L2, owing to easier

analysis and discussion.

Optimal base stock level

We derive an optimal base stock level of process 2

S�2ðL1; t1; S1Þ when parameters L1; t1 and S1 are given.

Proposition 3 For given L1; t1 and S1; the optimal

amount of base stocks at process 2 is given by

S�2ðL1; t1; S1Þ

¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[L1 � zðt1; S1ÞÞ�

h2

h2 þ b

� �
:

ð9Þ

Here we define additional notations.

Tk ¼
argmin

x
PðEðkÞ[ xÞ� h2

h2 þ b

� �
; k ¼ 0; 1; 2. . .;

ð10Þ

�SðL1Þ ¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ L1 � dÞ� h2

h2 þ b

� �
;

ð11Þ

Ŝ0 ¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ 0Þ� h2

h2 þ b

� �
:

ð12Þ

From Liberopoulos (2008), we have

Tk ¼ Tkþ1 þ d k ¼ 0; 1; . . .; Ŝ0 � 1 ð13Þ
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and by (7) it follows that

TŜ0 � TŜ0þ1 þ d; ð14Þ

which leads to T0 � d; 0\TŜ0 � d; TŜ0þ1 � 0.

From Eqs. (10) to (14) and the result of Corollary 1, the

relationship between PðEðkÞ� xÞ and Tk are given in

Fig. 2. In this figure, the dotted line on the left hand side is

obtained by moving the line PðW � xÞ in parallel along the

x-axis by �kd; for k ¼ Ŝ0 � 2; Ŝ0 � 1; Ŝ0; Ŝ0 þ 1. From

Corollary 1, the distribution function PðEðkÞ� xÞ is

obtained by moving PðW � xÞ in parallel by kd when x� 0,

but in the range x\0, it is greater than the value obtained

by the similar movement. From (13), the difference

between Tk and Tkþ1 is d for all k ¼ 0; 1; . . .; Ŝ0 � 1; but

by (14), the difference between TŜ0 and TŜ0þ1 is no less

than d.

When S1 [ 0 or (S1 ¼ 0 and t1 � d), by Proposition 3

S�2ðL1; t1; S1Þ

¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ L1 � t1Þ�

h2

h2 þ b

� �

Thus, if TSþ1 � L2 ¼ L1 � t1\TS then S
�
2ðL1; t1; S1Þ ¼ S,

and if T0 � L2 then S�2ðL1; t1; S1Þ ¼ 0.

When S1 ¼ 0 and t1\d, we have

S�2ðL1; t1;S1Þ ¼ �SðL1Þ

¼
argmin

S2 : S2 ¼ 0;1;2. . .
PðEðS2 þ 1Þ[L1 � dÞ� h2

h2 þ b

� �

That is, if TSþ1 þ d� L1\TS þ d then S�2ðL1; t1; S1Þ ¼
�SðL1Þ ¼ S, and if T0 þ d� L1 then S

�
2 ¼ �SðL1Þ ¼ 0. By (13)

and (14), if L1\TŜ0þ1 þ d then S�2ðL1; t1; S1Þ ¼ �SðL1Þ ¼
Ŝ0 þ 1, if TŜ0þ1 þ d� L1\TŜ0�1 then S�2ðL1; t1; S1Þ ¼ Ŝ0, if

TS � L1\TS�1; S ¼ 1; . . .; Ŝ0 � 1 then S�2ðL1; t1; S1Þ ¼ S,

and if T0 � L1 then S�2ðL1; t1; S1Þ ¼ �SðL1Þ ¼ 0.

Figure 3 shows that the optimal base stock level of

process 2 for the cases (a) S1 [ 0 and (b) S1 ¼ 0, for given

L1 and t1, where the vertical axis is t1 and the horizon axis

is L1, and slanted lines show L2 ¼ 0 and L2 ¼ Tk for

k ¼ 0; 1; . . .; Ŝ0. In case (a) that S1 [ 0, if the pair ðL1; t1Þ is
placed in the region between the two lines L2 ¼ TSþ1 and

L2 ¼ TS, then the optimal amount of base stocks in process

2 is S. Similarly, in case (b) that S1 ¼ 0, if ðL1; t1Þ is in the

region between lines L2 ¼ TSþ1 and L2 ¼ TS and t1 � d, or

in the region between L1 ¼ TS and L1 ¼ TS�1 and t1\d,

then optimal base stock level of process 2 is S.

Next, we derive the optimal amount of base stocks of

process 1 when L1 and t1 are given. In the following,

S�2ðL1; t1; S1Þ is simply written by S�2:

When S1 [ 0, if TSþ1 � L2\TS then S�2 ¼ S, and if

T0 � L2 then S�2 ¼ 0, thus S�2 does not depend on S1. Thus,

when S1 [ 0; by (1) and (8)

CðL1; t1; S1; S�2Þ ¼ h1ðS1 þ kt1Þ � kh2E½EðS�2Þ�

þ kh2L2 þ kðh2 þ bÞ
Z1

L2

PðEðS�2Þ[ xÞdx;

which implies CðL1; t1; S1; S�2Þ � CðL1; t1; S1 þ 1; S�2Þ ¼
�h1 � 0; and thus CðL1; t1; 1; S�2Þ�CðL1; t1; 2; S�2Þ�
CðL1; t1; 3; S�2Þ; . . ., where the equality holds only when

h1 ¼ 0. This means that the optimal base stock level of

process 1, S�1ðL1; t1), is 1 or 0. If t1 � d, in the same way it

holds that CðL1; t1; 0; S�2Þ�CðL1; t1; 1; S�2Þ. From the above

discussion, when t1 � d, the optimal amount of base stocks

of process 1 becomes 0, and when t1\d, the optimal

amount of base stocks is 1 or 0. Note that when h1 ¼ 0, the

smallest S1 which minimizes the average cost is set as

S�1(L1; t1).Fig. 2 Relationship between PðEðkÞ� xÞ and Tk

(a)

(b)

Fig. 3 Optimal base stock level S�2ðL1; t1; S1Þ
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Figure 4 shows the candidate of optimal base stock

levels ðS�1(L1; t1), S�2ðL1; t1ÞÞ. where S�2ðL1; t1Þ is S�2ðL1; t1;
S�1ðL1; t1ÞÞ: When t1 � d, optimal base stock level of

process 1 is 0, and so if the pair ðL1; t1Þ is placed in the

region between lines L2 ¼ TSþ1 and L2 ¼ TS, then a pair

of base stock levels of processes 1 and 2, ðS�1(L1; t1),
S�2(L1; t1)), is ð0; SÞ. When t1\d, the optimal base stock

level S�1 is 1 or 0. By superimposing cases (a) and cases

(b) of Fig. 3, Fig. 4 is obtained. For example, if ðL1; t1Þ
is placed between lines L2 ¼ TSþ1 and L1 ¼ TS, then the

candidates for optimal base stocks ðS�1(L1; t1), S�2(L1; t1))
are ð1; SÞ and ð0; Sþ 1Þ. Thus, when t1\d, by compar-

ing these two pairs optimal base stock levels can be

obtained.

Optimal release lead time of process 2

For given L1 we derive optimal release lead time L2; which

is equivalent to derive optimal t1, which is denoted by

t�1ðL1Þ.
From discussion of ‘‘Optimal base stock level’’, if t1 � d

then optimal base stock level of process 1 is 0, and if t1\d

then there are two possible cases on the optimal base stock

levels. In the following; for given L1; the case t1 � d is

considered in ‘‘The case that t1 � d’’, the case 0� t1\d

and S1 ¼ 0 is considered in ‘‘The case that 0� t1\d and

S1 ¼ 0’’, and the case 0� t1\d and S1 ¼ 1 is considered in

‘‘The case that 0� t1\d and S1 ¼ 1’’. Using obtained

results there, optimal t1 is derived in ‘‘Optimal t1 for Given

L1’’, and in ‘‘Optimal t�1; S
�
1; S

�
2’’ the results are summarized.

The case that t1 � d

‘‘Optimal base stock level’’ shows that S�1ðL1; t1Þ ¼ 0, and

S�2ðL1; t1Þ

¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[L1 � t1 ¼ L2Þ�

h2

h2 þ b

� �
;

If TSþ1 � L2\TS then S�2ðL1; t1Þ ¼ S, and if T0 � L2 then

S�2ðL1; t1Þ ¼ 0. Here, we define

~T ¼ argmin

x
PðW[ xÞ� h2 � h1

h2 þ b

� �
: ð15Þ

Note that h1 � 0 implies ~T � T0.

Proposition 4 (a) If d� L1\T0, then average cost

CðL1; t1; S�1ðL1; t1Þ; S�2ðL1; t1ÞÞ is increasing in t1 where

t1 � d.

(b) If T0 � L1\~T þ d, then the average cost is increas-

ing in t1 where t1 � d.

(c) If ~T þ d� L1, then the average cost is decreasing in

t1 where d� t1 � L1 � ~T , and increasing in t1 where

t1 [ L1 � ~T .

From Proposition 4, if d� L1\~T þ d, then t�1 ¼ d in the

region that t1 � d, and thus L�2 ¼ L1 � d; S�1 ¼ 0, and

S�2 ¼
argmin

S2 : S2 ¼ 0;1;2. . .
PðEðS2þ 1Þ[L1� dÞ� h2

h2þ b

� �

¼ �SðL1Þ

If L1 � ~T þ d, then t�1 ¼ L1 � ~T , in the region that t1 � d,

and thus L�2 ¼ ~T ; S�1 ¼ 0, and since ~T � T0 it follows that

Fig. 4 Candidates for optimal

base stoke levels for given

L1 and t1
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S�2 ¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ ~TÞ� h2

h2 þ b

� �

¼ 0:

The case that 0� t1\d and S1 ¼ 0

From the result of ‘‘Optimal base stock level’’,

S�2 ¼ �SðL1Þ

¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ L1 � dÞ� h2

h2 þ b
;

� �

which is independent on t1: From (8) when S1 ¼ 0

CðL1; t1; S1; S�2Þ ¼ kdh1 � kh2E½EðS�2Þ� þ kh2ðL1 � dÞ

þ kðh2 þ bÞ
Z1

L1�d

PðEðS�2Þ[ xÞdx;

and thus when S1 ¼ 0;CðL1; t1; S1; S�2Þ ¼ CðL1; t1; 0; �SðL1ÞÞ
is constant in t1 when 0� t1\d.

