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Abstract Models that aim to optimize the design of supply

chain networks have gained more interest in the supply

chain literature. Mixed-integer linear programming and

discrete-event simulation are widely used for such an

optimization problem. We present a hybrid approach to

support decisions for supply chain network design using a

combination of analytical and discrete-event simulation

models. The proposed approach is based on iterative pro-

cedures until the difference between subsequent solutions

satisfies the pre-determined termination criteria. The

effectiveness of proposed approach is illustrated by an

example, which shows closer to optimal results with much

faster solving time than the results obtained from the

conventional simulation-based optimization model. The

efficacy of this proposed hybrid approach is promising and

can be applied as a powerful tool in designing a real supply

chain network. It also provides the possibility to model and

solve more realistic problems, which incorporate dyna-

mism and uncertainty.

Keywords Hybrid optimization � Supply chain network

design � MILP � Simulation-based optimization �
Uncertainty

Introduction

A supply chain is a network of participants (e.g., sup-

pliers, manufacturers, warehouses, distributors, and

retailers) who, through coordinated plans and activities,

develop products by converting raw materials into fin-

ished products (Chandra and Grabis 2007; Izadi and

Kimiagari 2014). While companies rush where they want

to compete in their industry’s value chain, they are

cooperating more and more in their business activities

with external participants. Whether to establish a new

supply chain or reconfigure an existing supply chain can

be one of the major decisions to be made. This problem is

a critical issue in achieving supply chain improvement as

it can guarantee the success of the entire network per-

formance (Tabrizi and Razmi 2013). Therefore, supply

chain optimizations are subject to a particularly compre-

hensive evaluation, which, in turn, requires utilization of a

variety of models and tools.

Supply chain optimization involves making decisions

for planning and design of production, storage locations,

flow of quantity among facilities, and transportation in the

chain, which are essential for retaining the competitive

edge of companies in a global economy (Mehrdad et al.

2015). These problems are often very large and complex

due to the large number of facilities of the supply chain,

such as the number of plants, warehouses, and retailers, and

due to complex interactions among these facilities, such as

the modes of transport, relocation of warehouses, and the

stochastic nature of demand, etc. (Nikolopoulou and Ier-

apetritou 2012; Tavakkoli-Moghaddam et al. 2013).

Moreover, analytical modeling somehow provides exact

and static information, which is uncertain for real-world

problems. The complexity of such problems causes huge

computational load and time, which is beyond the ability of
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pure analytical modeling. As a result, analytical models

often require many simplifying assumptions.

As computer technology and simulation software have

advanced, the cost of computer time has become much

cheaper, and simulation software has become more widely

available. Use of simulation models for complex systems

has become more feasible and popular. This simulation tool

is used to capture the behavior of all the entities involved,

their interactions, and the uncertainties associated with

these systems. The choice between simulation and analyt-

ical models now depends primarily on the nature of the

application, required accuracy, and availability of solution

procedures. Making more use of one or the other during the

various stages of problem solving can result in tremendous

cost savings. Banks et al. (2001) noted the advantages and

disadvantages of using analytical and/or simulation

models.

Hybrid analytical and simulation modeling is a suit-

able framework that can incorporate the uncertainties in the

stochastic supply chain network design problem. We com-

pare the proposed hybrid approach with the traditional ana-

lytical model and simulation-based optimization model to

understand their differences along with their advantages and

disadvantages in a practical decision making context by

presenting our findings with computational analysis. This

hybrid approach combines both analytical and simulation

modeling based on the development of independent mathe-

matical and simulation models of the supply chain network,

which are combined together for problem solving. The

coupling of the agent-based model built for simulating the

supply chain networkwith the optimization tool is developed

using an iterative process. To demonstrate this approach, a

profit maximization problem of the production–distribution-

storage of a supply chain network is used as a test example,

and the results are discussed. The rest of this paper is orga-

nized as follows. In Sect. ‘‘Literature review’’, a review of

related literature is provided. Section ‘‘Supply chain net-

work design’’ discusses the structure and operations of a

supply chain network. In Sect. ‘‘Hybrid analytical–simula-

tionmodeling approach’’, the proposed hybrid analytical and

simulation modeling approach is presented, while the cost

parameters used in the experiment are presented in Sect. ‘‘-

Cost parameters’’. Section ‘‘Results and discussion’’ dis-

cusses and compares the obtained results among

comparative methods. Finally, conclusions and directions

for future research are given in Sect. ‘‘Conclusions’’.

Literature review

Part of the planning process in Supply Chain Management

(SCM) aims at finding the best possible supply chain

configuration. These decisions are considered strategic

because of their long time horizon and are tackled with

facility location models. However, by considering certain

aspects of the supply chain environment, these models can

support the Supply Chain Network Design (SCND) phase

(Melo et al. 2009). Moreover, dynamic facility location

models, where the decisions are spread out over a long-

term planning horizon and the decision variables are time-

dependent, are more compatible for tracking the dynamics

of complex supply chains (Thanh et al. 2008; Babazadeh

et al. 2012). The supply chain optimization in this study is

perceived as determining which participants to include in

the supply chain, their size and location, and establishing

links among the participants. These problems are often

very large and complex due to the number of plants, modes

of transport, or relocation of warehouses and distribution

centers, stochastic nature of demands, etc. Due to the

complexities of a supply chain, very few analytical or

mathematical models exist with the simplified problems

limited by several assumptions (Ballou 2001; Beamon and

Fernandes 2004; Cochran and Uribe 2005).

