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Abstract The objective of this paper is to present a

technique for order preference by similarity to ideal solu-

tion (TOPSIS) algorithm to linear fractional bi-level multi-

objective decision-making problem. TOPSIS is used to

yield most appropriate alternative from a finite set of

alternatives based upon simultaneous shortest distance

from positive ideal solution (PIS) and furthest distance

from negative ideal solution (NIS). In the proposed

approach, first, the PIS and NIS for both levels are deter-

mined and the membership functions of distance functions

from PIS and NIS of both levels are formulated. Lineari-

zation technique is used in order to transform the non-

linear membership functions into equivalent linear mem-

bership functions and then normalize them. A possible

relaxation on decision for both levels is considered for

avoiding decision deadlock. Then fuzzy goal programming

models are developed to achieve compromise solution of

the problem by minimizing the negative deviational vari-

ables. Distance function is used to identify the optimal

compromise solution. The paper presents a hybrid model of

TOPSIS and fuzzy goal programming. An illustrative

numerical example is solved to clarify the proposed

approach. Finally, to demonstrate the efficiency of the

proposed approach, the obtained solution is compared with

the solution derived from existing methods in the literature.

Keywords Bi-level programming � Fuzzy goal

programming � Linear fractional bi-level multi-objective

decision making � Multi-objective decision making �
TOPSIS

Introduction

Bi-level programming is recognized as a powerful

mathematical apparatus for modeling decentralized deci-

sions with two decision makers (DMs) in a large hier-

archical organization. Bi-level programming problems

(BLPPs) have the following common features: the first-

level decision maker (FLDM) or the leader and the

second-level decision maker (SLDM) or the follower

independently controls a set of decision variables; each

DM tries to maximize his/her own interest, but the

decision of each DM is affected by the action and

reaction of the other DM; each DM should have an

intention to cooperate each other in the decision-making

situation. Bi-level programming has been applied to

model real-world problems regarding flow shop sched-

uling (Karlof and Wang 1996), bio-fuel production (Bard

et al. 2000), natural gas cash-out (Dempe et al. 2005),

logistics (Huijun et al. 2008), pollution emission price

(Wang et al. 2011), etc. Lai (1996) introduced the con-

cept of tolerance membership function of fuzzy set the-

ory to multi-level programming problems (MLPPs) for

satisfactory decisions. Shih et al. (1996) extended Lai’s

satisfactory solution concept and proposed a supervised

search approach to MLPPs based on max–min aggrega-

tion operator. Shih and Lee (2000) further extended Lai’s
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satisfactory solution concept and presented a solution

methodology for MLPPs using compensatory fuzzy

operator. Sinha (2003a, b) developed an alternative fuzzy

mathematical programming to MLPPs where the decision

of lower-level DM is most important and the decision

power of lower-level DM dominates the FLDM. Sakawa

et al. (1998) developed interactive fuzzy programming

algorithm to solve MLPPs by deleting the fuzzy goals

for the decision variables to overcome the problem in the

methods of Lai (1996). Pramanik and Roy (2007) pro-

posed a methodology based on fuzzy goal programming

(FGP) approach to MLPPs by considering the relaxation

of decision of the FLDM and solved the problem by

minimizing the negative deviational variables. In this

article, we have considered linear fractional bi-level

multi-objective decision-making (BL-MODM) problem

where each level DM possesses multiple linear fractional

objective functions with common linear constraints.

However, in contrast to linear BLPPs, only some meth-

odological developments for fuzzy linear fractional

BLPPs/decentralized BLPPs have appeared in the litera-

ture (Sakawa and Nishizaki 2002, 2001; Ahlatcioglu and

Tiryaki 2007; Mishra 2007; Toksarı 2010; Pramanik and

Dey 2011b; Pramanik et al. 2012). Baky (2009) pre-

sented an algorithm to solve decentralized BL-MODM

problem by extending the FGP approach incorporated by

Mohamed (1997) and the proposed approach is also

extended for solving linear fractional decentralized BL-

MODM problem. Abo-Sinna and Baky (2010) presented

a FGP procedure to linear fractional BL-MODM problem

using the method of variable change on the negative and

positive deviational variables.