The case that 0� t1\d and S1 ¼ 1

From the result of ‘‘Optimal base stock level’’,

S�2

¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ L1 � t1 ¼ L2Þ�

h2

h2 þ b

� �
:

If TSþ1 � L2\TS; S
�
2 ¼ S and T0 � L2 then S�2 ¼ 0.

Proposition 5 (a) When 0� L1\T0, S1 ¼ 1,

CðL1; t1; 1; S�2Þ is increasing in t1 where 0� t1\d.

(b) When T0 � L1; S1 ¼ 1, if T0 � L1\~T , then

CðL1; t1; 1; S�2Þ is increasing in t1 where 0� t1\d: If

~T � L1\~T þ d then CðL1; t1; 1; S�2Þ is decreasing in t1

where 0� t1\L1 � ~T and increasing in t1 where

L1 � ~T � t1\d. If ~T þ d� L1, CðL1; t1; 1; S�2Þ is decreasing
in t1 where 0� t1\d.

Proposition 5 shows that when S1 ¼ 1 in the region that

0� t1\d the followings hold.

If 0� L1\~T , then t�1 ¼ 0, L�2 ¼ L1, and

S�2 ¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ L1Þ�

h2

h2 þ b

� �

¼
�SðL1Þ � 1 �SðL1Þ� 1;
0 �SðL1Þ ¼ 0

�
:

If ~T � L1\~T þ d, then t�1 ¼ L1 � ~T , L�2 ¼ ~T , and

S�2 ¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[ ~TÞ� h2

h2 þ b

� �
0:

If L1 � ~T þ d, then t�1 ¼ d, L�2 ¼ L1 � dð� ~T � T0Þ, and

S�2 ¼
argmin

S2 : S2 ¼ 0;1;2. . .
PðEðS2þ 1Þ[L1� dÞ� h2

h2þ b

� �

¼ 0:

Optimal t1 for given L1

Based on the results in ‘‘Optimal base stock level’’ and in

‘‘The case that t1 � d’’ to ‘‘The case that 0� t1\d and

S1 ¼ 1’’, the five cases are considered to derive optimal t1
for given L1.

The case that L1\TŜ0þ1 þ d or TŜ0 � L1\T0

From results in ‘‘The case that t1 � d’’ and ‘‘The case that

0� t1\d and S1 ¼ 0’’, when S1 ¼ 0, CðL1; 0; 0; �SðL1ÞÞ is

minimal cost, where �SðL1Þ� 1; zðt1; S1Þ ¼ d. From ‘‘The

case that 0� t1\d and S1 ¼ 1’’, when S1 ¼ 1, CðL1; 0;
1; �SðL1Þ � 1Þ is minimal and zðt1; S1Þ ¼ t1 ¼ 0: By (8)

CðL1;0;0; �SðL1ÞÞ�CðL1;0;1; �SðL1Þ�1Þ¼ðh2�h1Þð1�qÞ

þkðh2þbÞ
Z1

L1�d

fPðEð�SðL1ÞÞ[xÞ

�PðEð�SðL1Þ�1Þ[xþdÞgdx

and by (6)R1
a

fPðEð�SðL1ÞÞ[ xÞ �PðEð�SðL1Þ � 1Þ[ xþ dÞgdx ¼
0 for all a� 0.

If L1 � d; then CðL1; 0; 0; �SðL1ÞÞ � CðL1; 0; 1; �SðL1Þ�
1Þ� 0.

If L1\d; (2) and (7) imply that

Z0

L1�d

fPðEð�SðL1ÞÞ[ xÞ � PðEð�SðL1Þ � 1Þ[ xþ dÞgdx

¼ �ð1� qÞ
Z0

L1�d

ð�kxÞSðL1Þ�1

ð�SðL1Þ � 1Þ!e
kxdx

¼ �ð1� qÞ 1
k
Pðað�SðL1ÞÞ� � ðL1 � dÞÞ

and

CðL1;0;0; �SðL1ÞÞ�CðL1;0;1; �SðL1Þ�1Þ ¼ ðh2�h1Þð1�qÞ
� ðh2þ bÞð1�qÞPðað�SðL1ÞÞ� �ðL1�dÞÞ:

When L1\d, L1 satisfying CðL1; 0; 0; SÞ ¼
CðL1; 0; 1; S� 1Þ is set as L̂ðSÞ. Thus, L̂ðSÞ satisfies

PðaðSÞ� � ðL̂ðSÞ � dÞÞ ¼ h2 � h1

h2 þ b
:
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Note that L̂ðSÞ� d.

In summary, when d� L1\T0, the optimal cost is

CðL1; 0; 1; �SðL1Þ � 1Þ. When L1\TŜ0þ1 þ d or TŜ0 � L1

\d, then if L1 � L̂ð�SðL1ÞÞ the optimal cost is CðL1; 0;
1; �SðL1Þ � 1Þ, whereas if L1\L̂ð�SðL1ÞÞ then the optimal

cost is CðL1; 0; 0; �SðL1ÞÞ.

The case that TŜ0þ1 þ d� L1\TŜ0

From the result in ‘‘The case that t1 � d‘‘ and S1 ¼ 0’’,

when S1 ¼ 0, CðL1; 0; 0; Ŝ0Þ is the minimal cost, whereas

from ‘‘The case that 0� t1\d and S1 ¼ 1’’, when S1 ¼ 1,

the minimal cost is CðL1; 0; 1; Ŝ0Þ. By (8), we have

CðL1; 0; 0; Ŝ0Þ � CðL1; 0; 1; Ŝ0Þ ¼ �h1 � qðh2 � h1Þ

þ kðh2 þ bÞ
ZL1

L1�d

PðEðŜ0Þ[ xÞdx:

When q� h1
h1þb

, since
R L1
L1�d

PðEðŜ0Þ[ xÞdx� d it fol-

lows that CðL1; 0; 0; Ŝ0Þ � CðL1; 0; 1; Ŝ0Þ� 0, and thus the

optimal cost becomes CðL1; 0; 0; Ŝ0Þ:
When q[ h1

h1þb
, let �LðSÞ denote L1 satisfying

CðL1; 0; 0; SÞ ¼ CðL1; 0; 1; SÞ, and thus

Z�LðSÞ

�LðSÞ�d

PðEðSÞ[ xÞdx ¼ 1

k
h1

h2 þ b
þ d

h2 � h1

h2 þ b
:

When TŜ0þ1 þ d� L1\TŜ0 , if L1 � �LðŜ0Þ then the opti-

mal cost is CðL1; 0; 0; Ŝ0Þ, whereas if L1\�LðŜ0Þ then it

follows that CðL1; 0; 1; Ŝ0Þ is the minimal cost.

The case that T0 � L1\~T

From ‘‘The case that t1 � d’’ and ‘‘The case that 0� t1\d

and S1 ¼ 0’’, when S1 ¼ 0;CðL1; 0; 0; 0Þ is the optimal

cost, whereas from ‘‘The case that 0� t1\d and S1 ¼ 1’’,

when S1 ¼ 1; the minimal cost is CðL1; 0; 1; 0Þ. By (8),

CðL1; 0; 0; 0Þ � CðL1; 0; 1; 0Þ ¼ �h1 � qðh2 � h1Þ þ kðh2

þ bÞ
ZL1

L1�d

PðW[ xÞdx:

When q� h1
h1þb

, CðL1; 0; 0; 0Þ � CðL1; 0; 1; 0Þ� 0 and

the minimal cost is CðL1; 0; 0; 0Þ.
When q[ h1

h1þb
, let �Lð0Þ denote L1 satisfying

CðL1; 0; 0; 0Þ ¼ CðL1; 0; 1; 0Þ, and thus

Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdx ¼ 1

k
h1

h2 þ b
þ d

h2 � h1

h2 þ b
;

where �Lð0Þ[ d. Then when T0 � L1\~T ; if L1 � �Lð0Þ, then
CðL1; 0; 0; 0Þ is the minimal cost, and if L1\�Lð0Þ the

optima cost becomes CðL1; 0; 1; 0Þ.

The case that ~T � L1\~T þ d

From ‘‘The case that t1 � d’’ and ‘‘The case that 0� t1\d

and S1 ¼ 0’’, when S1 ¼ 0;CðL1; 0; 0; 0Þ is the minimal

cost, and from ‘‘The case that 0� t1\d and S1 ¼ 1’’, when

S1 ¼ 1;CðL1; L1 � ~T ; 1; 0Þ is the optimal cost. By (8),

CðL1; 0; 0; 0Þ � CðL1; L1 � ~T; 1; 0Þ
¼ �h1 � kðd � L1 þ ~TÞðh2 � h1Þ

þ kðh2 þ bÞ
Z ~T

L1�d

PðW[ xÞdx:

Let ~L denote L1 satisfying CðL1; 0; 0; 0Þ ¼
CðL1; L1 � ~T ; 1; 0Þ, and thus

Z~T

~L�d

PðW[ xÞdx ¼ 1

k
h1

h2 þ b
þ ð~T � ~Lþ dÞ h2 � h1

h2 þ b
;

where ~L� ~T þ d. When ~T � L1\~T þ d, if L1 � ~L the

optimal cost is CðL1; 0; 0; 0Þ; and if L1\~L, thus the optimal

cost is CðL1; L1 � ~T ; 1; 0Þ.