The optimization of supply chains often deals with the

situation in which the interest is to find which of a large

number of sets of model specifications lead to optimal

output performance (April et al. 2003). Due to significant

interactions between planning and scheduling decision

levels, it is necessary to consider the simultaneous opti-

mization of the planning and scheduling decisions to

determine the global optimal solution. However, the com-

plexity of the integrated problem causes computational

load. The complexity has motivated the development of

simulation tools for supply chain management that can

capture the behavior of all the entities involved, their

interactions, and the uncertainties associated with these

systems. Simulation-based optimization is an emerging

field which integrates optimization methods into simulation

analysis. It is used for the evaluation of the objective value,

and no further structural information is used. Therefore, a

more detailed representation of complex supply chains is

achieved, allowing the solution of larger optimization

problems in acceptable time.

Most of today’s simulators include possibilities to do a

black-box parameter optimization of a simulation model.

Glover et al. (1999) presented the successful development

of OptQuest, an optimization tool box containing different

algorithms (mainly metaheuristics) designed to optimize

configuration decisions in simulation models. OptQuest

uses iterative heuristics (Kleijnen 2008), and it can be used

to utilize a combination of three meta-heuristics: Scatter

Search (SS), Tabu Search (TS), and Neural Networks (NN)

(Glover et al. 1999; Keskin et al. 2010; Abtahi and Bijari

2017). An example of successful application of scatter

search within OptQuest is reported by Bulut (2001), to

solve a multi-scenario optimization problem based on a
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large-scale linear programming problem. Cha-ume and

Chiadamrong (2012) examined the relationship between

inventory accuracy and financial performance using Opt-

Quest to maximize the profit of the whole chain under

various uncertainty conditions. Swisher et al. (2000) and Fu

(2002) stated in their papers that there is still a big gap

between optimization methods for simulation-based opti-

mization used in commercial software and methods avail-

able in the research literature. Simulation-based

optimization employs so-called metaheuristic methods,

which do not guarantee an optimal solution and could

provide poor results in the case of poor experimental

settings.

The usefulness of simulation tools when combined with

mathematical models has also been demonstrated with

hybrid modeling approaches (Lee and Kim 2000). A hybrid

analytical and simulation model is a mathematical model

that combines identifiable analytical and simulation mod-

els. An analytical model is a set of equations that charac-

terize a system or a problem entity, and a simulation model

is a dynamic or an operating model of a system or problem

entity that mimics the operating behavior of the system or

problem entity. The analytical model tends to provide exact

and static information, while the simulation model provides

approximate and dynamic information about the system of

interest or problem entity.

The earliest solution approach involving interactive use

of simulation and optimization was developed by Nolan

and Sovereign (1972). Their recursive approach involves

an allocation of resources by a Linear Programming (LP)

model at an aggregate level and a revision of productivity

estimates by simulation of the schedules generated by

optimization. Combining analytical and simulation mod-

eling approaches can result in cost savings in solving

complex problems (Sargent 1994). Over the years, hybrid

simulation and analytical models have been applied to

product and structure design (Kozan 1997; Mort and Tsai

1996), process design (Claver 1993), power plant perfor-

mance prediction (Pereira et al. 1992), and in the semi-

conductor industry (Pierce 1994). However, a few hybrid

analytical and simulation models have been used in pro-

duction planning and production system design (Hsieh

2002). Kozan (1997) discussed the major factors influ-

encing the transfer efficiency of seaport container termi-

nals. An analytical model utilizing queueing techniques

was constructed to draw inferences regarding strategies for

a container terminal’s service improvement. Later, the

problem was formulated as a simulation model and a

comparative analysis was performed on these models.

Byrne and Bakir (1999) described the use of a hybrid

simulation and analytical approach for production planning

and demonstrated that their solution approach outperforms

an LP approach alone. Their emphasis is on the use of an

analytical model to generate an optimum production plan.

Then, they used this plan as an input to a simulation model,

which is subject to more realistic operational policies. If

the simulation results are different from the analytical

model, they are then used to adjust the constraints of the

analytical models.

Byrne and Hossain (2005) developed an extended linear

programming model for the hybrid modeling approach first

proposed by Byrne and Bakir (1999). Their hybrid solution

approach iteratively applies simulation and LP to solve a

multi-period multi-product production planning problem.

They obtained job workload and resource utilization

through simulation and used LP to obtain the estimated

optimal production plan that minimizes total costs. Ko

et al. (2006) developed a hybrid optimization-simulation

approach to design a distribution network for third party

logistics (3PL) providers. They used a genetic algorithm to

solve the optimization model that determines the distribu-

tion network structure. Subsequently, the solution model is

applied to capture the uncertainty in client demand, order-

picking time, and travel time for the capacity plans of the

warehouses. The simulation is used to estimate the average

service time at each warehouse. Then, the service time is

used to define appropriate throughput capacity constraints

to be incorporated into subsequent optimization runs. If the

simulation outputs satisfy the required performances, the

procedure is terminated. Each of the iterative solution

procedures described above is specific to a particular

problem and exchange problem-specific parameters

between simulation and optimization models.