In the field of multi-attribute decision-making, Hwang

and Yoon (1981) introduced the concept of technique for

order preference by similarity to ideal solution (TOPSIS)

for obtaining compromise solution. TOPSIS is based upon

the principle that the chosen alternative should have the

minimum distance from positive ideal solution (PIS) and

maximum distance from negative ideal solution (NIS). In

real-life decision-making situation, a DM desires to obtain

a decision that not only offers as much return as possible

but also reduces as much risk as possible. Generally,

TOPSIS converts M number of conflicting and non com-

mensurable objectives (criteria) into two commensurable

and most of time conflicting objectives (the minimum

distance from PIS and the maximum distance from NIS)

(Abo-Sinna and Amer 2005). Lai et al. (1994) presented a

methodology based on the extended TOPSIS method for

solving multi-objective decision-making (MODM) prob-

lem. Chen (2000) extended the concept of TOPSIS in order

to formulate a methodology for solving multi-person multi-

criteria decision-making (MCDM) problems in fuzzy

environment. Abo-Sinna and Amer (2005) and Abo-Sinna

et al. (2008) studied the extensions of TOPSIS for solving

multi-objective large-scale non-linear programming prob-

lems with block angular structure. Recently, Baky and

Abo-Sinna (2013) proposed a fuzzy TOPSIS algorithm for

solving non-linear BL-MODM problems. In their

approach, they extended the TOPSIS to first (upper)-level

MODM problem for obtaining the satisfying solution for

FLDM. Then the linear membership functions of variables

under the control of the FLDM are formulated. Finally,

max–min decision model of the BL-MODM problem is

solved in order to generate the satisfactory solution of the

problem.

In this paper, the TOPSIS approach to solve linear

fractional BL-MODM problem based on FGP technique is

extended. In the proposed approach, fuzzy TOPSIS models

for both level DMs are developed and satisfactory solutions

for both levels are obtained. Possible relaxations on deci-

sions for both levels are considered. Thereafter, FGP

models are formulated and the linear fractional BL-MODM

problem is solved by minimizing the negative deviational

variables.

Rest of the paper is organized as follows: In the Sect.

‘‘Problem formulation’’, we present the formulation of BL-

MODM problem. Some basic concepts of the distance

measures of ‘closeness’ and its normalization are provided

in the subsequent sections. TOPSIS approaches for first-

level DM and second-level DM are discussed in the next

two sections, respectively. Section ‘‘Preference bounds for

FLDM and SLDM’’ briefly discusses the necessity for

providing preference upper and lower bounds for both level

DMs. In the Sect. ‘‘FGP approach for BL-MODM prob-

lem’’, we have formulated the FGP models for BL-MODM

problem. The next section presents the TOPSIS algorithm

for BL-MODM problem based on FGP procedure. Section

‘‘Selection of optimal compromise solution’’ provides the

selection criteria in order to achieve optimal compromise

solution of the problem. In the Sect. ‘‘Numerical example’’,

a numerical example is solved to illustrate the proposed

methodology. Finally, the last section concludes the paper

with future direction of research.

Materials and methods

Problem formulation

Assume that there are two levels in a hierarchy structure

with a FLDM at the first level and a SLDM at the second

level. The FLDM controls the decision vector x1 ¼
ðx11; x12; . . .; x1N1

Þ 2 RN1 and the SLDM controls the deci-

sion vector x2 ¼ ðx21; x22; . . .; x2N2
Þ 2 RN2 , where

N = N1 ? N2. Also we assume that Z1 (x1, x2):

RN1 � RN2 ! RMi , i = 1, 2.
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The linear fractional BL-MODM problem of maximi-

zation-type objective function at each level can be for-

mulated as:

[First level]

Max
x1

Z1 xð Þ ¼ Max
x1

Z1 x1; x2ð Þ
¼ Max

x1

z11 x1; x2ð Þ; z12 x1; x2ð Þ; . . .; z1M1
x1; x2ð Þð Þ

ð1Þ

[Second level]

Max
x2

Z2 xð Þ ¼ Max
x2

Z2 x1; x2ð Þ
¼ Max

x2

z21 x1; x2ð Þ; z22 x1; x2ð Þ; . . .; z2M2
x1; x2ð Þð Þ

ð2Þ

Subject to

x2S¼ x¼ x1;x2ð Þ2RN jA1x1þA2x2

�
¼
�

0
B@

1
CAb;x�0;b2RM

8><
>:

9>=
>;
;

ð3Þ

where zij x1; x2ð Þ ¼ Cijxþqij

Dijxþ dij
; ði ¼ 1; 2; j ¼ 1; 2; . . .;MiÞ:

Here, S is the non-empty convex constraint set, M1 and

M2 are the number of objective functions of FLDM and

SLDM, respectively, and M is the number of constraints.

