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Abstract To increase the reliability of a specific system,

using redundant components is a common method which is

called redundancy allocation problem (RAP). Some of the

RAP studies have focused on k-out-of-n systems. However,

all of these studies assumed predetermined active or

standby strategies for each subsystem. In this paper, for the

first time, we propose a k-out-of-n system with a choice of

redundancy strategies. Therefore, a k-out-of-n series–par-

allel system is considered when the redundancy strategy

can be chosen for each subsystem. In other words, in the

proposed model, the redundancy strategy is considered as

an additional decision variable and an exact method based

on integer programming is used to obtain the optimal

solution of the problem. As the optimization of RAP

belongs to the NP-hard class of problems, a modified

version of genetic algorithm (GA) is also developed. The

exact method and the proposed GA are implemented on a

well-known test problem and the results demonstrate the

efficiency of the new approach compared with the previous

studies.

Keywords Redundancy allocation problem � Reliability
optimization � Choice of redundancy strategies � k-out-of-
n system

Introduction

Reliability optimization is one of the most important goals

in high-tech industries. Redundancy allocation problems

(RAP) are an efficient approach for improving system

reliability that generally involves the selection of compo-

nents type and number of redundant components to maxi-

mize system reliability under certain constraints. Chern

(1992) proved that RAP belongs to the NP-hard class of

optimization problems. In general, the redundancy alloca-

tion problem formulation has been presented for various

systems with different structures and solved by numerous

optimization approaches, such as dynamic programming,

integer programming, and different meta-heuristic algo-

rithms (Kuo and Prasad 2000; Tillman et al. 1977). Tra-

ditionally, there are two general strategies for using

redundant components in system. These strategies are

called active and standby strategies. Fyffe et al. (1968)

formulated the RAP with the active strategy for all sub-

systems and used a dynamic programming algorithm to

solve the problem. Coit (2001) proposed a new formulation

for the cold-standby strategy with imperfect switching. An

assumption that commonly made in the literature is that the

type of redundancy strategy for each subsystem is prede-

termined and that either the active or the standby strategy

may be used for each subsystem. However, Coit (2003)

proposed a new formulation of the redundancy allocation

problem with a choice of redundancy strategies for each

subsystem. He added the type of redundancy strategy as an

additional decision variable to the model and used integer

programming to solve the problem. He obtained better

results when the redundancy strategy could be chosen for

each subsystem compared with approaches that consider

predetermined strategies. After Coit’s study, several studies

considered a system with a choice of strategies. Tavakkoli-
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Moghaddam et al. (2008), used a genetic algorithm (GA) to

solve the same problem. Then, Safari and Tavakkoli-

Moghaddam (2010) used a Memetic algorithm for an RAP

problem with a choice of strategies. Recently, Chambari

et al. (2012) and Safari (2012) extended this model by

adding the overall system cost as the second objective and

converted the single objective optimization (SOO) problem

to a multi-objective optimization (MOO) one. The appli-

cation of RAP problems with choice of redundancy

strategies in these researches shows the advantageous of

selecting the best redundancy strategy for each subsystem.

In addition, many studies have been done in the field of

k-out-n systems. Wu and Chen (1994), proposed an algo-

rithm for computing the reliability of a weighted k-out-of-

n system. Coit and Smith (1996), and used a genetic

algorithm to solve a RAP problem in a series–parallel k-

out-of-n system with a multiple component choice and an

active redundancy strategy. Coit and Liu (2000), consid-

ered the redundancy allocation problem in k-out-of-n sys-

tems when either the active or the cold-standby redundancy

could be used, although it was assumed that the redundancy

strategy (i.e., active or cold-standby) for each subsystem

was predetermined. A consecutive k-out-of-n system is

considered in Cui and Xie (2005). In this research, for-

mulas are derived to calculate the k-out-of-n system reli-

abilities for both linear and circular cases. Tian and Zuo

(2006) applied a GA for the reliability evaluation of a

multi-state k-out-of-n system and Li and Zuo (2008) dis-

cussed multi-state, weighted k-out-of-n systems. In most of

these studies, k is considered to be a fixed and predeter-

mined parameter. However, Sooktip et al. (2011) consid-

ered k as a decision variable in the design process. Zhao

and Cui (2010) proposed a finite Markov chain imbedding

(FMCI) approach for generalized multi-state k-out-of-

n systems. Chang et al. (2013) proposed a new method for

calculating the reliability of a complex k-out-of-n system

and the reliability model is designed based on expandable

reliability block diagram. None of these studies in terms of

k-out-of-n systems include the choice of strategy in system.