The hybrid analytical and simulation approach in this

study is used for giving a more realistic representation of

the supply chain network. Using a hybrid modeling

approach, we intend to determine the best storage locations

and capacities of the warehouses, distribution centers, and

retailers by incorporating the effect of uncertainty into the

decision making process where an analytical model and a

simulation-based optimization model are used iteratively.

In a hybrid modeling framework, the analytical model is

used to optimally determine the best storage locations

among available choices under a certain set of parameters

and constraints, and for given optimization criteria. These

are imposed by the definition of the problem itself and/or

the results of the simulation model. The simulation-based

optimization model improves the decisions made by the

analytical model further under a stochastic environment

where the customer demand, delivery lead time, and plant

production levels can fluctuate, giving the suitable sizes of

warehouses, distribution centers, and retailers. The outline

of the general framework for the hybrid modeling is given

in Fig. 1.

The termination criteria control the mechanism between

the analytical model and the simulation optimization
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model. This ensures termination when the hybrid

approach’s capability of considering the effect of uncer-

tainties in making the decisions is satisfied or cannot be

improved any further (by the revision/update process that

modifies the problem parameters, constraints, and/or the

objective function). Unlike other previous works, with

additional optimization ability in the simulation model

employed in this study, it is hoped that a faster solving time

for finding convergence of the objective value can be

achieved. We first discuss the details of the supply chain

network problem and the structure of the SCN as a repre-

sentation of the problem. Later, we present the hybrid

modeling framework and discuss how it is employed to

solve the problem.

Supply chain network design

The problem of Supply Chain Management (SCM) com-

monly arises in the following scenario: a number of

retailers can be supplied from a number of distribution

centers, which, in turn, are supplied from a number of

warehouses. Then, each warehouse can be supplied from a

number of plants. The challenge is to determine the num-

ber, location, and suitable size to use, so as to maximize the

profit of the SCN. In this study, an agricultural product

supply chain, such as rice, sugar, cassava, etc., is to be

investigated. Once the production plants produce products,

they cannot be kept at the plants to wait for the end cus-

tomers to buy at the plants. Inventories need to be stored

with the members in the chain. It is assumed that all

members in the chain belong to one owner and share a

common profit. Therefore, they can contribute to the same

objective, which is to maximize the profit of the whole

chain.

The origin for all activities in the supply chain is the

predefined deterministic (but varying) demand of the end

customers at the retailers. Using a periodic review every

3 months (quarterly), retailers pull the materials to

replenish their taken inventory by the end customer from

the distribution centers. In turn, the distribution centers pull

the materials from the warehouses, and finally, the ware-

houses pull the materials from the plants. In this study,

there are three production plants, four potential ware-

houses, four potential distribution centers, and four retail-

ers, as shown in Fig. 2.

Warehouses and distribution centers (if established)

have specified maximum capacities. Warehouses can be

supplied from more than one production plant and can

supply more than one distribution center. In the same

manner, each retailer can be supplied from more than one

distribution center. For each plant, the production level can

also be subject to certain constraints.

Across the supply chain network, costs are created due

to the establishment of warehouses, distribution centers,

and retailers, due to production, storage, and transportation

of materials from plants to warehouses, to distribution

centers, and finally to retailers. The SCN decisions to be

determined by the proposed model are as follows:

1. The production level of plants.

2. The storage locations in the network (to determine

opening/closing of warehouses and distribution

centers).

3. The capacity (to determine the size and construction

cost) of warehouses, distribution centers, and retailers.

In the approach, first, we divide these SCN decisions

into two groups. The first group of decisions is to be

determined by the analytical model, and the second group

is to be determined by the simulation-based optimization

model. The optimal production level of plants and the best

storage locations in the network can be determined by the

analytical model, as they are not directly affected by

uncertain factors, but are more influenced by the decisions

suggested by the simulation-based optimization model, in

which the stochastic data have been taken into considera-

tion. The optimal capacities of warehouses, distribution

centers, and retailers, which are directly affected by the

stochastic data, especially fluctuating customer demand

and delivery lead time, are determined by the simulation-

based optimization model, which can incorporate uncer-

tainty into the model. With the proposed hybrid analytical

and simulation modeling approach, both models need to be

identical and the system behavior over time is obtained by

alternating between independent analytical and simulation

models. The analytical model is a generalization of the

simulation outcomes under deterministic data, and the

simulation model is used to probe and identify the inter-

relationships and performance measures under stochastic

data.

Analy�cal model 

CPLEX 

Simula�on-based 
op�miza�on model 

ARENA and OptQuest 

Determine the best 
storage loca�ons, 

and plant 
produc�on  levels 

Determine the op�mal 
sizes of warehouses, 

distribu�on centers, and 
retailers 

Fig. 1 Framework of hybrid modeling
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Hybrid analytical–simulation modeling approach

The idea in this study is to illustrate the hybrid approach for

the solution of the SCN problem. The approach consists of

building independent optimization models in both analyt-

ical and simulation models of the supply chain networks, as

previously described, and integrating the solution strategy.

