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Abstract In most modern manufacturing systems, prod-

ucts are often the output of some multistage processes. In

these processes, the stages are dependent on each other,

where the output quality of each stage depends also on the

output quality of the previous stages. This property is

called the cascade property. Although there are many

studies in multistage process monitoring, there are fewer

works on profile monitoring in multistage processes,

especially on the variability monitoring of a multistage

profile in Phase-I for which no research is found in the

literature. In this paper, a new methodology is proposed to

monitor the standard deviation involved in a simple linear

profile designed in Phase I to monitor multistage processes

with the cascade property. To this aim, an autoregressive

correlation model between the stages is considered first.

Then, the effect of the cascade property on the perfor-

mances of three types of T2 control charts in Phase I with

shifts in standard deviation is investigated. As we show that

this effect is significant, a U statistic is next used to remove

the cascade effect, based on which the investigated control

charts are modified. Simulation studies reveal good per-

formances of the modified control charts.

Keywords Multistage processes � Cascade property �
Profile monitoring � Phase I

Introduction and literature review

In many production processes, the quality of a product is

better monitored by a linear relationship between the

quality characteristic and one or more explanatory vari-

ables. This relationship is referred to as a profile. Mestek

et al. (1994), Stover and Brill (1998), Kang and Albin

(2000), Kim et al. (2003), and Mahmoud and Woodall

(2004) are just a few researchers who worked on profile

monitoring. In addition, Niaki et al. (2007), Saghaei et al.

(2009), Zhang et al. (2009), Zhu and Lin (2010), Noor-

ossana et al. (2010), Amiri et al. (2011) and Narvand et al.

(2013) are some researchers who worked on Phase-II

profile monitoring. Besides, Du et al. (2015a, b) investi-

gated the cascade effects in multistage processes.

As the focus in this paper is Phase-I monitoring, some

recent and relevant works are reviewed here. Mahmoud

et al. (2007) introduced a change-point method for linear

profiles in Phase I. Kazemzadeh et al. (2008) applied three

methods, namely a change point, F statistics and T2, to

monitor polynomial profiles in Phase I. Other studies in

Phase I include Jensen et al. (2008), Noorossana et al.

(2009), Zou et al. (2007) and Khedmati and Niaki (2015a).

In some applications, it is necessary to monitor multi-

stage processes. For example, there are three dependent

stages in a production process of Nylon Yarn factory

schematically depicted in Fig. 1. A textile industry is
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another three-stage process involving spinning, weaving

and finishing. In this type of industry, there are two suc-

cessive stages in the weaving process. In the first stage, the

strength of the yarn is increased and checked. In the next

stage, the strength of the textile in different parts is con-

sidered as a profile that is affected by the strength of the

yarn (see Fig. 2).

In multistage processes, the stages are generally corre-

lated and the use of profile monitoring without paying

attention to the relation between the stages causes moni-

toring errors. Phase-II monitoring of linear profiles in

multistage processes has been investigated by authors

including Esmaeeli and Sadeghieh (2013) and Eghbali

Ghahyazi et al. (2014). Soleimani et al. (2009) studied the

presence of within-profile autocorrelation in simple profile

monitoring. Moreover, Atashgar et al. (2014) investigated

the Phase-I monitoring problem of multistage processes

using the T2 scheme of Stover and Brill (1998), the T2

control chart of Kang and Albin (2000), and the T2 chart of

Williams et al. (2007). They studied the effect of the cas-

cade property on the test power factor by changing the

slope and the intercept parameters. Moreover, Atashgar

et al. (2015) investigated the effect of the cascade property

when the T2 chart of Williams et al. (2007) was used for

Phase-I monitoring. In this study, the shifts were imposed

on the slope and intercept of a simple linear profile. In

another work, Khedmati and Niaki (2015b) considered

Phase-I profile monitoring of general linear profiles in

multistage processes. In addition, Khedmati and Niaki

(2016) focused on profile monitoring of multistage pro-

cesses using a EWMA control chart. Recently, Kalaei et al.