Therefore, in this paper, a k-out-of-n system is considered

when the redundancy strategy is a decision variable. To

solve the proposed model, an exact method based on

integer programming is developed to obtain the optimal

solution. Besides, a modified GA is extended to solve the

model and the results are compared with the previous

studies in the literature.

Recently, a lot of new studies have also been devoted to

RAPs which lead to significant results. Nematian (2007)

considered a special redundancy allocation problem with

fuzzy variables. Sardar Donighi and Khanmohammadi

(2011) presented a new model which the reliability of

components is as fuzzy set. Taghizadeh and Hafezi (2012)

investigated the reliability evaluation of available relation-

ships in supply chain which is suitable for computing reli-

ability of supply chain for organizations. Abouei Ardakan

and Zeinal Hamadani (2014b) and Ardakan et al. (2015)

proposed a new redundancy strategy called mixed strategy

which uses both active and cold-standby strategies in one

subsystem simultaneously. Abouei Ardakan et al. (2016)

extended the mixed strategy for reliability–redundancy

allocation problem (RAP). These new studies show that

mixed strategy in more powerful than active and standby

strategies and leads to higher reliability values. In most of

studies in terms of allocation of redundant components, it is

assumed that the components are either non-repairable or

repairable. Newly some researches considered both repair-

able and non-repairable components in one subsystem

simultaneously (Zoulfaghari et al. 2014, Zoulfaghari et al.

2015a, b). Dolatshahi-Zand and Khalili-Damghani (2015)

and (Khalili-Damghani et al. 2013a) considered a multi-

objective RAP problem and proposed a multi-objective

particle swarm optimization (MOPSO) method to solve it.

Khalili-Damghani et al. (2013b) and Khalili-Damghani and

Amiri (2012) also proposed an efficient e-constraint method

for solving multi-objective redundancy allocation problems.

Then, a data envelopment analysis model is used to prune

the non-dominated solutions. Srinivasa Rao and Naikan

(2014) combined the Markov approach with system

dynamics simulation approach to study the reliability of a

repairable system with standby strategy.

As it is clear from the literature, numerous researches

have been done in terms of redundancy allocation problem.

Some of these studies considered the k-out-of-n systems.

However, none of these studies include the choice of

strategy in a k-out-of-n system and considered only active

or standby strategy in their models. Therefore, in this

paper, a k-out-of-n system is considered when the redun-

dancy strategy is a decision variable and we have both

active and standby strategies in the model. To solve the

proposed model, an exact method based on integer pro-

gramming is developed to obtain the optimal solution.

Besides, a modified GA is extended to solve the model and

the results are compared with the previous studies in the

literature. The remainder of the paper is organized as fol-

lows. In the second section, we describe the system

structure and the assumptions of the problem. Third section

explains how to compute system reliability in a k-out-of-

n system. In the fourth section, the choice of redundancy

strategies is described in more detail. Fifth section presents

the modeling of the problem and the exact solution for

solving the model. In the sixth section, the design of our

genetic algorithm is described. Seventh section considers a

well-known benchmark problem and the experimental

results to demonstrate the efficiency of the proposed
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methodology. Finally, conclusions are presented in eighth

section.

Problem description

In this paper, a non-repairable k-out-of-n system with a

choice of redundancy strategies is considered. In a k-out-

of-n system, a subsystem operates correctly if at least k out

of its n parallel components are operating. A typical

structure of such a system is shown in Fig. 1. Since we

want to solve the problem by an exact method, we have to

consider special design restrictions in practice. Indeed, the

model proposed in this study is an extension on Coit (2003)

when the strategy adopted for each subsystem is not pre-

determined, but it is considered as a decision variable to be

determined by the model. The assumptions and parameters

are almost the same as Coit (2003), namely the type of

failure time distribution and no component mixing once a

component selection has been made. There are different

component choices with different levels of cost, reliability,

and weight, as well as other characteristics. Moreover, the

redundant components for each subsystem are selected

from the same type. The cold-standby strategy is consid-

ered with an imperfect switching and an exponential dis-

tribution for time-to-failures of components. Thus, the

problem involves the simultaneous selection of component

type, redundancy level, and the best redundancy strategy

for each subsystem to maximize system reliability subject

to budget and weight constraints. The assumptions of the

model and the notations for a system with S subsystems are

mentioned in the following section.

Assumptions

• The components can be in either of two possible states

(namely, a good state or a bad state).

• There are multiple component choices for each sub-

system, while one of them should be selected for

placing in subsystem.

• The component attributes, such as reliability, weight,

and cost, are known and deterministic.

• Failures of components are statistically independent

from each other and do not damage the system.

• The types of components used in each subsystem are

the same.