The connection of the two models is shown in Fig. 3. In

this work, we first construct the SCN analytical model with

the given deterministic data in Mixed-Integer Linear Pro-

gramming (MILP) using CPLEX. By setting the initial

TSLs (maximum stock level) at each distribution center,

warehouse, and retailer arbitrarily at 500 tonnes (Step 1),

we obtain an optimal production level of each plant and a

decision to open or close (deciding the material flow pat-

tern) of certain warehouses and distribution centers to

satisfy the given demand from all four retailers. In Step 2,

the solution suggested by the analytical model is used to

construct the simulation model, coded in ARENA, to test if

the solution is viable with the stochastic data by checking

the feasibility and the reliability of the solution, incorpo-

rating the effect of uncertainties into the model. In addi-

tion, OptQuest optimization tool embedded in ARENA is

also employed to recommend the optimum TSL at each

warehouse, distribution center, and retailer (as suggested

by the analytical model). These levels of maximum kept

inventory or the TSL at each member would be subject to

uncertainty, which cannot be explained by the analytical

model. It would be better and more realistic to obtain these

results from the simulation-based optimization model,

which suggests the best solution under an uncertain

environment.

Then, the second iteration of the analytical model as

seen in Step 3 starts again by inputting the TSLs obtained

from the previous iteration of the simulation model (note

that these levels are more likely TSLs under the applied

uncertainties in the SCN) into the analytical model and

solving it again to find the new optimal production levels of

the plants and the new storage locations in the network (if

different from the previous iteration). Having applied the

uncertainties, the network system adjusts itself to contain

more inventories and, hence, requires the production level

to increase, to match the extra inventory. Taking the new

production levels of the plants from the second iteration

from the analytical model, the simulation-based optimiza-

tion model is then run again to obtain a new solution of the

TSLs of the warehouses, distribution centers, and retailers

under uncertainties (Step 4).

At this time, the information gathered from the simu-

lation-based optimization model is used to determine if

the current solution, which is the profit of the supply

chain network, satisfies the termination criteria in this

Fig. 2 Structure of the supply chain network
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study, which is set to be within a 5% difference from the

optimal profit of the ideal case given by the analytical

model. If the termination criteria are met, the solution

suggested by the hybrid approach is accepted; otherwise,

the results are used to revise the problem to be resolved

by the analytical model in the third iteration, and so on.

The revision of the problem may normally lead to chan-

ges in the parameter values, and/or addition and deletion

of some constraints. Using the hybrid framework, a

solution is found which honors the set of constraints

described in the analytical model, along with an objective

function to be minimized/maximized, meeting some per-

formance criteria prescribed by the stochastic environ-

ment. The termination criteria control the mechanism

between the analytical model and the simulation-based

optimization model. This ensures termination when the

hybrid approach’s capability of considering the effect of

uncertainties in making decisions is satisfied or cannot be

improved any further.

Analytical model

AMixed-Integer Linear Programming (MILP) is used to deal

with the problem. The objective function is to maximize the

profit of the whole supply chain network. The mathematical

formulation and its notation can be presented as follows:

Indices:

j = Plant

m = Warehouse

k = Distribution center

l = Retailer

t = Time period (quarters).

Parameters:

PWDCm,k = Possible transportation route from ware-

house m to distribution center k

PDCZk,l = Possible transportation route from distribu-

tion center k to retailer l

Analy�cal model

CPLEX

Simula�on-based 
op�miza�on model

ARENA with OptQuest

Step 1: Input arbitrarily TSLs = 500 tonnes

Solve to find plant produc�on levels and 
best storage loca�ons (Open/Close)

Step 2: Input plant 
produc�on levels and best 

storage loca�ons from 
Step 1

Solve to find TSLs

Step 3: Input TSLs from the 
previous step

Solve to find plant production 
levels and best storage locations

Step 4: Input plant produc�on 
levels and storage loca�ons from 

Step 3

Solve to find TSLs

Check the termina�on criteria

(if not, con�nue back to Step 3)

Fig. 3 Hybrid algorithm
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PWm = Potential warehouse m

PDk = Potential distribution center k

QPToWHj,m,t = Flow amount of materials transferred

from plant j to warehouse m in time period t

QWHToDCm,k,t = Flow amount of materials transferred

from warehouse m to distribution center k in time period t

QDCToRTk,l,t = Flow amount of materials transferred

from distribution center k to retailer l in time period t

DMl,t = End customer demand for a product at retailer

l in time period t

Wm = Size (Target stock level) of warehouse m

Dk = Size (Target stock level) of distribution center k

RTl = Size (Target stock level) of retailer l.