The case that ~T þ d� L1

From ‘‘The case that t1 � d’’ and ‘‘The case that t1 � d and

S1 ¼ 0’’, when S1 ¼ 0, CðL1; L1 � ~T ; 0; 0Þ is the minimal

cost, and from ‘‘The case that 0� t1\d and S1 ¼ 1’’, when

S1 ¼ 1;CðL1; d; 1; 0Þ is the minimal cost. By (8),

CðL1; L1 � ~T; 0; 0Þ � CðL1; d; 1; 0Þ
¼ �h1 � kðL1 � d � ~TÞðh2 � h1Þ

þ kðh2 þ bÞ
ZL1�d

~T

PðW[ xÞdx;

and by (15) it holds that

ZL1�d

~T

PðW[ xÞdx\ h2 � h1

h2 þ b
ðL1 � d � ~TÞ:

Thus, CðL1; L1 � ~T; 0; 0Þ � CðL1; d; 1; 0Þ\0 and the

optimal cost is CðL1;L1 � ~T ; 0; 0Þ.
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Optimal t�1; S
�
1; S

�
2

Notations defined in this section are summarized in the

following.

~T ¼ argmin

x
PðW[ xÞ� h2 � h1

h2 þ b

� �
;

PðaðSÞ� � ðL̂ðSÞ � dÞÞ ¼ h2 � h1

h2 þ b
; ð16Þ

Z�LðSÞ

�LðSÞ�d

PðEðSÞ[ xÞdx ¼ 1

k
h1

h2 þ b
þ d

h2 � h1

h2 þ b
; ð17Þ

Z ~T

~L�d

PðW[ xÞdx ¼ 1

k
h1

h2 þ b
þ ð~T � ~Lþ dÞ h2 � h1

h2 þ b
; ~L� ~T þ d:

ð18Þ

Note that �LðSÞ exists only when q[ h1
h1þb

, and it is

assumed ~L� ~T þ d. Since L̂ðSÞ� d; when d� L1\T0 it is

satisfied that L1 � L̂ðSÞ. It is noted that ~T � T0.

When q� h1
h1þb

, it follows that q� h2
h2þb

by assumption

h2 � h1; and hence by Eqs. (10) and (12), it follows that

T0 ¼ d, T1 � 0 and Ŝ0 ¼ 0. The following proposition holds

on L̂ð1Þ.

Proposition 6 When q� h1
h1þb

, it is satisfied that

L̂ð1Þ� T1 þ d and ~L� ~T .

As summary of this section, Table 1 shows optimal t1
and base stock levels for given L1, where a...b means that

all x in [a, b] are optimal.

Optimal release lead time of process 1

Optimal release lead time of process 1 is considered. In

‘‘Optimal release lead time when T � T0 and q[ h1
h1þb

’’,

the case that T � T0 and q[ h1
h1þb

is considered, and in

‘‘Optimal release lead time when T � T0 and q� h1
h1þb

’’, the

case T � T0 and q� h1
h1þb

is discussed.

Table 1 Optimal t�1; S
�
1; S

�
2 for

given L1
t�1 S�1 S�2

(a) The case that q[ h1
h1þb

~T þ d\L1 L1 � ~T 0 0

~T � L1\ ~T þ d L1 � ~L 0...d 0 0

L1\~L L1 � ~T 1 0

T0 � L1\ ~T L1 � Lð0Þ 0...d 0 0

L1\Lð0Þ 0 1 0

T1 � L1\T0 0 1 0

T2 � L1\T1 0 1 1

..

. ..
.

TbS0�1
� L1\TbS0�2

0 1 bS0 � 2

d� L1\TbS0�1
0 1 bS0 � 1

TbS0

� L1\d L1 � bLðbS0Þ 0 1 ~S0 � 1

L1\bLðbS0Þ 0...d 0 bS0
TbS0þ1

þ d� L1\TbS0
L1 � LðbS0Þ 0...d 0 bS0
L1\LðbS0Þ 0 1 bS0

L1\TbS0þ1
þ d L1 � bLðbS0 þ 1Þ 0 1 bS0

L1\bLðbS0 þ 1Þ 0...d 0 bS0 þ 1

t�1 S�1 S�2

(b) The case that q� h1
h1þb

~T þ d\L1 L1 � ~T 0 0

~T � L1\ ~T þ d 0...d 0 0

d ¼ T0 � L1\ ~T 0...d 0 0

T1 þ d� L1\T0 ¼ d 0...d 0 0

L1\T1 þ d 0...d 0 1
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For open intervals on L1 where t�1; S
�
1; S

�
2 are not chan-

ged, by (8)

dCðL1; t�1; S�1; S�2Þ
dL1

¼ kh2 � kðh2 þ bÞPðEðS�2Þ[ L1

� zðt�1; S�1ÞÞ;

and thus from the definition of T0, when L1\T0 þ zðt�1; S�1Þ;
dCðL1;t�1 ;S�1;S�2Þ

dL1
\0, whereas when L1 � T0 þ zðt�1; S�1Þ;

dCðL1;t�1 ;S�1;S�2Þ
dL1

\0: When 0� L1\T0, CðL1; t�1; S�1; S�2Þ is

decreasing in L1, and thus when T � T0 optimal release

lead time is L�1 ¼ T .

Optimal release lead time when T � T0 and q[ h1
h1þb

We have the following relationships among �Lð0Þ, ~L, ~T and

T0 þ d.

Proposition 7 (a) When q[ h1
h1þb

; if h1\h2, then

T0\�Lð0Þ\T0 þ d, and if h1 ¼ h2, then

T0 ¼ �Lð0Þ\T0 þ d.

(b) When q[ h1
h1þb

, if ~L\~T , then �Lð0Þ\~L\~T , if ~T\~L,

then ~T\�Lð0Þ\~L, and if ~L ¼ ~T , then �Lð0Þ ¼ ~L ¼ ~T .

(c) When ~T\~L, ~L\T0 þ d is satisfied.

First, we consider the case ~L\~T . From Proposition 7, it

holds that T0 � �Lð0Þ\~L\~T . By (a) of Table 1, in the case

that L1 � T0 and ~L\~T ; optimal t1 and optimal base stock

levels are given in Table 2. When T0 � L1\~T and

L1\�Lð0Þ, it holds that T0 þ zðt�1; S�1Þ ¼ T0 � L1, and thus

CðL1; t�1; S�1; S�2Þ is increasing in L1. When T0 � L1\~T and

L1 � �Lð0Þ, it follows that T0 þ zðt�1; S�1Þ ¼ T0 þ d, and thus

in the case that T0 � L1\T0 þ d, CðL1; t�1; S�1; S�2Þ is

decreasing in L1. When T0 þ d� L1, CðL1; t�1; S�1; S�2Þ is

increasing in L1. When ~T � L1\~T þ d, it follows that

T0 þ zðt�1; S�1Þ ¼ T0 þ d, and in the case that L1\T0 þ d,

CðL1; t�1; S�1; S�2Þ is decreasing in L1. When

T0 þ d� L1 � ~T þ d, CðL1; t�1; S�1; S�2Þ is increasing in L1.

When ~T þ d\L1, T0 þ zðt�1; S�1Þ ¼ T0 þ L1 � ~T � L1 and

CðL1; t�1; S�1; S�2Þ is increasing in L1.

Since T0 � ~T; T0 � �Lð0Þ\T0 þ d and �Lð0Þ\~L\~T , we

consider two cases that (1) T0 þ d� ~T and (2) ~T\T0 þ d.

Figure 5 shows the relationship between average expected

cost and L1, where symbols ? and - show that the average

cost increases and decreases in L1; respectively, and the

circles show the local minimum.

When h1\h2, T0\�Lð0Þ and there are two local mini-

mum, and thus optimal cost CðT0; 0; 1; 0Þ for L1 ¼ T0 is

compared with CðT0 þ d; 0; 0; 0Þ for L1 ¼ T0 þ d, and then

CðT0; 0; 1; 0Þ � CðT0 þ d; 0; 0; 0Þ ¼ ð1� kdÞh1 � 0;

which means that CðT0 þ d; 0; 0; 0Þ is optimal cost.

Here let T satisfying CðT0; 0; 1; 0Þ ¼ CðT; 0; 0; 0Þ be

denoted by T 0ð � T0 þ dÞ, thus T 0ðT0\T 0 � T0 þ dÞ
satisfies

ZT0
T 0�d

PðW [ xÞdx ¼ 1

k
� d

� �
h1

h2 þ b
þ ðT0 � T 0

þ dÞ h2

h2 þ b
:

When h1 ¼ h2, it holds that T0 ¼ �Lð0Þ; and thus the

minimal cost is CðT0 þ d; 0; 0; 0Þ. From above discussion,

optimal release lead time of process 1, L�1 is T0 when

T0 � T\T 0, T when T 0 � T\T0 þ d and T0 þ d when

T0 þ d� T .