(2016) proposed a methodology to first remove the effect

of the cascade property in multistage processes. Then, they

developed a control chart for Phase-I monitoring of simple

linear profiles.

The review of the relevant studies indicates that Phase-I

variability monitoring of profiles in multistage processes

involving the cascade property has not been investigated

yet. As the performance of a profile monitoring scheme is

highly dependent on the standard deviation of the error

term in a regression model being used, this paper focuses

on Phase-I monitoring of the standard deviation of a simple

linear regression profile in a multistage process with cas-

cade property. To this aim, based on Du and Zhang (2016)

who discussed the joint monitoring of input and output of

systems using autoregressive disturbances of arbitrary

orders, a two-stage process is first modeled in this paper by

an autoregressive model of order one, i.e., AR(1). Then, the

shifts are applied on the standard deviation of a simple

linear profile. Similar to Atashgar et al. (2014), three

methods in Phase-I profile monitoring including the T2

control chart proposed by Stover and Brill (1998), the T2

scheme of Kang and Albin (2000), and the T2 chart of

Williams et al. (2007) are employed to investigate the

effect of the cascade property. Eventually a new control

chart based on the U statistic is proposed for Phase-I

monitoring of the standard deviation in multistage pro-

cesses. This statistic has been shown to be very effective to

remove the effect of the cascade property (Kalaei et al.

2016).

The structure of the remainder of this paper is as fol-

lows. In Sect. 2, the problem is defined, the assumptions

are made and the two-stage process is modeled. The

investigation of the effect of the cascade property on the

test power when the standard deviation is changed is per-

formed in Sect. 3. The new control chart based on the

U statistic is proposed in Sect. 4. Section 5 is about the

performance evaluation of the new methodology. Section 6

as a final part is dedicated to the remarkable conclusions.

Problem definition, assumptions, and modeling

As mentioned above, quality characteristics of a multistage

process in any stage are affected not only by the perfor-

mance of that stage but also by the ones of the previous

stages, implying the so-called cascade property. Ignoring

this property and assuming independent stages leads into

large Type-I errors.

To take into account the cascade property, a multistage

process can be expressed by the following equations:

yik1 ¼ A0 þ A1xi þ eik1 i ¼ 1; 2; . . .; n ð1Þ
yiks ¼ ;yikðs�1Þ þ a1s þ a2sxi þ eiks; s ¼ 2; 3; . . .; S; ð2Þ

where for the kth sample, ðxi; yik1Þ and ðxi; yiksÞ are the ith

observation for the first and the sth stages, respectively. In

addition, A0 and A1 are the intercept and the slope of the

first simple linear profile, respectively, and xi is an inde-

pendent variable with constant values such as 0, 0.2, 0.4,

0.6, 0.8, 1, 1.2, 1.4, 1.6 and 1.8 (Mahmoud and Woodall

2004). Moreover, a1s and a2s are the special effects of stage

Strength 
and 

elongation

Denier 
yarn

Thick yarn

Fig. 1 A three-stage process for Nylon yarn production

Strength of 
the textile

Strength of 
the yarn

Fig. 2 A two-stage process of weaving
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s on the intercept and slope, respectively, ; is the auto-

correlation parameter, and eik1 and eiks are the random error

terms with normal distribution having mean 0 and vari-

ances r21 and r
2
s for the first and the sth stages, respectively.

For simplicity r21 ¼ r2s ¼ r2 is considered.