Cost parameters:

CWm = Cost of establishing warehouse m per tonne

CDk = Cost of establishing distribution center k per

tonne

CRTl = Cost of establishing retailer l per tonne

Cprod = Plant production cost per tonne

CplantToWHj,m = Transportation cost per tonne from

plant j to warehouse m

CWHToDCm,k = Transportation cost per tonne from

warehouse m to distribution center k

CDCToRTk,l = Transportation cost per tonne from

distribution center k to retailer l

CIVPj = Cost per tonne of inventory holding of plant j

CIVWHm = Cost per tonne of inventory holding of

warehouse m

CIVDCk = Cost per tonne of inventory holding of

distribution center k

CIVRTl = Cost per tonne of inventory holding of

retailer l

DPR = Depreciation rate per period

FA = Total fixed asset cost

PCt = Production cost in time period t

TCt = Transportation cost in time period t

DPt = Depreciation cost in time period t

NTSt = Net sales in time period t

PRICE = Unit price per tonne

Profitt = Profit in time period t.

Decision variables:

Production levelj,t = Production level of plant j in time

period t

ILPj,t = Inventory level of plant j at the end of time

period t

ILWHm,t = Inventory level of warehouse m at the end of

time period t

ILDCk,t = Inventory level of distribution center k at the

end of time period t

ILRTl,t = Inventory level of retailer l at the end of time

period t.

Binary decision variables:

PWm = 1 if warehouse m is to be established, 0

otherwise

PDk = 1 if distribution center k is to be established, 0

otherwise.

Network structure constraints

The network structure constraints are for letting the supply

chain send products to only the elements that exist, since

there are four possible warehouses and four possible dis-

tribution centers. If the constraints are not created, mate-

rials would be sent to all the warehouses and distribution

centers, even though they do not exist.

• Warehouse m can only be established if there is a

connection between warehouse m itself and the distri-

bution center k.

PWDCm;k � PWm 8m; k: ð1Þ

• If the distribution center does not exist, then the

connection between the retailer l and the distribution

center does not exist.

PDCZk;l � PDk 8k; l: ð2Þ

Material balance constraints

Inventory at each element in the supply chain is equal to

the amount of product that flows into the elements, adding

the amount of product that is left over from the previous

time period before deducting the amount of product that

flows out of the elements:

ILPj;t ¼ ILPj;t�1 þ Production levelj;t �
X

m

QPToWHj;m;t

 !

8j;m; t
ð3Þ

ILWHm;t ¼ ILWHm;t�1

þ
X

j

QPToWHj;m;t �
X

k

QWHToDCm;k;t

 !

8j;m; k; t ð4Þ

ILDCk;t ¼ ILDCk;t�1

þ
X

m

QWHToDCm;k;t �
X

l

QDCToCZk;l;t

 !

8m; k; l; t ð5Þ
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ILRTl;t ¼ ILRTl;t�1

þ
X

m

QDCToRTk;l;t �
X

l

DMl;t

 !
8k; l; t

ð6Þ

where ILPj,0, ILWHm,0, ILDCk,0, and ILRTl,0 = 0.

Production resource constraints

The purpose of constructing the production resource con-

straints is to control the production level of plants, not to

exceed the available resource capacity and not to be lower

than zero.

Min production level � Production levelj;t 8j; t ð7Þ

Production levelj;t � Max production level 8j; t: ð8Þ

Minimum production level is set to zero and maximum

production level is set to 10,000 tonnes per each time

period (quarter).

Capacity constraints for warehouses and distribution

centers

The capacity constraints for warehouses and distribution

centers are constructed to determine the sizes of the

warehouses and the distribution centers. The inventory

level of a warehouse, a distribution center, and a retailer is

less than or equal to the capacity of the warehouses, dis-

tribution centers, and retailers, respectively.

ILWHm;t � Wm � PWm 8m; t ð9Þ

ILDCk;t � Dk � PDk 8k; t ð10Þ

ILRTl;t �RTl 8l; t: ð11Þ

Financial operation constraints

The financial operation constraints deal with the profit

and cost calculation throughout the supply chain net-

work. These costs include the plant production cost

(PC), transportation cost (TC), inventory holding cost

(HC), and building depreciation cost (DP), where the

profit is the revenue (NTS) minus these costs. As

addressed by Rabbani et al. (2016), there are plentiful

papers in the field of supply chain network design, but

there are no papers which regard the depreciation cost as

an important element of the model. The depreciation

cost of the fixed asset is a crucial element for designing

a supply chain network:

PCt ¼
X

j

CProdj � Production levelj;t 8j; t ð12Þ

TCt ¼
X

j;m

CplantToWHj;m � QPToWHj;m;t

þ
X

m;k

CWHToDCm;k � QWHToDCm;k;t

þ
X

k;l

CDCToCZk;l � QDCToCZk;l;t 8j;m; k; l; t

ð13Þ

HCt ¼
X

j

CIVPl � ððILPj;t þ ILPj;t�1Þ=2Þ

þ
X

m

CIVWHm � ððILWHm;t þ ILWHm;t�1Þ=2Þ

þ
X

k

CIVDCk � ððILDCk;t þ ILDCk;t�1Þ=2Þ

þ
X

l

CIVRTl � ððILRTl;t þ ILRTl;t�1Þ=2Þ

8j;m; k; l; t
ð14Þ

FA ¼
X

m

Wm � CWm � PWm þ
X

k

Dk � CDk

� PDk þ
X

l

RTl � CRTl 8m; k; l; t ð15Þ

DPt ¼ DPRt � FAt 8t ð16Þ

NTSt ¼ PRICE �
X

l

DMl;t 8l; t ð17Þ

Profitt ¼ NTSt�PCt�TCt�HCt � DPt 8t: ð18Þ

Simulation-based optimization model

This model is used to generate products, store them in

several places in the SCN, and deliver them if there is

demand. Without uncertainty in the model, the simulation

model yields an identical solution to the analytical model,

as they are required to exchange certain values later on. In

this study, simulation and optimization procedures are

completed using ARENA commercial software and the

OptQuest optimization tool. There are three groups of main

decision variables in the model. The first group is TSLs at
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each warehouse (WH1, WH2, WH3, and WH4), the second