Also, Ai is the M � Ni matrix, (i = 1, 2); Cij, Dij 2 RN ;

qij; dij; ði ¼ 1; 2; j ¼ 1; 2; . . .;MiÞ are scalars. We also

assume that Dijx þ dij [ 0; ði ¼ 1; 2; j ¼ 1; 2; . . .;MiÞ for

all x 2 S.

Some basic concepts regarding distance measures

Some basis concepts related to distance measure are pre-

sented in this section, for further details see Abo-Sinna and

Amer (2005) and Abo-Sinna et al. (2008). Let Z(x) = (z1

(x), z2 (x), …, zM (x)) be the vector of the objective func-

tions. Suppose that Zþ ¼ zþ1 ; zþ2 ; . . .; zþM be the ideal

solution or PIS of the vector of the objective functions such

that zþj ¼ Maxx2S zj xð Þ; ðj ¼ 1; 2; . . .;MÞ. Also, let

(Z� ¼ z�1 ; z�2 ; . . .; z�M) be the anti-ideal solution or NIS of

the vector of the objective functions such that

z�j ¼ Minx2S zj xð Þ, (j = 1, 2, …, M). Now LQ-metric is

employed in order to achieve the measure of ‘‘closeness’’.

LQ-metric defines the distance between Z (x) and Z? as

follows:

dq ¼
XM
j¼1

aq
j zþj � zjðxÞ
� �q

( )1
q

; q ¼ 1; 2; . . .; 1: ð4Þ

Here, aq
j (j = 1, 2, …, M; q = 1, 2, …, ?) represents

the relative weight of the jth objective function. However,

if the objective function zj (x), (j = 1, 2, …, M) is not

expressed in commensurable unit, then the following

metric can be utilized:

dq ¼
XM
j¼1

aq
j

zþj � zjðxÞ
zþj � z�j

 !q( )1
q

; q ¼ 1; 2; . . .; 1:

ð5Þ

The compromise solution is defined as the solution,

which is nearest to the ideal solution by some distance

measure (Abo-Sinna and Amer 2005). We are now inter-

ested in obtaining the compromise solution of the follow-

ing MODM problem:

Max Z xð Þ ¼ z1 xð Þ; z2 xð Þ; . . .; zM xð Þð Þ ð6Þ

Subject to

x 2 S ¼ x 2 RN j A x

�
¼
�

0
B@

1
CA b; x� 0; b 2 RM

8><
>:

9>=
>;
:

Different multi-objective methods such as global crite-

rion method, goal programming method, fuzzy program-

ming method, and interactive method utilize the distance

family (4) and (5) in order to yield the compromise solution

of a MODM problem when the ideal solution

(Zþ ¼ zþ1 ; zþ2 ; . . .; zþM) is the reference point. According to

Lai et al. (1994), the problem (6) reduces to the following

auxiliary problem:

Min dq ¼
XM

j¼1

aq
j

zþj � zjðxÞ
zþj � z�j

 !q( )1
q

; ðq ¼ 1; 2; . . .; 1Þ

ð7Þ

Subject to

x 2 S ¼ x 2 RN j A x

�
¼
�

0
B@

1
CA b; x� 0; b 2 RM

8><
>:

9>=
>;

Here, the parameter q represents the ‘balancing factor’

between the group benefit and maximal individual regret.

As the value of q increases, the group benefit, i.e., dq

decreases. When q = 1, then an equal importance or

weight is given to each deviation and when q = 2, then

each deviation is weighted proportionately with the maxi-

mum deviation with the maximum importance or weight

(Lai et al. 1994).