As a Phase-I profile monitoring of multistage processes

is considered in this paper, it is necessary to estimate the

process parameters. Due to the independency of the first

stage, A0 and A1. are estimated, respectively, by a0k1 and

a1k1 using the least squares method. Then, the estimates of

the intercept and the slope in the second stage, i.e., a0k2 and

a1k2, are obtained based on Eqs. (1) and (2) as

a0k2 ¼ ;a0k1 þ a1 þ e00k1 ð3Þ

a1k2 ¼ ;a1k1 þ a2 þ e
0

k1; ð4Þ

where,

e00k1 ¼
Pn

i¼1 eik2
n

� �xe01 ð5Þ

and

e
0

k1 ¼
Pn

i¼1ðxi � �xÞeik2
sxx

ð6Þ

have a normal distribution with mean zero and variance

r2 1
n
þ �x2

sxx

� �
and r2

sxx
, respectively. This leads into the mean

and the variance of the estimator of the intercept in the

second stage as

Eða0k2Þ ¼ ;A0 þ a1 ð7Þ

Varða0k2Þ ¼ ð1þ ;2Þ:r2 1

n
þ �x2

sxx

� �

: ð8Þ

Moreover, the mean and the variance of the estimator of

the slope in the second stage are

Eða1k2Þ ¼ ;A1 þ a2 ð9Þ

Var(a1k1Þ ¼ ð1þ ;2Þ r
2

sxx
: ð10Þ

Furthermore, the co-variance estimator is

Cov(a0k2; a1k2Þ ¼ �ð1þ ;2Þ �xr
2

sxx
: ð11Þ

Interested readers are referred to Eghbali Ghahyazi et al.

(2014) for more details on Eqs. (7)–(11).

Evaluating the cascade effect on the test power
of the control scheme

The effect of the cascade property on the out-of-control signal

detection of a monitoring chart is investigated in this section

by assessing the test power when the standard deviation T
a
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parameter is changed. Three control schemes are considered

here; the T2 chart of Kang and Albin (2000), the T2 scheme of

Stover and Brill (1998), and the T2 chart of Williams et al.

(2007). Table 1 contains the statistics used in these methods.

Suppose the two regression models shown in Eqs. (12)

and (13) have been defined for the first- and the second-

stage profiles in a two-stage process, respectively.

yik1 ¼ 3þ 2xi þ eik1 ð12Þ
yik2 ¼ ð3; þ a1Þ þ ð2; þ a2Þxi þ ;eik1 þ eik2: ð13Þ

Let xi = [0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8],

ð3; þ a1Þ ¼ 2, and ð2; þ a2Þ ¼ 1 (Eghbali Ghahyazi et al.

2012), where eik1 and eik2 follow the normal distribution

with mean zero and variance 1. Then, Table 2 and Figs. 3,

4 and 5 show the detection probability of the out-of-control

signal for the shifts in the standard deviation of the first-

stage profile from r to rk based on various values of the

autocorrelation parameter. The estimates are obtained

using 10,000 simulation runs, where a (type one error) is

assumed 0.01, and k ¼ 1:2; 1:4; 1:6; 1:8; 2:0; 2:2; 2:4; 2:6;

2:8; 3:0. In this analysis, the standard deviation of the

process is shifted in the first stage and the test power is

obtained for the second stage.