group is the TSLs at each distribution center (DC1, DC2,

DC3, and DC4), and the last group is the TSLs at each

retailer (RL1, RL2, RL3, and RL4). The optimal settings

for these decision variables are searched for by OptQuest.

The lower and upper bounds of the searching boundary in

each variable are guaranteed to be large enough to ensure

that the optimal settings are inside the searching boundary.

Since the simulation model may contain stochastic and

nonlinear elements, it is necessary to perform several

simulation runs and combine the results. Ten replications

are simulated with 1 year (4 quarters) per replication. As a

result, the presented optimal profits of the chain are the

average of best values from 10 replications. To measure the

quality of our solutions in a stochastic environment, we

prepare a set of test examples, including three factors of

uncertainty (customer demand, delivery lead time, and

plant production level), as well as each instance with 3

levels of uncertainty (1, 5, and 10% deviation from the

mean values), as these uncertainties are estimated to follow

the normal distribution. Table 1 shows the mean values of

the end customer demand at the retailers, delivery lead

times, and plant production levels.

Cost parameters

The objective of the study is to maximize the profit of the

SCN. There are four major costs affected by supply chain

decisions, i.e., production cost at the plants, transportation

cost, holding cost, and building depreciation costs of

warehouses, distribution centers, and retailers in the net-

work, while the revenue is generated at the most down-

stream members, which are the retailers. It is also assumed

that shortage is not allowed, so all members need to keep a

sufficient amount of inventory at all times. Please note that

all costs are based on Thai Baht. Currently, 1USD is

around 35 Baht.

The selling price is set at 20,000 Baht per tonne, while

the production cost is at 3,000 Baht per tonne, and the

holding cost is estimated at 40% per year, which is around

100 Baht per tonne per quarter. As the sizes of warehouses,

distribution centers, and retailers play an important part in

the profit calculation and determining their depreciation

costs, we have set the building construction cost to keep a

tonne of product of each member in the chain at 500 Baht.

As a result, when one member needs to keep a certain level

of inventory (determined by its TSL, as it represents the

maximum level of kept inventory), the cost of the building

construction can be calculated, and hence, the value of its

depreciation cost per year, which is 10% per year, can be

generated. The transportation cost depends on the distance

between a pair of locations per tonne of delivery. We

measure these distances among members in the SCN and

estimate the transportation cost among them, in which the

cost per tonne between each pair is presented in Tables 2, 3

and 4.

Table 1 Level of the mean values of uncertainty in the simulation model

Quarter 1 Quarter 2 Quarter 3 Quarter 4

End customer demand at retailer 1 (tonnes) 654 745 456 398

End customer demand at retailer 2 (tonnes) 986 678 598 698

End customer demand at retailer 3 (tonnes) 543 879 578 777

End customer demand at retailer 4 (tonnes) 551 657 890 654

Delivery lead time (minutes) 240 min

Plant production level (tonnes) As obtained by the solution of the analytical model from the previous iteration.

Remarks: three levels of uncertainty are experimented by varying the mean values of the end customer demand, delivery lead time, and plant

production level simultaneously by 1, 5, and 10% from the mean values. All values are normally distributed

Table 2 Transportation cost from plants to warehouses (Baht/tonne)

WH1 WH2 WH3 WH4

P1 200 1250 1180 1550

P2 1370 2000 150 1300

P3 2540 1700 1640 250

Table 3 Transportation cost from warehouse to distribution centers

(Baht/tonne)

DC1 DC2 DC3 DC4

WH1 240 3670 1650 2125

WH2 1500 1855 970 1630

WH3 1300 1540 200 3420

WH4 2590 3260 3980 225
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Results and discussion

We investigate the advantages of the hybrid analytical and

simulation modeling approach, as compared to the tradi-

tional individual optimization methods with empirical

tests, using a set of 3 methods, i.e., 1. Analytical model, 2.

Simulation-based optimization model with OptQuest, and

3. Hybrid analytical and simulation modeling approach. To

achieve this goal, all methods need to operate under the

same conditions, so the comparison can be fairly made.