• Subsystems with the cold-standby redundancy have an

imperfect switching.

• Components and thereby the system are non-repairable.

• Components’ time-to-failures follow an exponential

distribution.

Notations

i Index for subsystem

j Index for component type

mi Number of available component choices for

subsystem i

ni Number of components in subsystem i

n ¼ ðn1; n2; . . .; nsÞ; ni � nmax;i 8i
zi Type of component selected for subsystem i,

zi 2 {1, 2,…,mi}

z = (z1, z2,…,zs)

nmax,i Maximum number of components allowed in

each subsystem

s Number of subsystems

t Mission time

ki Minimum number of operating components

required per subsystem

wij Weight of component j used for subsystem i

cij Cost of component j used for subsystem i

C Cost constraint limit

W Weight constraint limit

kij Exponential distribution parameter for failure

rate of component j used in subsystem i

qi(t) Failure-detection/switching reliability at time

t for scenario 1

qi Failure-detection/switching reliability at time

t for scenario 2

rij(t) Reliability of component j used in subsystem

i at time t

A Set of subsystems with active redundancy

S Set of subsystems with cold-standby

redundancy

N Set of subsystems which can use active or cold-

standby redundancy

R(t, z, n) Overall reliability of system reliability at time

t based on vectors z and n
~R t; z; nð Þ Approximation of R(t, z, n)

1

2

3

1

2

4

3

1
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Fig. 1 Series–parallel system with k-out-of-n subsystems
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System reliability for k-out-of-n subsystems

As already mentioned, the objective function of the RAP

problem is maximizing system reliability under cost and

weight constraints, and is generally formulated as follows:

Problem P1

maxR t; z; nð Þ
s:t:

Xs

i¼1

cizini �C; ni 2 ki; kiþ1; kiþ2; . . .; nmax;i

� �
;

Xs

i¼1

wizini �W ; zi 2 1; 2; . . .;mif g

As we consider a system with a choice of redundancy

strategies, the objective function consists of the reliability

of k-out-of-n system with active and standby strategy. The

reliability of a k-out-of-n system with the active redun-

dancy can be determined using the binominal techniques.

The formulation for computing this reliability is as follows:

R
i
ðtÞ ¼

Xni

l¼ki

ni
l

� �
ðrijðtÞÞlð1� rijðtÞÞni�l ð1Þ

where ri,j represents the reliability of component j used for

subsystem i. Since the component time-to-failure distri-

bution is exponential, ri,j is calculated as follows:

rij tð Þ ¼ exp �kijt
� �

: ð2Þ

Considering the reliability of cold-standby systems with

switching failures is more realistic and important. Coit

(2001) described two scenarios for imperfect switching in a

cold-standby system. In the first scenario, switching hard-

ware or software controls the system performance contin-

ually and activates the redundancy component when a

failure occurs in the active component. In the second sce-

nario, failure is only possible when the switch is required,

and the probability of success at any time the switch is

required is a constant value qi. More details can be found in

Coit (2001). Failure-detection/switching reliabilities for the

two scenarios are determined by:

Scenarios 1: continuous detection and switching

RiðtÞ ¼ ri;ziðtÞ þ
Xni�1

x¼1

Z t

0

qiðuÞ ri;ziðt � uÞ f ðxÞi;zi
ðuÞ du ð3Þ

Scenarios 2: switch activation only in response to a

failure

RiðtÞ ¼ ri;ziðtÞ þ
Xni�1

x¼1

qxi

Z t

0

ri;ziðt � uÞ f ðxÞi;zi
ðuÞ du ð4Þ

In these equations, qi(t) and qi are the failure-detection/

switching reliabilities at time t for scenarios 1 and 2,

respectively; ri;ziðtÞ is the reliability of component j used

for subsystem i at time t and f
ðxÞ
i;zi

ðuÞ is the pdf for the xth

failure of component j used for subsystem i, i.e., sum of x

i.i.d component failure times. This paper investigates

continuous detection and switching (scenario 1).

The reliability of a k-out-of-n system with the cold-s-

tandby redundancy is the probability that there are strictly

less than or equal to ni - ki failures observed until time t.