Next, we consider the case that ~L� ~T . From Proposition

7, when ~L[ ~T it holds that T0 � ~T\�Lð0Þ\~L\T0 þ
d� ~T þ d, and when ~L ¼ ~T it follows that

T0 � ~T ¼ ~L ¼ �Lð0Þ\T0 þ d� ~T þ d. From (a) of Table 1,

when L1 � T0 and ~L� ~T ; optimal t1 and base stock level are

given in Table 3. In the same way of the previous case, by

considering increase and decrease of CðL1; t�1; S�1; S�2Þ, it has

Table 2 t�1, S
�
1, S

�
2 when q[ h1

h1þb
;L1 � T0 and ~L\ ~T

t�1 S�1 S�2

~T þ d\L1 L1 � ~T 0 0

ð~L�Þ ~T � L1\ ~T þ d 0...d 0 0

T0 � L1\ ~T L1 � Lð0Þ 0...d 0 0

L1\Lð0Þ 0 1 0

Fig. 5 Relationships between average cost and L1 when

q[ h1
h1þb

;L1 � T0; ~L� ~T

Table 3 t�1; S
�
1; S

�
2when q[ h1

h1þb
; L1 � T0 and ~L� ~T

t�1 S�1 S�2

~T þ d\L1 L1 � ~T 0 0

~L� L1\ ~T þ d 0...d 0 0

~T � L1\~L L1 � ~T 1 0

T0 � L1\ ~Tð\Lð0ÞÞ 0 1 0
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two local minimum when L1 ¼ T0 and L1 ¼ T0 þ d. Since

CðT0; 0; 1; 0Þ�CðT0 þ d; 0; 0; 0Þ, CðT0 þ d; 0; 0; 0Þ attains
minimal cost.

Let T satisfying CðT0; 0; 1; 0Þ ¼ CðT ; 0; 0; 0Þ be denoted
by T 0ðT0\T 0 � T0 þ dÞ. Then optimal release lead time L�1
is T0 when T0 � T\T 0, T when T 0 � T\T0 þ d and T0 þ d

when T0 þ d� T .

Optimal release lead time when T � T0 and q� h1
h1þb

From (b) of Table 1, when L1 � T0 optimal t1 and optimal

inventory levels are given in Table 4. Note that when

T0 � L1\~T it holds that T0 þ zðt�1; S�1Þ ¼ T0 þ d, and thus

when T0 � L1\T0 þ d; CðL1; t�1; S�1; S�2Þ is decreasing in L1.

When T0 þ d� L1, CðL1; t�1; S�1; S�2Þ is increasing in L1.

When ~T � L1\~T þ d, T0 þ zðt�1; S�1Þ ¼ T0 þ d, and thus

when L1\T0 þ dCðL1; t�1; S�1; S�2Þ is decreasing in L1, and

when T0 þ d� L1 � ~T þ dCðL1; t�1; S�1; S�2Þ is increasing in

L1. When ~T þ d\L1, T0 þ zðt�1; S�1Þ ¼ T0 þ L1 � ~T � L1,

and CðL1; t�1; S�1; S�2Þ is increasing in L1.

Optimal release lead time and optimal base stock
level

From Table 1 and discussion in ‘‘Optimal release lead time

when T � T0 and q[ h1
h1þb

’’ and ‘‘Optimal release lead

time when T � T0 and q� h1
h1þb

’’, optimal release lead time

and optimal base stock levels are given in Table 5.

As demand lead time is shorter, the optimal base stock

level of process 2 is higher. It is because more finished

items are needed for preventing the system from backlogs.

The optimal base stock level of process 1 is less than 2.

It is because that by (1), if the inventory level of process 1

is positive, then the starting epoch for processing an item in

Table 4 t�1; S
�
1; S

�
2 when q� h1

h1þb
and L1 � T0

t�1 S�1 S�2

~T þ d\L1 L1 � ~T 0 0

ð~L�Þ ~T � L1\ ~T þ d 0...d 0 0

d ¼ T0 � L1\ ~T 0...d 0 0

Table 5 Optimal release lead

time and optimal base stock

level

L�1 t�1 S�1 S�2 t�0 L�2

(a) q[ h1
h1þb

T0 þ d� T T0 þ d 0...d 0 0 T � T0 � d T0 þ d...T0

T 0 � T\T0 þ d T 0...d 0 0 0 T ...T� d

T0 � T\T 0 T0 0 1 0 T � T0 T0

T1 � T\T0 T 0 1 0 0 T

T2 � T\T1 T 0 1 1 0 T

..

. ..
.

TbS0�1
� T\TbS0�2

T 0 1 bS0 � 2 0 T

d� T\TbS0�1
T 0 1 bS0 � 1 0 T

TbS0

� T\d T � bLðbS0Þ T 0 1 bS0 � 1 0 T

T\bLðbS0Þ T 0...T 0 bS0 0 T ...0

TbS0þ1
þ d� T\TbS0 T � LðbS0Þ T 0...T 0 bS0 0 T ...0

T\LðbS0Þ T 0 1 bS0 0 T

T\TbS0þ1
þ d T � bLðbS0 þ 1Þ T 0 1 bS0 0 T

T\bLðbS0 þ 1Þ T 0...T 0 bS0 þ 1 0 T ...0

L�1 t�1 S�1 S�2 t�0 L�2

(b) q� h1
h1þb

T0 þ d ð¼2dÞ� T T0 þ d 0...d 0 0 T � T0 � d T0 þ d...T0

T0 ð¼dÞ� T\T0 þ d ð¼2dÞ T 0...d 0 0 0 T ...T � d

T1 þ d� T\T0 ð¼dÞ T 0...T 0 0 0 T ...0

T\T1 þ d T 0...T 0 1 0 T ...0
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process 2 ordered by demand information is t1 periods later

from the start time for process 1 ordered by the same order.

If the optimal base stock level of process 1 is one, then

optimal t1 is 0, which means the optimal release lead time

of process 1 is the same as process 2. Then by (1), pro-

cesses 1 and 2 start process items at the same time.

If the optimal base stock level of process 1 is 0, then the

average cost is identical when t1 is changed from 0 to d.

Note that if t1 is no more than d, then after finishing pro-

cess 1 the process for the same item is immediately started

in process 2 by the same advance demand information.

That means that both processes 1 and 2 proceed in the same

way as t1 increases when the base stock of process 1 is 0.

(a) q[ h1
h1þb

When demand lead time is in ðd; T0Þ , then optimal base

stock level is 1. If demand lead time is less than d, then

there are two cases that the optimal base stock level is 0 or

1.

When demand lead time is in ðTk; Tkþ1Þ
ðk ¼ 1; 2; . . .bS0 � 1Þ; the sum of optimal base stock levels

of processes 1 and 2 becomes k. For T\ d, this value

decreases from bS0 þ 1 to bS0 when demand lead time

exceeds one of TbS0þ1
þ d; LðbS0Þ or TbS0 , which depends on

parameters.

When demand lead time is in (T0; T
0Þ; optimal release

lead time of process 1 becomes T0, which means that when

demand information arrives an order is not made imme-

diately, and at T0 periods before the corresponding demand

arrives, orders 1 and 2 are made at the same time. Since the

optimal base stock of process 2 is 0 and the immediate

order leads to more finished items, by delaying the orders,

inventory cost for finished item can be reduced.

When demand lead time is in ðT 0, T0 þ dÞ; optimal base

stocks of both processes are zero and it is optimal that the

order 1 is done immediately when demand information

arrives and the item which the corresponding demand

receives is processed at processes 1 and 2 sequentially.

When demand lead time is more than T0 þ d, it is

optimal that the order 1 is done T0 þ d periods before the

actual demand arrives, and the corresponding item is pro-

cessed at processes 1 and 2 sequentially.

If demand lead time can be set arbitrarily, then demand

lead time should be no less than T0 þ d, because under

optimal parameters for given demand lead time the average

cost decreases in the demand lead time.

(b) q� h1
h1þb

This case happens when the arrival rate is small or

backlog cost is small. In this case, we need not have items

in inventory, and thus the sum of numbers of optimal base

stocks is one or zero. The optimal number of base stocks in

process 1 is always zero, and when demand lead time

exceeds T1 þ d the optimal number of base stocks in pro-

cess 2 also becomes zero. That is, processing of processes 1

and 2 ordered by the same demand information were done

continuously and if demand lead time is greater than T1 þ
d; the same order receives this item, and otherwise its next

demand order receives it. When demand lead time can be

set longer, the corresponding order is set 2d periods before

the corresponding actual demand arrives and then an item

is processed in processes 1 and 2 continuously, by which

this actual demand is satisfied.

(c) h1 ¼ h2

By (15) it holds L1\~T . When d� L1\T0, by the result

in ‘‘The case that L1\TŜ0þ1 þ d or TŜ0 � L1\T0’’ both

CðL1; 0; 0; SðL1ÞÞ and CðL1; 0; 1; SðL1Þ � 1Þ are the optimal

average costs. By (16), it follows that bLðSðL1ÞÞ ¼ d. By

Proposition 3, (10) and (17), when q[ h1
h1þb

; Lð0Þ ¼ T0:

Only when TbS0þ1
þ d� T\TbS0 and T\LðbS0Þ; the

optimal base stock level in process 1 is 1, and otherwise it

is 1 or 0.

Numerical experiments

By numerical experiments, we discuss the properties of

optimal release lead time and optimal numbers of base

stocks. The computation is done on a computer with Intel�

CoreTM i7-2600 CPU 3.40 GHz and 8.00 GB RAM, and

the program is coded with C language and compiled with

Intel� C?? Compiler. Tk; bS0; T 0; bLðSÞ and LðSÞ are com-

puted numerically, and using Table 5 optimal release lead

time and optimal base stock levels are computed.

Parameters are given in Table 6. Among these cases

parameters are the same except arrival rates. h1
h1þb

ffi 0:130,

and in first two cases it holds q[ h1
h1þb

, and in the case 3

q� h1
h1þb

: The values of bS0; bLðbS0Þ; LðbS0Þ; bLðbS0 þ 1Þ are

given in Table 7. By Table 5, the optimal release lead time

and optimal base stock levels are given in Table 8.