TOPSIS method for first-level MODM problem

Consider the linear fractional BL-MODM problem of

FLDM as follows:
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Max
x1

Z1 xð Þ ¼Max
x1

Z1 x1;x2ð Þ
¼Max

x1

ðz11 x1; x2ð Þ; z12 x1; x2ð Þ; ...;z1M1
x1; x2ð ÞÞ

ð8Þ

Subject to

x2S¼ x¼ x1;x2ð Þ2RN jA1x1þA2x2

�
¼
�

0
B@

1
CAb;x�0;b2RM

8><
>:

9>=
>;

TOPSIS model for FLDM can be presented as follows:

Min dPISðFÞ
q xð Þ ð9Þ

Max dNISðFÞ
q xð Þ

Subject to

x2S¼ x¼ x1;x2ð Þ2RN jA1x1þA2x2

�
¼
�

0
B@

1
CAb;x�0;b2RM

8><
>:

9>=
>;
;

where d
PISðFÞ
q xð Þ¼

PM1

j¼1a
q
j

zþ
1j
�z1jðxÞ

zþ
1j
�z�

1j

� �q� �1
q

and d
NISðFÞ
q xð Þ¼

PM1

j¼1a
q
j

z1jðxÞ�z�
1j

zþ
1j
�z�

1j

� �q� �1
q

.

Here, zþ1j ¼ Max
x2S

z1j xð Þ and z�1j ¼ Minx2S z1j xð Þ, (j = 1, 2,

…, M1) are the PIS and NIS for FLDM, respectively.

Let d
PISðFÞ
q ðxÞ

� �þ
¼ Min

x2S
d

PISðFÞ
q xð Þ and

dPISðFÞ
q ðxÞ

� ��
¼ Max

x2S
dPISðFÞ

q xð Þ;

dNISðFÞ
q ðxÞ

� �þ
¼ Max

x2S
dNISðFÞ

q xð Þ and

dNISðFÞ
q ðxÞ

� ��
¼ Min

x2S
dNISðFÞ

q xð Þ

The membership functions for d
PISðFÞ
q (x) and d

NISðFÞ
q (x)

(see Fig. 1) can be formulated as:

l
d

PISðFÞ
q

ðxÞ

¼

0; if dPISðFÞ
q ðxÞ

� ��
� dPISðFÞ

q ðxÞ

d
PISðFÞ
q ðxÞ

� ��
�d

PISðFÞ
q ðxÞ

d
PISðFÞ
q ðxÞ

� ��
� d

PISðFÞ
q ðxÞ

� �þ ; if dPISðFÞ
q ðxÞ

� �þ
� dPISðFÞ

q ðxÞ

� dPISðFÞ
q ðxÞ

� ��
;

1; if dPISðFÞ
q ðxÞ� dPISðFÞ

q ðxÞ
� �þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

l
d

NISðFÞ
q

ðxÞ

¼

0; if dNISðFÞ
q ðxÞ

� �
� dNISðFÞ

q ðxÞ
� ��

d
NISðFÞ
q ðxÞ � d

NISðFÞ
q ðxÞ

� ��

d
NISðFÞ
q ðxÞ

� �þ
� d

NISðFÞ
q ðxÞ

� �� ; if dNISðFÞ
q ðxÞ

� ��
� dNISðFÞ

q ðxÞ

� dNISðFÞ
q ðxÞ

� �þ

1; if dNISðFÞ
q ðxÞ � dNISðFÞ

q ðxÞ
� �þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Now we transform the non-linear membership functions

l
d

PISðFÞ
q

ðxÞ and l
d

NISðFÞ
q

ðxÞ into equivalent linear membership

functions l̂
d

PISðFÞ
q

ðxÞ and l̂
d

NISðFÞ
q

ðxÞ, respectively, through

first-order Taylor polynomial series as follows:

l
d

PISðFÞ
q

ðxÞ¼� l
d

PISðFÞ
q

ðxPISðFÞ�Þ þ
XN1

j¼1

ðx1j � x
PISðFÞ�
1j Þ

�
ol

d
PISðFÞ
q

ðxÞ
ox1j

 !

at x¼xPISðFÞ�

þ
XN2

j¼1

ðx2j � x
PISðFÞ�
2j Þ

�
ol

d
PISðFÞ
q

ðxÞ
ox2j

 !

at x¼xPISðFÞ�

¼ l̂
d

PISðFÞ
q

ðxÞ; ð10Þ

where xPISðFÞ� ¼ ðxPISðFÞ�
1 ; x

PISðFÞ�
2 Þ is such that

l
d

PISðFÞ
q

ðxPISðFÞ�Þ ¼ Maxx2S l
d

PISðFÞ
q

ðxÞ

)(PIS
qd xµ , )(NIS

qd xµ

max - min solution 

PIS
qd (x), NIS

qd (x)