Results of each method are analyzed and presented as

follows:

1. Analytical model (by CPLEX)

This is an ideal case when there is no uncertainty in the

model. The obtained solution gives the highest profit of the

supply chain network and is used as the base case of the

decisions to be made in each instance. Without uncertainty

and assuming no material delivery lead time, the model

recommends keeping no inventory at all members (TSLs of

warehouses, distribution centers, and retailers are zero). As

a result, all members receive all requested inventories at

the time they are requested, and hence, keeping an inven-

tory would not be required. The material delivery time is

assumed to be zero, to simplify the model formulation and

reduce the number of solving periods; otherwise, the

solving period must be sub-divided into a number of small

periods for the shorter lead time period. In addition, for a

fair comparison with other models and presenting more

meaningful results, we set the TSLs (to determine the size

of each member) equal to the ones obtained from the

hybrid analytical and simulation modeling approach, and

let the analytical model recommend only the plant pro-

duction levels and the storage locations in the supply chain

network. Tables 5, 6 show the optimal production levels

and the storage locations as determined by the analytical

model, respectively. Table 7 presents the obtained profits

from all three levels of uncertainty.

The result from the analytical model suggests to open

warehouses no. 1, 3, and 4 and distribution centers no. 1, 3,

and 4 (see Table 5), as well as recommends that each plant

produces the amount, as shown in Table 6. It is not sur-

prising that the plants need to produce more at the begin-

ning during the first quarter, since they are forced to

produce more to fill the TSLs of opening members, as they

have no inventory at the beginning. After the first quarter,

the plants produce only to replenish the inventory taken

from the downstream members. As there is no uncertainty

in the model, the amount to produce of all plants for each

quarter is similar, despite the different levels of uncertainty

Table 4 Transportation cost from distribution centers to retailers

(Baht/tonne)

RL1 RL2 RL3 RL4

DC1 120 325 4025 3425

DC2 1500 2420 3550 2440

DC3 3150 2770 220 4360

DC4 2410 3070 3050 320

Table 5 Optimal values of

decision variables for

warehouses, distribution

centers, and retailers from the

analytical model

Decision variables Warehouses Distribution centers

WH1 WH2 WH3 WH4 DC1 DC2 DC3 DC4

Open/close

Open = 1

Close = 0

1 0 1 1 1 0 1 1

Table 6 Optimal values of

decision variables (production

level) for plants from the

analytical model

Plant Level of uncertainty Period

Quarter 1 Quarter 2 Quarter 3 Quarter 4

P1 1% 8340 1423 1054 1096

P2 4843 879 578 777

P3 3751 657 890 654

P1 5% 8240 1423 1054 1096

P2 3643 879 578 777

P3 4151 657 890 654

P1 10% 9640 1423 1054 1096

P2 4943 879 578 777

P3 4451 657 890 654
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(except the first quarter as explained above). It is also

found that the profit of the chain decreases when the level

of uncertainty increases (see Table 7), as higher expenses

are incurred to produce more products and keep a higher

level of inventory, while the revenue is stable, as the same

amount of end customer demand is used in all cases.

2. Simulation-based optimization model

The OptQuest optimization tool embedded in ARENA is

used to search for the optimal SCN decisions under 3 levels

of uncertainty. Suggested outcomes from OptQuest rec-

ommend to open all warehouses and distribution centers.

Tables 8, 9 show the optimal values of decision variables

for plants, warehouses, distribution centers, and retailers

suggested by OptQuest. Table 10 shows the obtained

profits. Please note that the production levels of the plants

and the TSLs of downstream members are searched to find

their optimal levels at a step size of 100 tonnes to reduce

the solving time of OptQuest.

When the level of uncertainty increases, the system

generally adjusts itself by increasing the level of kept

inventory (higher level of TSLs) and, hence, a lower level

of profit in the chain. It is observed that the profits obtained

from the simulation-based optimization model with Opt-

Quest, where uncertainty exists, are far lower than the ones

from the analytical model by CPLEX, which are run under

no uncertainty conditions, as shown in Table 10. Further-

more, it is noticed that the obtained profit decreases con-

siderably when the level of uncertainty increases beyond

10%.

Table 7 Profits obtained from the analytical model using CPLEX

Level of uncertainty Profit (Baht)

1% 176,720,000

5% 175,090,000

10% 170,490,000

Table 8 Optimal values of decision variables for warehouses, distribution centers, and retailers from the simulation-based optimization model

Level of uncertainty Decision variables Warehouses Distribution centers Retailers

WH1 WH2 WH3 WH4 DC1 DC2 DC3 DC4 RL1 RL2 RL3 RL4

All cases (1%, 5%, 10%) Open/Close

Open = 1

Close = 0

1 1 1 1 1 1 1 1 – – – –

1% TSL (tonnes) 4700 2800 2600 3600 1600 1500 1200 900 500 1100 1000 1800

5% TSL (tonnes) 1700 400 2400 2900 2000 1200 2200 1400 600 1200 1300 2000

10% TSL (tonnes) 2900 700 4100 1500 1900 1300 1000 2100 800 1700 1100 1500

Table 9 Optimal values of decision variables (production level) for plants from the simulation-based optimization model

Plant Level of uncertainty Period

Quarter 1 (tonnes) Quarter 2 (tonnes) Quarter 3 (tonnes) Quarter 4 (tonnes)

P1 1% 5700 1600 1000 1900

P2 5800 1000 1200 900

P3 4700 1000 1300 1900

P1 5% 6300 1100 800 1400

P2 4500 1000 1100 1400

P3 5600 1300 1700 900

P1 10% 8100 1400 1000 800

P2 6600 800 1200 1200

P3 3600 900 800 1100

Table 10 Profits obtained from the simulation-based optimization

model with OptQuest

Level of

uncertainty

Profit

(Baht)