Table 6 Parameter sets

Cases k d h1 h2 b

1 0.7 1 3 4 20

2 0.4 1 3 4 20

3 0.1 1 3 4 20
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In case 1, if demand lead time is no more than 3.442

optimal base stock of process 1 is 1, and otherwise it

becomes 0. In case 2, when demand lead time is from 0.000

to 0.198 or from 0.821 to 0.893, the optimal base stock

level of process 1 is 0, and in case 3 it is 0 for any demand

lead time.

The average cost under these optimal release lead time

and optimal base stock levels for each case are illustrated

in Fig. 6, where the horizon axis is demand lead time and

the vertical axis is an optimal average cost.

In the interval of demand lead time where optimal base

stocks are the same, the average cost is convex or linear. In

case 1, in the interval (3.323, 3.442) or (4.323, 1), optimal

release lead time of process is constant. This is found in the

interval (1.821, 1.897) for case 2, and (2.00, 1) for case 3.

In case 2, when demand lead time is around 1, the optimal

base stock is the same but the average cost decreases in the

different ways. From 0.893 to 1, S�1 ¼ 1 and S�2 ¼ 0 and in

this interval it holds
oCðL1;t1;S1;S2Þ

oL1
¼ �kb, which leads to the

linear average cost in this interval.

Table 7 bS0; bLðbS0Þ;LðbS0Þ; bLðbS0 þ 1Þ for each case

Cases bS0 bLðbS0Þ LðbS0Þ bLðbS0 þ 1Þ

1 3 -0.084 0.413 -0.836

2 1 0.893 0.668 0.198

3 0 – – 0.574

Table 8 Optimal release lead time and base stock levels

T L�1 L�2 S�1 S�2

Case 1 (k ¼ 0:7)

T0 þ d ¼ 4.323 – 4.323 3.323...4.323 0 0

T0 = 3.442 – 4.323 T T � 1:000...T 0 0

T0 ¼ 3.323 – 3.442 3.323 3.323 1 0

T1 ¼ 2.322 – 3.323 T T 1 0

T2 ¼ 1.323 – 2.322 T T 1 1

d ¼ 1.000 – 1.323 T T 1 2

T3 ¼ 0.322 – 1.000 T T 1 2

T4 þ d ¼ 0.290 – 0.322 T T 1 3

0.000 – 0.290 T T 1 3

Case 2 (k ¼ 0:4)

T0 þ d ¼ 2.821 – 2.821 1.821...2.821 0 0

T 0 ¼ 1.897 – 2.821 T T� 1.000...T 0 0

T0 ¼ 1.821 – 1.897 1.821 1.821 1 0

d ¼ 1.000 – 1.821 T T 1 0

bLðbS0Þ ¼ 0.893 – 1.000 T T 1 0

T1 ¼ 0.821 – 0.893 T 0.000...T 0 1

LðbS0Þ ¼ 0.668 – 0.821 T 0.000...T 0 1

T2 þ d ¼ 0.516 – 0.668 T T 1 1

LðbS0 þ 1Þ ¼
0.198

– 0.516 T T 1 1

0.000 – 0.198 T 0.000...T 0 2

Case 3 (k ¼ 0:1)

T0 þ d ¼ 2.000 – 2.000 1.000...2.000 0 0

T0 ¼ 1.000 – 2.000 T T � 1:000...T 0 0

T1 þ d ¼ 0.230 – 1.000 T 0.000...T 0 0

0.000 – 0.230 T 0.000...T 0 1

CCase 1 ( )

Case 2 ( )

Case 3 ( )
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Concluding remarks

In this paper, a two-stage production and inventory sys-

tem with advance demand information is considered

under base stock order policy and deterministic process

time. The base stock levels and release lead time for each

process are decision variables, and the objective is to

derive optimal values on the decision variables to mini-

mize the average cost on inventory and backlog costs.

Through theoretical analysis, optimal base stock levels

and optimal release lead time at each process are

explicitly derived in Table 5.

Release lead time of process 1 is shorter than the

demand lead time when the latter is long to decrease excess

inventory. Optimal release lead time of process 2 is the

same as that of process 1, that is, it is optimal to order

processes at the same time. Note that when the optimal

base stock level of process 1 is zero, there is an optimal

positive interval for release lead time of process 2. When

demand lead time can be long enough, then it is optimal to

have no base stocks and wait for several time and process

an item at processes 1 and 2 continuously. Optimal base

stock level of process 1 is 1 or 0, which depends on

demand lead time. As demand lead time is longer, the sum

of optimal base stocks at processes 1 and 2 is smaller. In

particular, when parameters satisfy q� h1=ðh1 þ bÞ, opti-
mal base stock level of process 1 is zero and it is optimal to

process an item at processes 1 and 2 continuously.

Further research is left when the process times are dif-

ferent among the processes, they are stochastic, or when

the number of processes is more than 2.
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Appendices

A. Proof of Proposition 1

When ðmþ 1Þd� T\ðmþ 2Þd;m� 1, by (3) andZ
xmekxdx ¼ � m!

ð�kÞmþ1
ekx

Xm
k¼0

ð�kÞk

k!
xk þ C

we have

ZT

T�d

PðW � xÞdx¼
Zðmþ1Þd

T�d

PðW � xÞdxþ
ZT

ðmþ1Þd

PðW � xÞdx

¼ ð1� qÞ
Xm�1

k¼0

ð�kÞk

k!

ZT�ðkþ1Þd

T�ðkþ2Þd

xkekxdx

þ ð1� qÞ ð�kÞm

m!

ZT�ðmþ1Þd

0

xmekxdx

¼ �ð1� qÞ 1
k
þ ð1� qÞ 1

k

Xm
k¼0

ekfT�ðkþ1Þdg

� ð�kÞk

k!
fT � ðk þ 1Þdgk

¼ �ð1� qÞ 1
k
þ 1

k
PðW � TÞ

¼ � 1

k
PðW [ TÞ þ d:

Thus,

ZT

T�d

PðW[ xÞdx ¼ d �
ZT

T�d

PðW � xÞdx ¼ 1

k
PðW[ TÞ:

When d� T\2d

ZT

T�d

PðW � xÞdx¼
Zd

T�d

PðW � xÞdxþ
ZT

d

PðW � xÞdx

¼ ð1� qÞ 1

k
ekðT�dÞ � 1

k

� �

¼ � 1

k
PðW[ TÞ þ d;

which implies
R T

T�d
PðW[ xÞdx ¼ 1

kPðW[ TÞ:
When T\d,

R T

T�d
PðW � xÞdx ¼ 0 and

R T

T�d
PðW [

xÞdx ¼ d �
R T

T�d
PðW � xÞdx ¼ d: Thus, we have,

ZT

T�d

PðW[ xÞdx ¼
1

k
PðW [ TÞ T � d;

d T\d

(
:

B. Proof of Proposition 2

We derive PðEðkÞ[ xÞ; for x\0 in steady state. When

k ¼ 0

PðEðkÞ[ xÞ ¼ PðEð0Þ[ xÞ ¼ PðW[ xÞ ¼ 1� PðW � xÞ

For k ¼ 1; 2; 3. . .
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PðEðkÞ[ xÞ ¼ PðW � aðkÞ[ xÞ

¼
Z1

0

PðW[ xþ yÞ dPðaðkÞ� yÞ
dy

dy

¼ kk

ðk � 1Þ!

Z�x

0

PðW[ xþ yÞyk�1e�kydy

þ kk

ðk � 1Þ!

Z1

�x

PðW[ xþ yÞyk�1e�kydy

¼ kk

ðk � 1Þ!

Z�x

0

yk�1e�kydy

þ kk

ðk � 1Þ!

Z1

0

PðW[ uÞðu� xÞk�1
e�kðu�xÞdu

¼ 1� ekx
Xk�1

j¼0

k j

j!
ð�xÞ j

þ kkekx
Xk�1

j¼0

ð�xÞk�1�j

j!ðk � 1� jÞ!

Z1

0

PðW[ uÞe�kuu jdu:

Here we derive
R1
0

PðW[ uÞe�kuu jdu. Define f ðuÞ ¼
PðW[ uÞ and f �ðuÞ ¼ Lff ðuÞg ¼

R1
0

PðW[ uÞe�sudu.

Since
R1
0

e�suunf ðuÞdu ¼ ð�1Þnf �ðnÞðsÞ
Z1

0

PðW[ uÞe�kuu jdu ¼ ð�1Þ jf �ðjÞðkÞ:

Therefore,

f �ðsÞ ¼
Z1

0

PðW [ uÞe�sudu ¼
Z1

0

f1� PðW � uÞge�sudu

¼ 1

s
� 1

s

Z1

0

e�sudPðW � uÞ:

The Laplace transform of sojourn time distribution in M/

D/1 is set as W�ðsÞ ¼
R1
0

e�sudPðW � uÞ, and then

f �ðsÞ ¼ 1
s
� 1

s
W�ðsÞ, which implies sf �ðsÞ ¼ 1�W�ðsÞ:

By differentiating s f �ðsÞ þ sf �ð1ÞðsÞ ¼ �W�ð1ÞðsÞ; and
thus f �ð1ÞðsÞ ¼ � 1

s
W�ð1ÞðsÞ � 1

s
f �ðsÞ: By deriving the j-th

derivative of f(s) and substituting k to s

f �ðkÞ ¼ 1

k
� 1

k
W�ðkÞ;

f �ðjÞðkÞ ¼
Xj

m¼1

j!

ð�kÞjþ1�m
m!
W�ðmÞðkÞþ j!

ð�kÞ j
f �ðkÞ; j¼ 1;2;3; . . .

It is well-known that

W�ðsÞ ¼ ð1� qÞse�sd

s� kþ ke�sd
:

To obtain f �ðjÞðkÞ, W�ðmÞðkÞ; for m ¼ 1; 2; 3. . ., is dis-

cussed in the following.