( )−)(d NIS
q x ( )+)(dPIS

q x ( )+)(d NIS
q x ( )−)(d PIS

q x

0

1

Fig. 1 The membership

functions of ldPIS
q
ðxÞ; ldNIS

q
ðxÞ

(Lai et al. 1994)
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l
d

NISðFÞ
q

ðxÞ¼� l
d

NISðFÞ
q

ðxNISðFÞ�Þ þ
XN1

j¼1

ðx1j � x
NISðFÞ�
1j Þ

�
ol

d
NISðFÞ
q

ðxÞ
ox1j

 !

at x¼xNISðFÞ�

þ
XN2

j¼1

ðx2j � x
NISðFÞ�
2j Þ

�
ol

d
NISðFÞ
q

ðxÞ
ox2j

 !

at x¼xNISðFÞ�

¼ l̂
d

NISðFÞ
q

ðxÞ;

ð11Þ

where xNISðFÞ� ¼ ðxNISðFÞ�
1 ; x

NISðFÞ�
2 Þ is such that

l
d

NISðFÞ
q

ðxNISðFÞ�Þ ¼ Maxx2S l
d

NISðFÞ
q

ðxÞ

We now normalize l̂
d

PISðFÞ
q

ðxÞ and l̂
d

NISðFÞ
q

ðxÞ according to

Stanojević (2013) as follows:

�l
d

PISðFÞ
q

ðxÞ ¼
l̂

d
PISðFÞ
q

ðxÞ � aPISðFÞ

bPISðFÞ � aPISðFÞ ;

�l
d

NISðFÞ
q

ðxÞ ¼
l̂

d
NISðFÞ
q

ðxÞ� aNISðFÞ

bNISðFÞ � aNISðFÞ ; where aPISðFÞ and bPISðFÞ

are the minimal and maximal values of l̂
d

PISðFÞ
q

ðxÞ; aNISðFÞ

and bNISðFÞ are the minimal and maximal values of

l̂
d

NISðFÞ
q

ðxÞ, respectively, subject to the system constraints.

Then to obtain the satisfactory solution of FLDM, we

solve the following max–min decision model, according to

Bellman and Zadeh (1970) and Zimmermann (1978) as

follows:

ldF
q
ðxÞ ¼ Maxx2SfMin ð�l

d
PISðFÞ
q

ðxÞ; �l
d

NISðFÞ
q

ðxÞÞg:

If b ¼ Min ð�l
d

PISðFÞ
q

ðxÞ; �l
d

NISðFÞ
q

ðxÞ, then the above

model is equivalent to the Tchebycheff model (Lai

et al. 1994), which is also equivalent to the following

model:

Max b ð12Þ

Subject to

�l
d

PISðFÞ
q

ðxÞ� b; �l
d

NISðFÞ
q

ðxÞ� b; 0� b� 1;

x2S¼ x¼ x1;x2ð Þ2RN jA1x1þA2x2

�
¼
�

0
B@

1
CAb;x�0;b2RM

8><
>:

9>=
>;
;

where b represents the satisfactory level for both criteria of

the minimal distance from the PIS and maximal distance

from the NIS. Let xF� ¼ ðxF�

1 ; xF�

2 Þ be the satisfactory

solution of the FLDM.

TOPSIS method for second-level MODM problem

Consider the linear fractional BL-MODM problem of

SLDM as follows:

Max
x2

Z2 xð Þ ¼ Max
x2

Z2 x1;x2ð Þ
¼ Max

x2

ðz21 x1;x2ð Þ; z22 x1;x2ð Þ ; . . .; z2M2
x1;x2ð ÞÞ

ð13Þ

Subject to

x 2 S

¼ x ¼ x1; x2ð Þ 2 RN j A1x1 þ A2x2

�

¼

�

0
BB@

1
CCAb; x� 0; b 2 RM

8>><
>>:

9>>=
>>;
:

TOPSIS model for SLDM can be represented as:

Min dPISðSÞ
q xð Þ ð14Þ

Max dNISðSÞ
q xð Þ

Subject to

x 2 S

¼ x ¼ x1; x2ð Þ 2 RN j A1x1 þ A2x2

�

¼

�

0
BB@

1
CCAb; x� 0; b 2 RM

8>><
>>:

9>>=
>>;
;

where d
PISðSÞ
q xð Þ ¼

PM2

j¼1 aq
j

zþ
2j
�z2jðxÞ

zþ
2j
�z�

2j

� �q� �1
q

and d
NISðSÞ
q xð Þ

¼
PM2

j¼1 aq
j

z2jðxÞ� z�
2j

zþ
2j
� z�

2j

� �q� �1
q

.