Thus, if the component time-to-failure is exponential, then

Eq. (5) can be represented by considering the occurrences

of subsystem failures as a homogeneous Poisson process

prior to the ni - ki failures. In this case, the subsystem

failure process is considered as a Poisson process at a rate

of kijki. Therefore,

Z t

0

ri;ziðt � uÞf ðxÞi;zi
ðuÞ du ¼ e�ki;zi kitðki;zi kitÞ

x

x!
ð5Þ

In addition, an approximation of the overall system

reliability will be as follows:

~Rðt;z;nÞ¼
Y

i2A

Xni

l¼ki

ni

l

� �
ðexpð�ki;zi tÞÞ

lð1�expð�ki;zi tÞÞ
ni�l

�
Y

i2S
expð�ki;zi kitÞþqiðtÞexpð�ki;zi kitÞ

�
Xni�ki

l¼0

ðki;zi kitÞ
l

l!
ð6Þ

As mentioned in Coit (2001), it is difficult to determine

a closed form for equations similar to Eq. (3). Therefore,

an estimation for lower bound of Eq. (3) is determined in

the equation above, because qi(t) B qi(u) for all u B t .

Choice of redundancy strategies

As previously mentioned, when the redundancy strategy

for subsystems is not predetermined, the best strategy

should be selected among the standby and the active

redundancies by comparing their reliabilities. Coit (2003)

explained the relationship between the reliabilities of cold-

standby and active redundancies for an individual subsys-

tem. When there is a perfect switching and the cold-s-

tandby switching is not exposed to operating stresses, the

cold-standby strategy is always preferable to the active one.

With imperfect switching, for component j with special

characteristics (switching reliability, time-to-failure distri-

bution), there is a maximum redundancy level, n0ij, where

the reliability of the standby strategy is greater or equal to

that of the active strategy. In other words, if the number of
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redundant components used in subsystem i is less than or

equal to the maximum level (ni � n0ij), the cold-standby

outperforms the active strategy; otherwise, the active

strategy will have a better performance for all larger values

of ni [ n0ij (as shown in Fig. 2).

To validate this conclusion, assume that the reliability of

a component is 0.7408 and that of the switching for standby

components is 0.99. Now suppose that the system includes

a certain number of components in parallel. The following

figure illustrates the reliability of the system for different

values of ni with the standby or active strategy.

Clearly, n0ij, in this example, is equal to four. As previ-

ously mentioned, with the cold-standby strategy, we expect

reliability to reduce with increasing number of redundant

components and this is due to the increased requirements of

imperfect switching.

Exact solution methodology

For obtaining optimal solution of the proposed model, an

integer programming-basedmethod is presented. The bases of

this approachwere proposedbyMisra andSharma (1973). It is

based on transforming the problem by taking the logarithm of

Eq. (6) to develop an equivalent problem. The solution

methodology is described as the following five steps:

1. First, we define yijp as the new zero–one decision

variables as follows:

yijp ¼
1; p numbers of component type j

will place in subsystem i

0; otherwise

8
<

:

2. Determine sets of A, S, and C based on the require-

ments of system design and identify the set each

subsystem belongs to. If a subsystem belongs to set C,

but its switching detection is perfect, transfer this

subsystem from set C to set S.

3. Compute the value of n0ij for all i 2 c and j ¼ 1; . . .;mi.

n0ij demonstrating the maximum level where the

standby redundancy still has a higher reliability than

the active one.

n0ij ¼ sup nij;
�

expð�ki;zi kitÞ þ qiðtÞ expð�ki;zi kitÞ

�
Xni�ki

l¼0

ðki;szi kitÞ
l

l!

[
Xni

l¼ki

ni

l

� �
ðexpð�ki;zi tÞÞ

lð1� expð�ki;zi tÞÞ
ni�l

4. Compute aijp, bijp, and cijp as problem parameters,

aijp ¼ cijp for 1� i� s; 1� j�mi; 1� p� nmax;i

bijp ¼ wijp for 1� i� s; 1� j�mi; 1� p� nmax;i

for i 2 A

cijp

�kijkit p ¼ ki

ln
Pni
l¼ki

ni
l

� �
exp �kijt
� �� �l

1� exp kijt
� �� �ni�l

 !
kip� nmax;i

8
><

>:

for i 2 S

cijp

�kijkit p = ki

�kijkit þ ln
Pni�ki

l¼0

kijkit
� �l

l

 !
ki \p� nmax;i

8
><

>:

for i 2 C

cijp ¼

�kijkit p = ki

�kijkit þ ln
Pni�ki

l¼0

kijkit
� �l

l!

 !
ki \p� n0ij

ln
Pni

l¼ki

ni

l

 !
exp �kijt
� �� �l

1� exp kijt
� �� �ni�l

 !
n0ij \p� nmax;i

8
>>>>>><

>>>>>>:

5. ProblemP2 is the linear form of problemP1 and belongs

to the zero–one integer programming problems. The

following problem can be solved by any convenient

branch-and-bound or cutting plane algorithm.

Problem P2

max
Xs

i¼1

Xmi

j¼1

Xnmax;i

p¼k

cijpyijp

s.t.