Let hðsÞ ¼ ð1� qÞse�sd; gðsÞ ¼ s� kþ ke�sd. Then

W�ðsÞ ¼ hðsÞ
gðsÞ. By differentiating hðsÞ ¼ gðsÞW�ðsÞ and

substituting k

W�ðjÞðkÞ ¼ �
j

0

� �
gðjÞðkÞ
gðkÞ W�ðkÞ

�
Xj�1

k¼1

j

k

� �
gðj�kÞðkÞ
gðkÞ W�ðkÞðkÞ

þ hðjÞðkÞ
gðkÞ ; j ¼ 1; 2; 3. . .

Here, we have

hðkÞ
gðkÞ ¼ ð1� qÞ; h

ðjÞðkÞ
gðkÞ ¼ ð1� qÞð�dÞj�1ðj� kdÞ

k
;

j ¼ 1; 2; 3. . .

gð1ÞðkÞ
gðkÞ ¼ ekd

k
� d;

gðjÞðkÞ
gðkÞ ¼ ð�dÞ j; j ¼ 2; 3; 4. . .

Therefore,

W�ðkÞ ¼ ð1� qÞ;W�ð1ÞðkÞ ¼ � 1

k
ð1� qÞðekd � 1Þ

W�ðjÞðkÞ ¼ jð1� qÞð�dÞj�1

k
�
Xj�1

m¼1

j

m

� �
ð�dÞj�m

W�ðmÞðkÞ

� j

j� 1

� �
1

k
ekdW�ðj�1ÞðkÞ

j ¼ 2; 3; 4. . .

Now, we show

W�ðjÞðkÞ ¼ ð�1Þ j j!
k j

ð1� qÞejkd þ ð�1Þ j j!
k j

ð1� qÞ

Xj�1

n¼1

ð�nkdÞj�n�1

ðj� n� 1Þ! e
nkd ð�nkdÞ

ðj� nÞ � 1

� �
j ¼ 2; 3; 4. . .

ðA:1Þ

For j ¼ 2

W�ð2ÞðkÞ ¼ 2ð1�qÞð�dÞ1

k
�

2

1

� �
1

k
fekd þð�kdÞgW�ð1ÞðkÞ

¼ 2

k2
ð1�qÞe2kd þ 2

k2
ð1�qÞekdfð�kdÞ� 1g
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Thus, (A.1) holds for j ¼ 2. Assume that (A.1) holds for

j ¼ 2; 3; . . .; k. For j ¼ k þ 1,

W�ðkþ1ÞðkÞ ¼ ðk þ 1Þð1� qÞð�dÞk

k

�
Xk�1

m¼1

k þ 1

m

� �
ð�dÞkþ1�m

W�ðmÞðkÞ

�
k þ 1

k

� �
1

k
fekd þ ð�kdÞgW�ðkÞðkÞ

¼ ð�1Þkþ1 ðk þ 1Þ!
kkþ1

ð1� qÞ � B

where

Here, by developing ð1� 1Þk; ð1� 1Þk�1; ðn� 1Þk�nþ1;

ðn� 1Þk�n
it follows that

1

k!ð�1Þkþ1
�
Xk
m¼2

1

ðk þ 1� mÞ!ðm� 1Þ!ð�1Þkþ1�m
¼ 1

k!
;

k� 2

Xk�2

m¼0

1

ðk � m� 1Þ!m!ð�1Þk�m�1
¼ � 1

ðk � 1Þ! ; k� 2

� 1

ðk þ 1� nÞ!ð�1Þkþ1�n

�
Xk

m¼nþ1

nm�n

ðk þ 1� mÞ!ðm� nÞ!ð�1Þkþ1�m

þ ðn� 1Þk�nþ1

ðk � nþ 1Þ! ¼
nk�nþ1

ðk � nþ 1Þ! ; k� nþ 1

Xk
m¼nþ1

nm�n�1

ðk þ 1� mÞ!ðm� n� 1Þ!ð�1Þkþ1�m
� ðn� 1Þk�n

ðk � nÞ!

¼ � nk�n

ðk � nÞ! ;

k� nþ 1

Thus,

W�ðkþ1ÞðkÞ ¼ ð�1Þkþ1 ðk þ 1Þ!
kkþ1

ð1� qÞeðkþ1Þkd þ ð�1Þkþ1 ðk þ 1Þ!
kkþ1

ð1� qÞ
Xkþ1�1

n¼1

ð�nkdÞkþ1�n�1

ðk þ 1� n� 1Þ!e
nkd ð�nkdÞ

ðk þ 1� nÞ � 1

� �

That is, (A.1) holds for j ¼ k þ 1. By induction it is

proven that (A.1) holds.

Since

f �ðkÞ ¼ 1

k
� 1

k
W�ðkÞ ¼ 1

k
� 1

k
ð1� qÞ ¼ d

f �ðjÞðkÞ ¼
Xj

m¼1

j!

ð�kÞjþ1�m
m!
W�ðmÞðkÞ þ j!

ð�kÞ j
f �ðkÞ;

j ¼ 1; 2; 3; . . .

we have

f �ðjÞðkÞ ¼ j!

ð�kÞjþ1
ð1� qÞ ejkd þ

Xj�1

n¼1

ð�nkdÞj�n

ðj� nÞ! enkd

( )

� j!

ð�kÞjþ1
;

j ¼ 1; 2; 3; . . .

And thus

Z1

0

PðW[ uÞe�kudu ¼ f �ðkÞ ¼ d;

Z1

0

PðW[ uÞe�kuu jdu

¼ ð�1Þ jf �ðjÞðkÞ ¼ � j!

kjþ1
ð1� qÞ

� ejkd þ
Xj�1

n¼1

ð�nkdÞj�n

ðj� nÞ! enkd

( )

þ j!

kjþ1
; j ¼ 1; 2; 3; . . .

B ¼ ð�kdÞkekd 1

k!ð�1Þkþ1
�
Xk
m¼2

1

ðk þ 1� mÞ!ðm� 1Þ!ð�1Þkþ1�m

( )
þ ð�kdÞk�1

ekd
Xk
m¼2

1

ðk þ 1� mÞ!ðm� 2Þ!ð�1Þkþ1�m

þ
Xk�1

n¼2

ð�kdÞk�n
enkd

Xk
m¼nþ1

nm�n�1

ðk þ 1� mÞ!ðm� n� 1Þ!ð�1Þkþ1�m
� ðn� 1Þk�n

ðk � nÞ!

( )

þ kð�kdÞekkd � ekkd þ eðkþ1Þkd þ
Xk�1

n¼2

ð�kdÞkþ1�n
enkd

� 1

ðk þ 1� nÞ!ð�1Þkþ1�n
�

Xk
m¼nþ1

nm�n

ðk þ 1� mÞ!ðm� nÞ!ð�1Þkþ1�m
::þ ðn� 1Þk�nþ1

ðk � nþ 1Þ!

( )
:
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Here, we show

PðEðkÞ[ xÞ ¼ 1� ekx
Xk�1

j¼0

k j

j!
ð�xÞ j þ kkekx

�
Xk�1

j¼0

ð�xÞk�1�j

j!ðk � 1� jÞ!

Z1

0

PðW[ uÞe�kuu jdu:

For k ¼ 1

PðEð1Þ[ xÞ ¼ 1� ekx þ kekx
Z1

0

PðW[ uÞe�kudu

¼ 1� ð1� qÞekx:

For k� 2

PðEðkÞ[ xÞ ¼ 1� ekx
Xk�1

j¼0

k j

j!
ð�xÞ j þ kkekx

ð�xÞk�1

ðk � 1Þ!

þ kkekx
ð�xÞk�2

ðk � 2Þ! � 1

k2
ð1� qÞekd þ 1

k2

� �

þ kkekx
Xk�1

j¼2

ð�xÞk�1�j

j!ðk � 1� jÞ! � j!

kjþ1
ð1� qÞ

�

� ejkd þ
Xj�1

n¼1

ð�nkdÞj�n

ðj� nÞ! enkd

( )
þ j!

kjþ1

)

¼ 1� ð1� qÞ ð�kxÞk�1

ðk � 1Þ! e
kx

� ð1� qÞ f�kðxþ dÞgk�2

ðk � 2Þ! ekðxþdÞ

�
Xk�2

n¼2

ð1� qÞ f�kðxþ ndÞgk�1�n

ðk � 1� nÞ! ekðxþndÞ

� ð1� qÞekðxþðk�1ÞdÞ

¼ 1� ð1� qÞ ð�kxÞk�1

ðk � 1Þ! e
kx

� ð1� qÞ
Xk�1

n¼1

f�kðxþ ndÞgk�1�n

ðk � 1� nÞ! ekðxþndÞ:

When m ¼ k � 2, that is, when �d� x\0,

PðW � xþ kdÞ ¼ ð1� qÞ
Xk�2

n¼0

f�kðxþ kd � ðnþ 1ÞdÞgn

n!

� ekðxþkd�ðnþ1ÞdÞ;

PðEðkÞ[ xÞ ¼ 1� ð1� qÞ ð�kxÞk�1

ðk � 1Þ! e
kx

� PðW � xþ kdÞ:

Therefore,

PðEð0Þ� xÞ ¼ PðW � xÞ ¼ 0; x\0 ;

PðEðkÞ� xÞ ¼ ð1� qÞ
Xk�1

n¼0

f�kðxþ ndÞgk�1�n

ðk� 1� nÞ! ekðxþndÞx\0;

k ¼ 1;2; 3. . .