Percentage difference between the

simulation-based optimization model

and the analytical model

1% 152,792,400 -13.54%

5% 151,609,100 -13.41%

10% 136,819,200 -19.75%
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3. Hybrid analytical and simulation modeling approach

The hybrid approach uses the advantages of both

modeling methods while avoiding the problems of both

methods. From Tables 11 and 12, it is observed that the

best storage locations suggested by the hybrid approach

are similar to the solution given by the analytical model,

since it adopts the best storage locations from the ana-

lytical model, while the production levels at the plants

and the sizes of warehouses, distribution centers, and

retailers, which are optimized separately, are somewhat

different. However, when the level of uncertainty

increases, these sizes increase accordingly, as explained

previously.

The resulting optimal SCN design, through iterations for

each period, is given in Table 13. The result shows maxi-

mum stopping iterations of three iterations in the case of

1% uncertainty, while only two iterations in the case of a

higher level of uncertainty. With this stopping criteria,

there is less than 2% difference in the profit of the chain

from the optimal values given by the analytical model,

although the stopping criteria is set to be within 5%. This is

considered to be quite good as compared to the optimum

under a deterministic environment. Although it is not

possible to prove general convergence for all our test

instances, we observe fast convergence of the objective

values for the proposed hybrid approach. Incorporating

optimization in the simulation algorithm decreases the

solving time and brings faster convergence of the objective

values.

Even though we did not precisely record the solving

time of these three comparative methods, it was found that

the analytical model solved by CPLEX alone takes a matter

of minutes to solve each instance. The simulation-based

optimization model with OptQuest takes a long time

(longer than 20 h for each instance) to yield the optimal

value of profit, recommending the optimal design of the

supply chain network. The hybrid analytical and simulation

modeling approach takes somewhere in between CPLEX

and OptQuest. All instances were recorded to take less than

half of the solving time of the traditional simulation-based

optimization model.

Conclusions

In this paper, we present a hybrid analytical and simulation

optimization approach for solving a design problem in a

supply chain network. The study presents and examines a

general solution methodology that obtains an estimated

global optimum for combinatorial optimization problems

Table 11 Optimal values of decision variables (production level) for plants from the hybrid approach

Plant Level of uncertainty Period

Quarter 1 (tonnes) Quarter 2 (tonnes) Quarter 3 (tonnes) Quarter 4 (tonnes)

P1 1% 8445 1432 1048 1093

P2 5838 884 577 787

P3 4458 655 879 647

P1 5% 3640 1423 1054 1096

P2 2043 879 578 777

P3 2051 657 890 654

P1 10% 8127 1427 1078 1118

P2 3406 850 555 774

P3 3698 632 953 626

Table 12 Optimal values of decision variables for warehouses, distribution centers, and retailers from the hybrid approach

Level of uncertainty Decision variables Warehouses Distribution centers Retailers

WH1 WH2 WH3 WH4 DC1 DC2 DC3 DC4 RL1 RL2 RL3 RL4

All cases

(1%, 5%, 10%)

Open/Close

Open = 1

Close = 0

1 0 1 1 1 0 1 1 – – – –

1% TSL (tonnes) 2300 0 1900 1400 2200 0 900 900 800 1400 1500 900

5% TSL (tonnes) 2200 0 800 1300 2300 0 1200 1300 1000 1100 1100 1000

10% TSL (tonnes) 3400 0 1500 1300 2400 0 1700 1500 1200 1700 1200 1100
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with components of uncertainty. The approach is initialized

by solving the analytical model to optimality with the

given deterministic data, which is usually prescribed by the

expected value of the uncertain problem input. The solu-

tion, suggested by the analytical model, is used to construct

the simulation-based optimization model, to test if the

solution is viable with the stochastic data by checking the

feasibility and the reliability of the solution, incorporating

the effect of uncertainty and further optimized parameters,

which are subject to an uncertain environment. The infor-

mation gathered from the simulation-based optimization

model is used to determine if the current solution satisfies

the termination criteria. If the termination criteria are met,

the solution suggested by the hybrid approach is accepted;

otherwise, the results are used to revise the problem, to be

resolved by the analytical model. The revision of the

problem may lead to changes in the parameter values or

constraints. Using the hybrid framework, a solution is

found, which honors the set of constraints described in the

analytical model, along with an objective function to be

minimized/maximized. This meets performance criteria

prescribed by the stochastic environment with closer to

optimal results and shorter solving time than traditional

simulation-based optimization modeling methods.

The primary findings reported in this paper are

promising; however, there are some open research issues

that remain to be examined. This study only examines the

use of the hybrid approach with the SCN design. Since our

approach is generalized and can be applied to solve dif-

ferent types of combinatorial problems, it would be inter-

esting to consider different problems with various

components of uncertainty and differing cost structures in

future research. As future work, an improvement of model

formulation and the generalization of the representation of

the problem could still be further explored. Multiple pick-

up locations with partial pick-up loads and allowing

shortages or back ordering can be included in the case

study. The treatment of uncertainty should be further

explored. Furthermore, multi-objective approaches can also

be addressed as an extension of the present study.
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