Xs

i¼1

Xmi

j¼1

Xnmax;i

p¼k

aijpyijp � c

Xs

i¼1

Xmi

j¼1

Xnmax;i

p¼k

bijpyijp �w

Xmi

j¼1

Xnmax;i

p¼k

yijp ¼ 1

yijp 2 f0; 1g:
0.98

0.982
0.984
0.986
0.988
0.99

0.992
0.994
0.996
0.998

1

3 4 5 6 7 8 9 10

Ac�ve

Standby

Fig. 2 Comparison of active and standby redundancies
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Obtain the optimal solution of the above model. The

results show that S numbers (subsystem index) of variable

yijp are equal to one in the optimal solution and that the

remainder is equal to zero. Therefore, the system structure

will be as follows:

for yijp ¼ 1;

if i 2 A; p numbers of component j will place in

subsystem i with active redundancy

if i 2 S; p numbers of component j will place in

subsystem i with standby redundancy

if i 2 N and p� n0ij; p numbers of component j will

place in subsystem i with standby redundancy

if i 2 N and p[ n0ij; p numbers of component j will

place in subsystem i with active redundancy:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

It should be noted that in a k-out-of-n subsystem with

p components in parallel and a cold-standby strategy, there

are ki active components in the active state and p - ki
components in the cold-standby state.

Using this solution method for a large-scale problem

will increase the number of variables to a too large set, so

that the exact method would not be useful in this situation

and it is hard to obtain optimal solution. It may be neces-

sary to use other approaches for very large problems.

Therefore, in addition to the existing solution, a genetic

algorithm has been used to solve this model in the

numerical example section. First, the structure of an

appropriate genetic algorithm for this model is described in

the following section.

Genetic algorithm implementation

Genetic algorithm (GA) is a well-known stochastic search

method and belongs to the larger class of evolutionary

algorithms (EA) which solve optimization problems using

techniques inspired by natural selection in biological evo-

lution. It was first popularized by Holland. It has success-

fully been applied to solve different system reliability

optimization problems. The GA is described by the fol-

lowing features:

1. Solutions encoding

2. Generation of an initial population

3. Selection of parent solutions for breeding

4. Crossover operator

5. Mutation operator

6. Combine the offspring and former population and

culling of the best solutions

7. Repeat steps 3 through 6 until termination criteria is

satisfied.

Solution encoding

For this problem, each possible solution is a collection of

redundancy strategies, type of selected components, and

number of components in parallel for each subsystem. The

solution encoding (chromosome) is presented as a

3 9 s matrix, where s denotes the number of subsystems.

The first, second, and third rows of this matrix represent the

number of components, type of selected component, and

the selected redundancy strategy for the subsystems,

respectively. Figure 3 presents an example of encoding

solution for this problem with s = 14. This figure demon-

strates a solution, in which the first subsystem (s = 1) uses

active redundancy with two components of the second type

in parallel, while the last subsystem uses standby redun-

dancy strategy with three components of the fourth type in

parallel.

Initial population

At first, the minimum appreciate population size should be

selected in accordance to problem size. For a given pop-

ulation size (p), the initial population is generated by

selecting p chromosomes randomly. To produce each

solution of the current population, s integers between ki and

nmax were randomly selected to represent the number of

components in parallel (ni) for each subsystem. Types of

components for each subsystem were randomly selected

from among the mi available components. Then, redun-

dancy strategy (active or standby) is selected for each

subsystem.

Crossover

Parents are selected from existing population at random in

each iteration, then the proposed crossover operator is

applied and two offspring will be generated from each two

selected parents. Four crossover operators are applied to

generate offspring from parents, namely, single-point

crossover, double-point crossover, max–min crossover, and

uniform crossover. In the double-point crossover, two

points along the parent chromosomes are selected ran-

domly, all the genes between the two points are swapped

between the parent chromosomes, and then, two new

number of components 2 3 2 4 1 2 2 4 3 4 3 1 2 3
type of component 2 3 3 1 1 1 2 1 2 3 1 1 2 4

redundancy strategy

⎤⎡
⎥⎢
⎥⎢
⎥⎢ ⎦⎣A S S S S S A S S S S S S S

Fig. 3 Chromosome representation (solution encoding)
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offspring are produced (Fig. 4). In the max–min crossover,

the subsystems with the highest and lowest reliabilities of

parents are specified and all the genes of each selected

subsystem are exchanged with genes of the same subsys-

tem in the other parent (Fig. 5). The uniform crossover

operator is a powerful crossover, because it enables to

random recombination of different genes in parents. So, by

considering mixing ratio of 0.5, offspring genes are

selected from the first or from the second parent randomly.