Comparing with PðW � xÞ, we have

PðEðkÞ� xÞ ¼ ð1� qÞ ð�kxÞk�1

ðk � 1Þ! e
kx þ PðW � xþ kdÞ;

� d� x\0; k ¼ 1; 2; 3. . .

C. Proof of Proposition 3

For given L1; t1; S1, we derive optimal base stock level of

process 2, S�2. From (8)

CðL1; t1; S1; S2 þ 1Þ � CðL1; t1; S1; S2Þ

þ kðh2 þ bÞ
Z1

L1�zðt1;S1Þ

fPðEðS2 þ 1Þ[ xÞ � PðEðS2Þ[ xÞgdx

¼ h2 þ kðh2 þ bÞ
Z1

L1�zðt1;S1Þ

fPðEðS2 þ 1Þ[ xÞ � PðEðS2Þ[ xÞgdx

Since

dPðaðkÞ� yÞ
dy

¼ kkyk�1

ðk � 1Þ! e
�ky; k ¼ 1; 2; 3. . .;

PðEðkÞ[ xÞ ¼
Z1

0

PðW[ xþ yÞ kkyk�1

ðk � 1Þ! e
�kydy;

k ¼ 1; 2; 3. . .; x 2 R

ðA:2Þ

PðEð0Þ[ xÞ ¼ PðW [ xÞ; x 2 R

For S2 ¼ 1; 2; 3. . . by (A.2)

Z1

L1�zðt1;S1Þ

fPðEðS2 þ 1Þ[ xÞ � PðEðS2Þ[ xÞgdx

¼
Z1

L1�zðt1;S1Þ

Z1

0

PðW[ xþ yÞ kS2þ1yS2

S2!
� kS2yS2�1

ðS2 � 1Þ!

� �
e�kydydx

¼
Z1

0

ðky� S2Þ
kS2yS2�1

S2!
e�ky

Z1

L1�zðt1;S1Þ

PðW [ xþ yÞdxdy

¼ �
Z1

0

kS2yS2

S2!
e�kyPðW[ L1 � zðt1; S1Þ þ yÞdy

¼ � 1

k
PðEðS2 þ 1Þ[ L1 � zðt1; S1ÞÞ:

For S2 ¼ 0
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Z1

L1�zðt1;S1Þ

fPðEðS2 þ 1Þ[ xÞ � PðEðS2Þ[ xÞgdx

¼
Z1

L1�zðt1;S1Þ

fPðEð1Þ[ xÞ � PðW[ xÞgdx

¼
Z1

L1�zðt1;S1Þ

Z1

0

PðW[ xþ yÞke�kydydx

�
Z1

L1�zðt1;S1Þ

PðW [ xÞdx

¼
Z1

0

ke�ky
Z1

L1�zðt1;S1Þ

PðW[ xþ yÞdxdy

�
Z1

L1�zðt1;S1Þ

PðW [ xÞdx

¼ �
Z1

0

e�kyPðW [ L1 � zðt1; S1Þ þ yÞdy

¼ � 1

k
PðEð1Þ[ L1 � zðt1; S1ÞÞ:

Thus, we have

CðL1; t1; S1; S2 þ 1Þ � CðL1; t1; S1; S2Þ
¼ h2 � ðh2 þ bÞPðEðS2 þ 1Þ[ L1 � zðt1; S1ÞÞ;

and PðEðS2 þ 1Þ[ L1 � zðt1; S1ÞÞ is decreasing in S2, and

thus for given L1; t1; S1

S�2

¼
argmin

S2 : S2 ¼ 0; 1; 2. . .
PðEðS2 þ 1Þ[L1 � zðt1; S1ÞÞ�

h2

h2 þ b

� �
:

D. Proof of Proposition 4

(a) When TS � L1\TS�1; S ¼ 1; 2; . . .; bS0 � 1, if

0� L2\TŜ0 then S�2 ¼ bS0, if Tkþ1 � L2\Tk; k ¼ Sþ 1; Sþ
2; . . .; bS0 � 1 then S�2 ¼ k, and if TSþ1 � L2 then S�2 ¼ S.

Since L2 ¼ L1 � t1, if, L1 � TŜ0\t1 � L1 then S�2 ¼ bS0, if
L1 � Tk\t1 � L1 � Tkþ1; k ¼ Sþ 1; Sþ 2; . . .; bS0 � 1 then

S�2 ¼ k, and if d� t1 � L1 � TSþ1 then S�2 ¼ S.

For each inside inteval of L1 � TŜ0\t1 � L1; L1 � Tk\

t1 � L1 � Tkþ1; k ¼ Sþ 1; Sþ 2; . . .; bS0 � 1; d� t1 � L1
�TSþ1, by (8)

CðL1; t1; S�1; S�2Þ ¼ kh1t1 � kh2E½EðS�2Þ� þ kh2ðL1 � t1Þ

þ kðh2 þ bÞ
Z1

L1�t1

PðEðS�2Þ[ xÞdx

dCðL1; t1; S�1; S�2Þ
dt1

¼ kh1 � kh2 þ kðh2 þ bÞPðEðS�2Þ[ L1

� t1Þ;

and by (9), when L2\T0;PðEðS�2Þ[ L1 � t1 ¼ L2Þ[ h2
h2þb

.

Thus, we have

dCðL1; t1; S�1; S�2Þ
dt1

[ 0:

From discussion of ‘‘Optimal base stock level’’,

CðL1; L1 � TbS0�1
; S�1;

bS0Þ ¼ CðL1; L1 � TbS0�1
; S�1;

bS0 � 1Þ;

CðL1; L1 � Tk; S
�
1; kÞ ¼ CðL1; t1; S�1; k � 1Þ;

k ¼ Sþ 2; . . .; Ŝ0 � 1;

and

CðL1; L1 � TSþ1; S
�
1; Sþ 1Þ ¼ CðL1; L1 � TSþ1; S

�
1; SÞ:

Thus, for TS � L1\TS�1; S ¼ 1; 2; . . .; bS0 � 1;

CðL1; t1; S�1; S�2Þ is increasing in t1for t1 � d.

For d� L1\TŜ0�1, S
�
2 ¼ bS0, and in the same way by (8)

dCðL1; t1; S�1; S�2Þ
dt1

[ 0

And thus, for d� L1\TbS0�1
CðL1; t1; S�1; S�2Þ is increas-

ing in t1 for t1 � d.

(b) When T0 � L1, if 0 � L2\TbS0 then S�2 ¼ bS0, if

Tkþ1 � L2\Tk; k ¼ 1; 2; . . .; bS0 � 1 then S�2 ¼ k and if

T1 � L2 then S�2 ¼ 0. Since L2 ¼ L1 � t1, if L1 �

TbS0\t1 � L1 then S�2 ¼ bS0, if L1 � Tk\t1 � L1 �

Tkþ1; k ¼ 1; 2; . . .; bS0 � 1 then S�2 ¼ k, and if

d� t1 � L1 � T1 then S�2 ¼ 0.

In each inside interval of L1 � TbS0\t1 � L1; L1

�Tk\t1 � L1 � Tkþ1; k ¼ 1; 2; . . .; bS0 � 1; L1 � T0 � t1
� L1 � T1, in the same way of (a) by (8), we have

dCðL1; t1; S�1; S�2Þ
dt1

[ 0:

It follows that

CðL1; L1 � TbS0

; S�1;
bS0Þ ¼ CðL1; L1 � TbS0 ; S�1; bS0 � 1Þ;
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CðL1; L1 � Tk; S
�
1; kÞ ¼ CðL1; L1 � Tk; S

�
1; k � 1Þ;

k ¼ 2; 3; . . .; bS0 � 1:

CðL1; L1 � T1; S
�
1; 1Þ ¼ CðL1; L1 � T1; S

�
1; 0Þ:

When d� t1 � L1 � T0 it follows that S
�
2 ¼ 0, and by (8)

CðL1; t1; S�1; S�2Þ ¼ kh1t1 � kh2E½W � þ kh2ðL1 � t1Þ

þ kðh2 þ bÞ
Z1

L1�t1

PðW [ xÞdx;

dCðL1; t1; S�1; S�2Þ
dt1

¼ kh1 � kh2 þ kðh2 þ bÞPðW[ L1 � t1

¼ L2Þ:

Since t1 � L1 � T0, PðW[ L1 � t1 ¼ L2Þ� h2
h2þb

: Let

~T ¼ argmin

x
PðW[ xÞ� h2 � h1

h2 þ b

� �
:

Here ~T � T0. When L2\~T that is L1 � ~T\t1, then

PðW[ L2Þ[ h2�h1
h2þb

; and thus
dCðL1;t1;S�1;S�2Þ

dt1
[ 0. When

~T � L2, that is t1 � L1 � ~T , PðW[ L2Þ� h2�h1
h2þb

; and thus

dCðL1;t1;S�1;S�2Þ
dt1

� 0. When T0 � L1\~T þ dCðL1; t1; S�1; S�2Þ is

increasing in t1 for � t1 . When T0 � L1\~T þ
dCðL1; t1; S�1; S�2Þ is decreasing in t1 for d� t1 � L1 � ~T and

is increasing for t1 [ L1 � ~T .

E. Proof of Proposition 5

(a) When TSþ1 � L1\TS; S ¼ 0; 1; . . .; bS0 � 1, if

0� t1 � L1 � TSþ1 then S�2 ¼ S and if L1 � TSþ1\t1 � d

then S�2 ¼ Sþ 1.