The figures clearly show that the test power has an

increasing trend in all methods and for all autocorrelation

coefficients. In other words, when the shift size in the

standard deviation of the first stage increases, the power of

detecting an out-of-control signal in the second stage

increases for all levels of ;. This increase occurs faster for

bigger values of ;, implying that for a given shift in the

standard deviation of the first stage, the cascade property

that is enhanced when ; increases leads into an undesired

higher Stage-2 detection power. The results in Table 1 as

well as in Figs. 3, 4 and 5 also show that the T2 of Knag

Table 2 The values of the test

power for the change in the

standard deviation from r to kr

k

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T2 of Kang and Albin

; ¼ 0 0.1709 0.1734 0.1776 0.1789 0.1786 0.1776 0.1771 0.1780 0.1784 0.1793

; ¼ 0:1 0.1717 0.1752 0.1817 0.1773 0.1785 0.1800 0.1774 0.1817 0.1825 0.1839

; ¼ 0:3 0.1764 0.1778 0.1831 0.1779 0.1819 0.1825 0.1868 0.1951 0.1978 0.2081

; ¼ 0:5 0.1723 0.1820 0.1808 0.1865 0.2028 0.2128 0.2405 0.2468 0.2625 0.2812

; = 0.7 0.1802 0.1886 0.1948 0.2110 0.2240 0.2568 0.2787 0.3132 0.3488 0.3741

; = 0.9 0.1800 0.1874 0.2102 0.2322 0.2600 0.2927 0.3366 0.3792 0.4077 0.4446

T2 of Stover and Brill

; = 0 0.1825 0.1823 0.1817 0.1848 0.1855 0.1952 0.1961 0.2027 0.2036 0.2045

; = 0.1 0.1971 0.1947 0.1887 0.1951 0.1852 0.1876 0.1898 0.1939 0.1991 0.2050

; = 0.3 0.1972 0.1925 0.1931 0.1942 0.1955 0.2006 0.2016 0.2045 0.2088 0.2152

; = 0.5 0.1933 0.1914 0.1979 0.2037 0.2191 0.2283 0.2343 0.2598 0.2797 0.3006

; = 0.7 0.1900 0.1997 0.2079 0.2200 0.2431 0.2715 0.3015 0.3341 0.3804 0.4137

; = 0.9 0.1910 0.2016 0.2164 0.2562 0.2798 0.3174 0.3652 0.3990 0.4530 0.5002

T2 of Williams

; = 0 0.2482 0.2495 0.2502 0.2518 0.2521 0.2508 0.2523 0.2553 0.2590 0.2626

; = 0.1 0.2615 0.2568 0.2602 0.2605 0.2637 0.2645 0.2663 0.2697 0.2755 0.2897

; = 0.3 0.2665 0.2636 0.2679 0.2718 0.2725 0.2775 0.2804 0.2916 0.2974 0.3020

; = 0.5 0.2604 0.2686 0.2750 0.2892 0.2952 0.3143 0.3281 0.3504 0.3744 0.3936

; = 0.7 0.2661 0.2689 0.2857 0.2999 0.3292 0.3533 0.3806 0.4142 0.4476 0.4811

; = 0.9 0.2667 0.2856 0.3162 0.3389 0.3678 0.3928 0.4347 0.4752 0.5192 0.5519
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Fig. 3 Test power of T2 of Kang and Albin (2000) chart under the

shifts in the standard deviation of Stage 1 from r to rk
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and Albin (2000) has the best performance, as the cascade

property has the least effect on its test power.

The U method to remove the cascade property

As mentioned, the cascade property of a multistage process

affects the test power of a control scheme to rise undesir-

ably. Thus, removing this property may lead into a test

power that is a good indicative of the performance of a

stage, no matter what happened in its previous stage.

To eliminate or to reduce the cascade property, a control

plan is modified using the U statistic proposed by Hauck

et al. (1999). For the jth profile in the first stage of a

multistage process, in this plan we have

Uj1 ¼ A1: ð14Þ

In addition for stage s we have:

Ujs ¼ As �
X

sðs�1Þ

X�1

ðs�1Þðs�1Þ
Aðs�1Þ; ð15Þ

where As�1 and As are the vector estimators of the intercept

and slope parameters in stage s� 1 and s, respectively,
P

sðs�1Þ is the covariance matrix of the parameters between

stage s and stage s� 1, and
P

ðs�1Þðs�1Þ is variance–co-

variance matrix of the estimators at stage s� 1 (see Hauck

et al. 1999 for more details).

The mean vector and the covariance matrix for the U

transformation in the first and sth stage are obtained,

respectively, as follows:

lUj1
¼ lA1

ð16Þ

RUj1
¼ RA1

¼ R11 ð17Þ

lUjs
¼ lAs

�
X

sðs�1Þ

X�1

ðs�1Þðs�1Þ
lAðs�1Þ

ð18Þ

RUjs
¼

X

ss

�
X

sðs�1Þ

X�1

ðs�1Þðs�1Þ

X

ðs�1Þs
: ð19Þ

Then, the U-transformation when employed for the T2 of

Kang and Albin (2000) scheme for example, the statistic

becomes:

T2
Ujs

¼ ðUjs � lUs
Þ
X�1

Us

ðUjs � lUs
ÞT: ð20Þ

The upper control limit for this statistic in each stage is

v2a;2. (Mahmoud and Woodall 2004). Although similar

statistics can be obtained for the other two schemes as well,

since the aim is to investigate the performance of the

U statistic, they are not discussed in this paper.
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Fig. 4 Test power of T2 of Stover & Brill (1998) scheme under the

shifts in the standard deviation of Stage 1 from r to rk
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Fig. 5 Test power of T2 of Williams et al. (2007) chart under the

shifts in the standard deviation of Stage 1 from r to rk

Table 3 Test power of the U

method under the shifts in

standard deviation of Stage 1

from r to rk

k 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

; = 0 0.1353 0.1335 0.1327 0.1323 0.1318 0.1324 0.1333 0.1321 0.1312 0.1402

; = 0.1 0.1275 0.1326 0.1313 0.1351 0.1282 0.133 0.1327 0.1292 0.1327 0.1374

; = 0.3 0.1319 0.1356 0.1314 0.1265 0.1344 0.129 0.1325 0.1335 0.1336 0.1296

; = 0.5 0.1323 0.1304 0.1238 0.1274 0.1338 0.1293 0.1296 0.1308 0.1352 0.133

; = 0.7 0.1315 0.1312 0.1325 0.1353 0.1312 0.1312 0.1342 0.127 0.129 0.1353

; = 0.9 0.1348 0.127 0.127 0.1274 0.1293 0.1341 0.1296 0.1349 0.129 0.1355
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Performance evaluation of U method

In this section, the performance of the U method for Phase-

I monitoring of simple linear profiles when used for two-

stage process is investigated. Kalaei et al. (2016) investi-

gated similar performances when slope and intercept

parameters were subject to changes. In this paper, however,

the performance of the U method is investigated for the

shift in the standard deviation in two cases:

1. Different shifts in the standard deviation involved in

the first stage and

2. Different shifts in the standard deviation involved in

the first and in the second stages of the process,

simultaneously.

Table 3 and Fig. 6 show the probability of detecting an

out-of-control situation in the second stage of the process

for a shift on the standard deviation of the first stage from r

to rk when the U method is employed (Case 1 above). The

estimates are obtained based on 10,000 simulation runs,

assuming a ¼ 0:01 and k ¼ 1:2; 1:4; 1:6; 1:8; 2:0; 2:2;

2:4; 2:6; 2:8; and 3:0.

As seen in Fig. 6, when the U method is applied the test

power values are not influenced by the value of ; and are

distributed randomly. It means that the performance of the

U method for different ; values is unchanged. On the other

hand, Fig. 6 shows that the values of the test power are

between 0.12 and 0.14 for different ; values. It indicates

that the proposed approach has the robust property to

monitor a simple linear profile in a multistage process.

A similar investigation is performed on the performance

of the U methods in Case 2, when simultaneous shifts are

imposed on the standard deviations of both stages. Table 4

contains the probabilities of detecting an out-of-control

condition when the standard deviations of the first and the

second stage of the process are changed from r1 to k1r1

Fig. 6 Test power of the U method under the shifts in standard deviation of Stage 1 from r to rk
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Table 4 Test powers of the U method under the shifts in standard deviations of the first and the second stages of the process from r1. to k1r1 and
from r2 to k2r2, respectively