Mutation

After the crossover operation, mutation is performed to

maintain the diversity of solution space and to avoid get-

ting stuck at a local optimum. Two mutation operators are

employed, namely, simple mutation and max–min muta-

tion. In the simple mutation with rate of pM, for each

candidate solution, a random value is selected for each

gene and the gene value is altered if the random value is

smaller than the mutation rate. The max–min mutation

operator was developed by Tavakkoli-Moghaddam et al.

(2008). In a system with several subsystems, the subsystem

with the minimum reliability has a bad effect in reliability

of overall system. Therefore, max–min mutation operator

selects subsystems with the highest reliability and the

lowest reliability among the all subsystems and then

mutates the gene values of each selected subsystem ran-

domly. A typical max–min mutation is shown in Fig. 6.

Fitness function

To define the fitness function, a penalty approach is used

for the proposed genetic algorithm to penalize infeasible

solutions and to reduce their fitness values in proportion to

their degrees of constraint violation. In other words, a value

proportional to the constraints violation is added to the

objective function as a dynamic penalty function, which

results in adding a relatively large amount of penalty to the

objective functions, if one solution violates a constraint.

This penalty provides the feasibility of the final solution

while keeping the efficient search through the infeasible

region. It is important to search through the infeasible

space of the problem, because it leads to reach appropriate

diversity for the proposed GA and good feasible solutions

can most efficiently be reached by breeding between a

feasible and an infeasible solution.

Stopping criteria

The termination criterion for the proposed GA is a prese-

lected number of generations.

Illustrative example

The example employed in this study is adopted from the

example provided by Fyffe et al. (1968). The system

consists of 14 subsystems with (t = 100) for mission time,

(C = 130) for system cost constraint, (W = 170) for sys-

tem weight constraint, (nmax = 6) for maximum number of

allowed components in each subsystem, and three or four

component choices for each subsystem. Our specific

example is, however, different from Fyffe’s in a number of

ways, namely, the redundancy strategy (active or standby)

is considered to be selected for each subsystem and the

exponential distribution is chosen for time-to-failure of

components. Failure detection for the standby redundancy

follows scenario 1 and the reliability of a switching (at

100 h) is 0.99 for each subsystem. ki = 1 was considered

in the original example by Fyffe et al. (1968), whereas its

values in the present example are randomly selected for

each subsystem. It should be emphasized that the results

are highly dependent on ki values; so the results would be

fundamentally different as a result of changes in ki. In

addition, it has been assumed that all the subsystems per-

tain to set C. The data are presented in Table 1.

Exact solution

Initially, exact solution methodology is used to solve the

example. To find the optimal solution, the model can be

solved by any standard algorithm for zero–one integer

number of components 2 3 2 4 1 2 2 4 3 4 3 1 2 3 2 3 2 3 2 2 2 2 3 4 3 3 2 3
type of component 2 3 3 1 1 1 2 1 2 3 1 1 2 4 2 3 3 3 1 2 1 3 2 3 1 2 2 4

redundancy strategy

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

↑ ↑

A S S S S S A S S S S S S S A S S S A A A S S S S S S S

number of components 3 2 2 3 2 2 2 2 3 3 3 1 2 4
type of component 2 2 1 3 1 2 1 3 3 4

redundancy strategy

↑ ↑

1 2 2 4 1 2 2 4 3 3 3 1 2 4
3 2 2 3 1 2 1 1 1 1 2 1 3 4 3 2 2 3

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

↑ ↑ ↑ ↑

S A A S A A A S A S A S A A S A A S S S A S A S A S A A

Fig. 4 Double-point crossover operator
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programming. The results are presented in Table 2. The

optimal solution yields reliability equal to 0.4505 for the

system. This solution has also been compared with those

for two other problems. In the first problem, only the active

redundancy is considered. In the second problem, redun-

dancy strategy (i.e., active or standby) is predetermined for

each subsystem. This problem is in accordance with the

example solved in Coit and Liu (2000), but the exponential

distribution is used instead of Erlang distribution for time-

to-failure of components. The exponential distribution

parameters are chosen, so that the components have the

same reliability as in the original example (for t = 100)

and our answer is quite equal to the result obtained in Coit

and Liu (2000). The numerical results indicate that the

choice of strategies led to a higher reliability compared

with the other approaches.