For each interval of 0� t1 � L1 � TSþ1 and

L1 � TSþ1\t1 � d, by (8)

CðL1; t1; 1; S�2Þ ¼ h1ð1þ kt1Þ � kh2E½EðS�2Þ� þ kh2ðL1 � t1Þ

þ kðh2 þ bÞ
Z1

L1�t1

PðEðS�2Þ[ xÞdx

dCðL1; t1; 1; S�2Þ
dt1

¼ kh1 � kh2 þ kðh2 þ bÞPðEðS�2Þ[ L1

� t1Þ;

and from (9) if L1\T0 then PðEðS�2Þ[ L1 � t1Þ[ h2
h2þb

,

which leads to
dCðL1;t1;1;S�2Þ

dt1
[ 0: It also follows that

CðL1; L1 � TSþ1; 1; SÞCðL1; L1 � TSþ1; 1; Sþ 1Þ. Thus, if

TSþ1 � L1\TS; S ¼ 0; 1; . . .; bS0 � 1, then CðL1; t1; 1; S�2Þ is

increasing in t1 for 0� t1\d.

If 0� L1\TŜ0 , S
�
2 ¼ bS0, and in the same way as above

by (8) it follows that
dCðL1;t1;1;S�2Þ

dt1
[ 0. Thus, when

0� L1\TbS0 , CðL1; t1; 1; S�2Þ is increasing in t1 for

0� t1\d.

(b) When T0 � L1S
�
2 ¼ 0, and by (8)

CðL1; t1; 1; S�2Þ ¼ h1ð1þ kt1Þ � kh2E½W � þ kh2ðL1 � t1Þ

þ kðh2 þ bÞ
Z1

L1�t1

PðW[ xÞdx

dCðL1; t1; 1; S�2Þ
dt1

¼ kh1 � kh2 þ kðh2 þ bÞPðW [ L1 � t1

¼ L2Þ

and PðW [ L1 � t1Þ� h2
h2þb

. By (15), when L2\~T , that is

when L1 � ~T\t1, it follows that PðW[ L2Þ[ h2�h1
h2þb

, and

thus
dCðL1;t1;1;S�2Þ

dt1
[ 0 and when ~T � L2, it follows that

PðW[ L2Þ� h2�h1
h2þb

, and thus
dCðL1;t1;1;S�2Þ

dt1
� 0:

When T0 � L1\~T , CðL1; t1; 1; S�2Þ is increasing in t1 for

0� t1\d. When ~T � L1\~T þ d, CðL1; t1; 1; S�2Þ is

decreasing in t1 for 0� t1\L1 � ~T , and is increasing for

L1 � ~T � t1\d. When ~T þ d� L1, CðL1; t1; 1; S�2Þ is

decreasing in t1 for 0� t1\d.

F. Proof of Proposition 6

Under q� h1
h1þb

bLð1Þ is compared with T1 þ d.

It follows T1 � 0 and bS0 ¼ 0, and from (2) and (16),

Pðað1Þ� � ðbLð1Þ � dÞÞ ¼ 1� ekð
bLð1Þ�dÞ ¼ h2 � h1

h2 þ b
;

which implies ekð
bLð1Þ�dÞ ¼ h1þb

h2þb
: From Proposition 2 and

(10), PðEð1Þ[ T1Þ ¼ ð1� qÞekT1 ¼ b
h2þb

, which implies

ekT1 ¼ 1
1�q

b
h2þb

: Since q� h1
h1þb

, it holds that 1
1�q � h1þb

b
:

Thus ekT1 ¼ 1
1�q

b
h2þb

� h1þb
h2þb

¼ ekð
bLð1Þ�dÞ; which means

T1 � bLð1Þ � d.

Next, under q� h1
h1þb

~T is compared with ~L. From (18),
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Z ~T

~T�d

PðW[ xÞdx¼
Z ~T

~L�d

PðW[ xÞdxþ
Z~L�d

~T�d

PðW[ xÞdx

¼ 1

k
h1

h2 þ b
þ d

h2 � h1

h2 þ b
þ ð~T � ~LÞh2 � h1

h2 þ b

þ
Z~L�d

~T�d

PðW[ xÞdx

¼ 1

k
h1

h2 þ b
þ d

h2 � h1

h2 þ b

þ
Z~L�d

~T�d

PðW[ xÞ � h2 � h1

h2 þ b

� �
dx:

Since
R ~T
~T�d

PðW[ xÞdx� d and 1
k

h1
h2þb

þ d h2�h1
h2þb

� d

under q� h1
h1þb

; it follows that

Z~L�d

~T�d

PðW[ xÞ � h2 � h1

h2 þ b

� �
dx� 0;

Since ~L� d\~Tand ~T � d\~T , by (15)

PðW[ ~L� dÞ[ h2�h1
h2þb

and PðW[ ~T � dÞ[ h2�h1
h2þb

, and

thus ~L� ~T .

G. Proof of Proposition 7

(a) Under q[ h1
h1þb

Lð0Þ is compared with T0. From (17),

Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdx ¼ 1

k
� d

� �
h1

h2 þ b

þ d
h2

h2 þ b
� d

h2

h2 þ b

and from (10)

ZT0þd

T0

PðW[ xÞdx\dPðW[ T0Þ� d
h2

h2 þ b
:

Thus, Lð0Þ\T0 þ d. Under q[ h2
h2þb

, by (10) and

Proposition 1

ZT0
T0�d

PðW [ xÞdx ¼ 1

k
PðW[ T0Þ ¼

1

k
h2

h2 þ b

When h2 ¼ h1 by (17)

Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdx ¼ 1

k
h2

h2 þ b

and thus Lð0Þ ¼ T0. When h2 [ h1,

Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdx\ 1

k
h2

h2 þ b

and thus Lð0Þ[ T0.

When h1
h1þb

\q� h2
h2þb

, it follows that T0 ¼ d, and

Lð0Þ[ d implies that Lð0Þ[ T0.

Therefore, when q[ h1
h1þb

, if h2 ¼ h1T0 ¼ Lð0Þ\
T0 þ d, and if h2 [ h1, T0\Lð0Þ\T0 þ d:

(b) Under q[ h2
h2þb

, ~T; ~L, and Lð0Þ are compared. Three

cases, ~L\~T ; ~T\~L and ~T ¼ ~L are considered.

(i) ~L\~T

By (17) and (18),

Z ~L

~L�d

PðW[ xÞdx¼
Z ~T

~L�d

PðW [ xÞdx�
Z ~T

~L

PðW [ xÞdx

¼
Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdxþ ð~T � ~LÞ h2 � h1

h2 þ b

�
Z ~T

~L

PðW [ xÞdx:

Since by (15)
R ~T
~L PðW[ xÞdx[ ð~T � ~LÞ h2�h1

h2þb
, and

Z~L

~L�d

PðW[ xÞdx\
ZLð0Þ

Lð0Þ�d

PðW[ xÞdx:

Thus, Lð0Þ\~L\~T .

(ii) ~T\~L

Z ~L

~L�d

PðW[ xÞdx ¼
Z~T

~L�d

PðW[ xÞdxþ
Z ~L

~T

PðW[ xÞdx

¼
Z�Lð0Þ

�Lð0Þ�d

PðW[ xÞdx þ ð~T � ~LÞ h2 � h1

h2 þ b

þ
Z ~L

~T

PðW[ xÞdx:

Since
R ~L
~T PðW [ xÞdx\ð~L� ~TÞ h2�h1

h2þb

Z~L

~L�d

PðW[ xÞdx\
Z�Lð0Þ

�Lð0Þ�d

PðW[ xÞdx
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and thus Lð0Þ\~L. Lð0Þ is compared with ~T next. By (17)

and (18)

Z ~T

~T�d

PðW [ xÞdx ¼
Z ~T

~L�d

PðW[ xÞdxþ
Z~L�d

~T�d

PðW [ xÞdx

¼
Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdxþ ð~T � ~LÞ h2 � h1

h2 þ b

þ
Z~L�d

~T�d

PðW[ xÞdx

From (15) and ~L� d� ~T , it followsR ~L�d
~T�d

PðW [ xÞdx[ ð~L� ~TÞ h2�h1
h2þb

, and thus

Z~T

~T�d

PðW[ xÞdx[
Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdx

Therefore ~T\Lð0Þ\~L.

(iii) ~T ¼ ~L

Z~L

~L�d

PðW[ xÞdx ¼
Z ~T

~L�d

PðW[ xÞdx

¼ 1

k
h1

h2 þ b
þ ð~T � ~Lþ dÞ h2 � h1

h2 þ b

Z�Lð0Þ

�Lð0Þ�d

PðW [ xÞdx ¼ 1

k
h1

h2 þ b
þ d

h2 � h1

h2 þ b

Z~L

~L�d

PðW[ xÞdx ¼
Z�Lð0Þ

�Lð0Þ�d

PðW[ xÞdx

This implies Lð0Þ ¼ ~L ¼ ~T .

(c) When q[ h2
h2þb

and ~T\~L, ~L is compared with

T0 þ d. By (18)

Z ~T

~L�d

PðW [ xÞdx ¼ 1

k
h1

h2 þ b
þ

Z ~T

~L�d

h2 � h1

h2 þ b
dx;

Z ~T

~L�d

PðW [ xÞ � h2 � h1

h2 þ b

� �
dx ¼ 1

k
h1

h2 þ b
:

By (10) and (15),

Z ~T

T0

PðW [ xÞ � h2 � h1

h2 þ b

� �
dx�ð~T � T0Þ

h1

h2 þ b
:

By (b), when ~T\~L it follows ~T\Lð0Þ, and by (a),

Lð0Þ\T0 þ d, which implies that ~T\T0 þ d, and thus

~T � T0\d\ 1
k ; ð~T � T0Þ h1

h2þb
\ 1

k
h1

h2þb
;

Z ~T

T0

PðW[ xÞ � h2 � h1

h2 þ b

� �
dx\

Z ~T

~L�d

PðW[ xÞ � h2 � h1

h2 þ b

� �
dx:

Therefore when ~T\~L it holds that ~L\T0 þ d.
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