Here, zþ2j ¼ Maxx2S z2j xð Þand z�2j ¼ Minx2S z2j xð Þ, (j = 1,

2, …, M2) are the positive ideal solutions and negative

ideal solutions for SLDM, respectively.

Let d
PISðSÞ
q ðxÞ

� �þ
¼ Min

x2S
d

PISðSÞ
q xð Þ and

dPISðSÞ
q ðxÞ

� ��
¼ Max

x2S
dPISðSÞ

q xð Þ;

dNISðSÞ
q ðxÞ

� �þ
¼ Max

x2S
dNISðSÞ

q xð Þ and

dNISðSÞ
q ðxÞ

� ��
¼ Min

x2S
dNISðSÞ

q xð Þ

The membership functions of d
PISðSÞ
q xð Þ and d

NISðSÞ
q xð Þ

can be formulated as follows:

l
d

PISðSÞ
q

ðxÞ

¼

0; if dPISðSÞ
q ðxÞ

� ��
� dPISðSÞ

q ðxÞ

d
PISðSÞ
q ðxÞ

� ��
�d

PISðSÞ
q ðxÞ

d
PISðSÞ
q ðxÞ

� ��
� d

PISðSÞ
q ðxÞ

� �þ ; if dPISðSÞ
q ðxÞ

� �þ
� dPISðSÞ

q ðxÞ

� dPISðSÞ
q ðxÞ

� ��
;

1; if dPISðSÞ
q ðxÞ � dPISðSÞ

q ðxÞ
� �þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
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l
d

NISðSÞ
q

ðxÞ

¼

0; if dNISðSÞ
q ðxÞ

� �
� dNISðSÞ

q ðxÞ
� ��

d
NISðSÞ
q ðxÞ � d

NISðSÞ
q ðxÞ

� ��

d
NISðSÞ
q ðxÞ

� �þ
� d

NISðSÞ
q ðxÞ

� �� ; if dNISðSÞ
q ðxÞ

� ��
� dNISðSÞ

q ðxÞ

� dNISðSÞ
q ðxÞ

� �þ

1; if dNISðSÞ
q ðxÞ � dNISðSÞ

q ðxÞ
� �þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

We again transform the non-linear membership func-

tions l
d

PISðSÞ
q

ðxÞ and l
d

NISðSÞ
q

ðxÞ into equivalent linear mem-

bership functions l̂
d

PISðSÞ
q

ðxÞ and l̂
d

NISðSÞ
q

ðxÞ, respectively, via

first-order Taylor polynomial series as follows:

l
d

PISðSÞ
q

ðxÞ¼� l
d

PISðSÞ
q

ðxPISðSÞ�Þ þ
XN1

j¼1

ðx1j � x
PISðSÞ�
1j Þ

�
ol

d
PISðSÞ
q

ðxÞ
ox1j

 !

at x¼xPISðSÞ�

þ
XN2

j¼1

ðx2j � x
PISðSÞ�
2j Þ

�
ol

d
PISðSÞ
q

ðxÞ
ox2j

 !

at x¼xPISðSÞ�

¼ l̂
d

PISðSÞ
q

ðxÞ; ð15Þ

where xPISðSÞ� ¼ ðxPISðSÞ�
1 ; x

PISðSÞ�
2 Þ is such that

l
d

PISðSÞ
q

ðxPISðSÞ�Þ ¼ Maxx2S l
d

PISðSÞ
q

ðxÞ.

l
d

NISðSÞ
q

ðxÞ¼� l
d

NISðSÞ
q

ðxNISðSÞ�Þ þ
XN1

j¼1

ðx1j � x
NISðSÞ�
1j Þ

�
ol

d
NISðSÞ
q

ðxÞ
ox1j

 !