The performance of the proposed approach is evaluated

by implementing on 33 test problems provided by Tavak-

koli-Moghaddam et al. (2008). In this case, the value of

cost constraint is fixed (130), while the weight constraint is

varied from 159 to 191. Table 3 presents a comparison

between the best results obtained by solving 33 problems in

this paper and that reported in Coit and Liu (2000). In

Table 3, as the weight constraint gradually increases, the

optimal solution (best reliability) improves. Furthermore,

maximum possible improvement (MPI) index is also used

to measure the significance of the improvements made

using the choice of strategies as compared with the

number of components 2 3 2 4 1 2 2 4 3 4 3 1 2 3 2 3 2 4 1 2 2 4 3 4 3 3 2 3
type of component 2 3 3 1 1 1 2 1 2 3 1 1 2 4 2 3 3 1 1 1 2 1 2 3 2 2 2 4

redundancy strategy

⎤⎡ ⎤⎡
⎥⎢ ⎥⎢⇒⎥⎢ ⎥⎢
⎥⎢ ⎥⎢⎦⎣ ⎦⎣

↑↑

A S S S S S A S S S S S S S A S S S S S A S S S S S S S

max min
number of components 3 2 2 3 2 2 2 2 3 3 3 1 2 4 3 2 2 3 2 2 2 2 3 3 3 1 2 4

type of component 2 2 1 3 1 2 1 3 3 4 3 2 2 3 1 2 1
redundancy strategy

↑↑

⎤⎡
⎥⎢ ⇒⎥⎢
⎥⎢ ⎦⎣S A A S A A A S A S A S A A

3 1 2 1 3 3 4 3 2 2 3

m ax min

⎤⎡
⎥⎢
⎥⎢
⎥⎢ ⎦⎣

↑ ↑ ↑ ↑

S A A S A A A S A S A S A A

Fig. 5 Max–min crossover operator

number of components 2 3 2 4 1 2 2 4 3 4 3 1 2 3 3 3 2 4 1 2 2 4 3 4 3 1 2 3
type of component 2 3 3 1 1 1 2 1 2 3 1 1 2 4 2 3 3 1 1 1 2 1 2 3 2 1 2 4

redundancy strategy

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

↑↑

A S S S S S A S S S S S S S S S S S S S A S S S S S S S

max min
↑↑

Fig. 6 Max–min mutation operator

Table 1 Component data for

the illustrative example
i ki Choice 1 (j = 1) Choice 2 (j = 2) Choice 3 (j = 3) Choice 4 (j = 4)

kij cij wij kij cij wij kij cij wij kij cij wij

1 1 0.001054 1 3 0.000726 1 4 0.000943 2 2 0.000513 2 5

2 2 0.000513 2 8 0.000619 1 10 0.000726 1 9 – – –

3 1 0.001625 2 7 0.001054 3 5 0.001393 1 6 0.000834 4 4

4 2 0.001863 3 5 0.001393 4 6 0.001625 5 4 – – –

5 1 0.000619 2 4 0.000726 2 3 0.000513 3 5 – – –

6 2 0.000101 3 5 0.000202 3 4 0.000305 2 5 0.000408 2 4

7 1 0.000943 4 7 0.000834 4 8 0.000619 5 9 – – –

8 2 0.002107 3 4 0.001054 5 7 0.000943 6 6 – – –

9 3 0.000305 2 8 0.000101 3 9 0.000408 4 7 0.000943 3 8

10 3 0.001863 4 9 0.001625 4 5 0.001054 5 6 – – –

11 3 0.000619 3 5 0.000513 4 6 0.000408 5 6 – – –

12 1 0.002357 2 4 0.001985 3 5 0.001625 4 6 0.001054 5 7

13 2 0.000202 2 5 0.000101 3 5 0.000305 2 6 – – –

14 3 0.001054 4 6 0.000834 4 7 0.000513 5 6 0.000101 6 9
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previous best-known strategies. This index, which has been

used in many previous studies, including Yeh and Hsieh

(2011), Wu et al. (2011) and Abouei Ardakan and Zeinal

Hamadani (2014a), is given by:

MPIð%Þ ¼ ½RsðNewApproachÞ � RsðOtherÞ�=½1
� RsðOtherÞ�: ð7Þ

Here, Rs(NewApproach) represents the best system

reliability obtained by the proposed approach and Rs(-

Other) represents the best system reliability obtained by

any other method reported in the literature. Table 3 indi-

cates that the choice of strategies used for the redundant

components led to the improvements in the reliability

levels of all the 33 benchmark problems compared to

method which considered predetermined strategies.

Therefore, this study provides better computational results

than Coit and Liu (2000). Figure 7 presents the MPI index

in all test problems.