k1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

k1 ¼ 1:2 ; =0.1 0.4515 0.7809 0.9386 0.9848 0.9967 0.9997 1 1 1 1

; = 0.3 0.4526 0.7799 0.9365 0.9845 0.9975 0.9996 0.9999 1 1 1

; = 0.5 0.4448 0.7666 0.9336 0.9843 0.9964 0.9994 1 1 1 1

; = 0.7 0.4522 0.7739 0.9348 0.9865 0.9969 0.9996 0.9997 0.9999 1 1

; = 0.9 0.4485 0.7795 0.9393 0.9822 0.9966 0.9997 0.9999 0.9999 1 1

k1 ¼ 1:4 ; = 0.1 0.4566 0.7717 0.9386 0.9851 0.9984 0.9999 0.9999 1 1 1

; = 0.3 0.4505 0.7810 0.9369 0.9860 0.9968 0.9995 1 1 1 1

; = 0.5 0.4579 0.7785 0.9346 0.9876 0.9975 0.9996 0.9998 1 1 1

; = 0.7 0.4566 0.7755 0.9355 0.9859 0.9971 0.9993 1 1 1 1

; = 0.9 0.4533 0.7786 0.9381 0.9865 0.9966 0.9993 0.9999 1 1 1

k1 ¼ 1:6 ; = 0.1 0.4387 0.7704 0.9367 0.9868 0.9964 0.9994 1 1 1 1

; = 0.3 0.4606 0.7783 0.9338 0.9856 0.9969 0.9994 1 1 1 1

; = 0.5 0.4474 0.7781 0.9359 0.9877 0.9967 0.9996 0.9999 1 1 1

; = 0.7 0.4475 0.7782 0.9353 0.985 0.9983 0.9992 1 1 1 1

; = 0.9 0.4499 0.7702 0.9344 0.984 0.9973 0.9997 0.9999 1 1 1

k1 ¼ 1:8 ; = 0.1 0.4566 0.7716 0.9326 0.9838 0.9975 0.9997 1 1 1 1

; = 0.3 0.4589 0.7779 0.9385 0.9844 0.9978 0.9994 0.9999 1 1 1

; = 0.5 0.4512 0.7823 0.9500 0.9850 0.9977 0.9997 0.9999 1 1 1

; = 0.7 0.4593 0.7806 0.9404 0.9866 0.9978 0.9997 0.9999 1 1 1

; = 0.9 0.4496 0.7747 0.9368 0.9975 0.9998 0.9999 1 1 1 1

k1 ¼ 2 ; = 0.1 0.4570 0.7711 0.9328 0.986 0.9976 0.9996 0.9999 0.9998 1 1

; = 0.3 0.4491 0.7727 0.9381 0.9848 0.9971 0.9999 0.9999 1 1 1

; = 0.5 0.4471 0.7657 0.9323 0.9851 0.9970 0.9993 1 1 1 1

; = 0.7 0.4544 0.7775 0.9352 0.9854 0.9971 0.9995 0.9999 1 1 1

; = 0.9 0.4538 0.7721 0.9347 0.9868 0.9964 0.9997 0.9997 1 1 1

k1 ¼ 2:2 ; = 0.1 0.4526 0.7803 0.9377 0.9836 0.9977 0.9992 0.9999 1 1 1

; = 0.3 0.4573 0.7781 0.9395 0.9833 0.9966 0.9994 0.9999 1 1 1

; = 0.5 0.4568 0.7748 0.9357 0.9849 0.9975 0.9996 1 1 1 1

; = 0.7 0.4598 0.7754 0.9304 0.9861 0.9975 0.9997 1 1 1 1

; = 0.9 0.4493 0.7811 0.9375 0.9868 0.9964 0.9996 0.9999 1 1 1

k1 ¼ 2:4 ; = 0.1 0.4600 0.7706 0.9363 0.9869 0.9977 0.9994 0.9998 0.9999 1 1

; = 0.3 0.4515 0.7794 0.9339 0.9849 0.9973 0.9993 0.9999 1 1 1

; = 0.5 0.4495 0.7789 0.9324 0.9817 0.9974 0.9997 0.9998 1 1 1

; = 0.7 0.4533 0.7731 0.9347 0.9852 0.9972 0.9991 1 1 1 1

; = 0.9 0.4610 0.7704 0.9408 0.9870 0.9976 0.9992 1 1 1 1

k1 ¼ 2:6 ; = 0.1 0.4611 0.778 0.9304 0.9816 0.9967 0.999 0.9998 0.9999 1 1

; = 0.3 0.4527 0.7745 0.9341 0.9852 0.9967 0.9994 0.9996 0.9999 1 1

; = 0.5 0.4528 0.7721 0.9320 0.9869 0.9978 0.9994 0.9998 1 1 1

; = 0.7 0.4553 0.7865 0.9343 0.9851 0.9973 0.9996 0.9999 1 1 1

; = 0.9 0.4410 0.7778 0.9381 0.9849 0.9973 0.9996 1 1 1 1

k1 ¼ 2:8 ; = 0.1 0.4536 0.7785 0.9351 0.9863 0.9973 0.9994 0.9999 1 1 1

; = 0.3 0.4523 0.7764 0.9378 0.9852 0.9967 0.9993 0.9999 1 1 1

; = 0.5 0.4521 0.7722 0.9392 0.9848 0.9963 0.9991 0.9997 1 1 1

; = 0.7 0.4442 0.7695 0.9321 0.9854 0.9968 0.9998 0.9999 1 1 1

; = 0.9 0.4579 0.7783 0.9329 0.9853 0.9955 0.9996 0.9997 1 1 1