Genetic algorithm

From the 33 test problems, seven problems are selected and

the GA with penalty function which is discussed in ‘‘Ge-

netic algorithm implementation’’ section is implemented

on them. Because of the stochastic nature of GA, ten runs

are performed for each problem and each run is terminated

after 100 generations. The best and the worst solution

amongst them are reported in Table 4. In all problems

which are shown in Table 4, maximum reliability produced

by the proposed GA is the same as optimal solution

obtained in the previous section and it shows the good

performance of our GA approach. In the primary instances

with lower reliability, the improvement is small, but in the

next instances, the improvement becomes larger. However,

in high-reliability applications, even very small improve-

ment in the reliability is often difficult to obtain. In all

problems, we obtain system reliability higher than the

previously studies.

Conclusion

This paper investigated the redundancy allocation problem

for a k-out-of-n system with a choice of redundancy strate-

gies. In contrast to the existing approaches that often con-

sider a predetermined strategy for each subsystem, we

considered both active and standby strategies and developed

a model to select the best strategy for each subsystem. The

choice of redundancy strategies is more realistic and will be

more successful for implementing. To solve the proposed

model, we developed an exact method to obtain the optimal

solution of the problem. The main advantage of this

methodology is that a complex non-linear problem is

reduced to an equivalent simple problem in the form of an

integer-linear programming. Furthermore, a modified ver-

sion of GA is developed to solve the problem is large size or

other tough situation. To evaluate the efficiency of the

proposed strategy, a well-known benchmark problem was

Table 2 Example results

i Choice of strategies (this paper) Mixed of strategies (Coit and Liu 2000) Active strategy

zi ni Redundancy zi ni Redundancy zi ni

1 3 2 Standby 3 2 Active 3 2

2 1 2 Active 1 2 Active 1 2

3 4 1 Active 4 1 Active 4 1

4 3 3 Standby 3 3 Active 3 3

5 2 1 Active 2 1 Active 2 1

6 2 2 Active 2 2 Active 2 2

7 2 1 Active 2 1 Active 2 1

8 1 3 Standby 1 3 Standby 1 3

9 3 3 Active 3 3 Standby 3 3

10 2 4 Standby 2 4 Standby 2 4

11 1 4 Standby 1 4 Standby 1 4

12 1 2 Standby 1 2 Standby 1 2

13 2 2 Active 2 2 Standby 2 2

14 3 4 Standby 3 4 Standby 3 4

System reliability 0.4505* 0.4417 0.4105

System cost 118 118 118

System weight 170 170 170

* The best reliability value

J Ind Eng Int (2017) 13:81–92 89

123



Table 3 Computational results

between the proposed approach

and Coit and Liu (2000) for the

33 test problems

Problem Weight constraint This paper (reliability) Coit and Liu (2000) (reliability) MPI

1 159 0.3302 0.3238 0.9464

2 160 0.3374 0.3308 0.9862

3 161 0.3537 0.3479 0.8894

4 162 0.3576 0.3517 0.9100

5 163 0.3867 0.3792 1.2081

6 164 0.3910 0.3833 1.2485

7 165 0.3995 0.3917 1.2822

8 166 0.4145 0.4057 1.4807

9 167 0.4190 0.4102 1.4920

10 168 0.4282 0.4191 1.5665

11 169 0.4456 0.4369 1.5450

12 170 0.4505 0.4417 1.5762

13 171 0.4603 0.4513 1.6402

14 172 0.4776 0.4675 1.8967

15 173 0.4829 0.4726 1.9529

16 174 0.4934 0.4829 2.0305

17 175 0.4983 0.4874 2.1264

18 176 0.5170 0.5049 2.4439

19 177 0.5227 0.5105 2.4923

20 178 0.5341 0.5216 2.6128

21 179 0.5355 0.5242 2.3749

22 180 0.5491 0.5362 2.7813

23 181 0.5580 0.5450 2.8571

24 182 0.5672 0.5539 2.9813

25 183 0.5797 0.5661 3.1343

26 184 0.5861 0.5723 3.2265

27 185 0.5988 0.5848 3.3718

28 186 0.6021 0.5880 3.4223

29 187 0.6244 0.5976 6.6600

30 188 0.6346 0.6073 6.9518

31 189 0.6450 0.6173 7.2380

32 190 0.6476 0.6197 7.3363

33 191 0.6498 0.6346 7.7996

Fig. 7 Maximum possible

improvement (MPI) index

values
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considered. The results demonstrate considerable improve-

ments in the reliability using the new approach. For future

studies, one can focus on developing a bi-objective model to

optimize this problem. In this model, one redundancy

strategy is used for each subsystem. Another interesting

extension may be the case where both active and standby

strategies are simultaneously used in the subsystems. Fur-

thermore, because RAPs belong to NP-hard problems for

which it is not easy to obtain optimal solutions, researchers

can test other meta-heuristic approaches for this problem.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
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