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and from r2 to k2r2, respectively, where k1 ¼ k1 ¼
1:2; 1:4; 1:6; 1:8; 2:0; 2:2; 2:4; 2:6; 2:8; and 3:0. Again, the

estimates are obtained based on 10,000 simulation runs and

a ¼ 0:01. Figure 7 is a plot of the test power results when

the shift value of first stage is 1:2r1. The other plots for the
other values of k1 show a similar pattern.

As seen in Fig. 7, when simultaneous shifts of the

standard deviations are imposed in both stages, the values

of the test power are increased significantly between 0.4

and 1 (compared to the test powers in Case 1). This is due

to the fact that the shifts are also considered in the second

stage and the test powers are calculated in that stage as

well. In this case, as the magnitude of the standard devia-

tion shifts in the second stage of the process increases, the

U statistic is able to detect an out-of-control condition with

a higher probability as desired.

Table 4 continued

k1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

k1 ¼ 3 ; = 0.1 0.4518 0.7837 0.9396 0.9846 0.9976 0.9993 0.9996 0.9999 1 1

; = 0.3 0.4529 0.7807 0.9327 0.9847 0.9977 0.9991 1 1 1 1

; = 0.5 0.4630 0.7730 0.9336 0.9844 0.9972 0.9996 0.9999 1 1 1

; = 0.7 0.4496 0.7811 0.9354 0.9875 0.9971 0.9995 0.9998 1 1 1

; = 0.9 0.4467 0.7695 0.9302 0.9855 0.9980 0.9993 0.9999 1 1 1

Fig. 7 Test powers of the U method under the shifts in standard deviations of Stage 1 from r1 to k1r1 ðk1 ¼ 1:2Þ and Stage 2 from r2 to k2r2
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Conclusion

The cascade property involved in multistage processes

has a significant effect on the performances of the control

charts designed to monitor these processes. In this paper,

this effect was first investigated for three control schemes

proposed for Phase-I linear profile monitoring, namely T2

of Kang and Albin (2000), T2 of Stover and Brill (1998)

and T2 of Williams et al. (2007). Then, to remove or

reduce the cascade property, a method using the

U transformation was developed for Phase-I monitoring

of linear profiles in multistage processes. Two cases of

the shifts in the standard deviations of a two-stage pro-

cess were considered. The first case involved changes in

the standard deviation of the first stage and the second

case involved the changes in the standard deviations of

both the first and the second stages, simultaneously. Next,

the test powers of the developed method in detecting an

out-of-control condition of the second stage of the pro-

cess were investigated. Simulation studies showed a

proper performance of the proposed method in removing

the cascade property.

The use of a soft computing approach such as artificial

neural network and decision tree is recommended for

Phase-I monitoring of linear regression profiles in multi-

stage processes.
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