at x¼xNISðSÞ�

þ
XN2

j¼1

ðx2j � x
NISðSÞ�
2j Þ

�
ol

d
NISðSÞ
q

ðxÞ
ox2j

 !

at x¼xNISðSÞ�

¼ l̂
d

NISðSÞ
q

ðxÞ;

where xNISðSÞ� ¼ ðxNISðSÞ�
1 ; x

NISðSÞ�
2 Þ is such that

l
d

NISðSÞ
q

ðxNISðSÞ�Þ ¼ Maxx2S l
d

NISðSÞ
q

ðxÞ:

We normalize (Stanojević 2013) l̂
d

PISðSÞ
q

ðxÞ and l̂
d

NISðSÞ
q

ðxÞ
as follows:

�l
d

PISðSÞ
q

ðxÞ ¼
l̂

d
PISðSÞ
q

ðxÞ � aPISðSÞ

bPISðSÞ � aPISðSÞ ;

�l
d

NISðSÞ
q

ðxÞ ¼
l̂

d
NISðSÞ
q

ðxÞ�aNISðSÞ

bNISðSÞ�aNISðSÞ , where aPISðSÞand bPISðSÞ are

the minimal and maximal values of l̂
d

PISðSÞ
q

ðxÞ, respectively,

and aNISðSÞ and bNISðSÞ are the minimal and maximal values

of l̂
d

NISðSÞ
q

ðxÞ, respectively, over the system constraints.

Now in order to achieve the satisfactory solution of

SLDM, we solve the following max–min decision model:

Max k ð17Þ

Subject to

�l
d

PISðSÞ
q

ðxÞ� k; �l
d

NISðSÞ
q

ðxÞ� k; 0� k� 1;

x 2 S

¼ x ¼ x1; x2ð Þ 2 RN jA1x1 þ A2x2

�

¼

�

0
BB@

1
CCAb; x� 0; b 2 RM

8>><
>>:

9>>=
>>;
;

where k represents the satisfactory level for both criteria of

the minimal distance from the PIS and maximal distance

from the NIS for SLDM. Let xS� ¼ ðxS�
1 ; xS�

2 Þ be the max-

imizing solution of the model (17) and also the satisfactory

solution of the SLDM.

Preference bounds for FLDM and SLDM

In a BLPP, the objectives or goals of both level DMs are

often conflicting in nature. So, cooperation between both

level DMs is necessary for a hierarchical organization in

order to sustain in the open and increasing competitive

markets. For the smooth functioning and the benefit of the

organization, FLDM and SLDM should provide some

relaxations on their decisions to reach at a satisfactory

solution (Pramanik and Dey 2011a; Mishra 2007). Let t
L Fð Þ
1m

and t
RðFÞ
1m , (m = 1, 2, …, N1) be the lower and upper tol-

erance values on the decision vector considered by FLDM,

where xF�
1 = (xF�

11 , xF�
12 , …, xF�

1N1
) such that

xF�

1m � t
LðFÞ
1m � x1m � xF�

1m þ t
RðFÞ
1m ; m ¼ 1; 2; . . .; N1ð Þ:

Also let t
LðSÞ
2n and t

RðSÞ
2n , (n = 1, 2,…, N2) be the lower

and upper tolerance values on the decision vector consid-

ered by SLDM, where xS�
2 = (xS�

21, xS�
22, …, xS�

2N2
) such that

xS�

2n � t
LðFÞ
2n � x2n � xS�

2n þ t
RðSÞ
2n ; n ¼ 1; 2; . . .; N2ð Þ:

Here we consider that both level decision makers provide

relaxation on their decision. This happens in real decision-

making situation. For example, when FLDM needs extra

time duty (overtime duty) from SLDM to produce more

production to meet the urgent market demands (because of

festivals like Durga puja, Id or other reasons), then it

depends upon the decision of the SLDM whether he/she

relaxes his decision to perform extra duties. If SLDM relaxes

his/her decision to perform overtime duty, it gives the

organization opportunity to run smoothly and compete with

other organizations. So the relaxation of SLDM is justified.

FGP approach for BL-MODM problem

Now the crisp BL-MODM problem defined in the ‘problem

formulation’ section is reduced to the following fuzzy BL-

MODM problem as follows:
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Max �l
d

PISðFÞ
q

ðxÞ; �l
d

NISðFÞ
q

ðxÞ; �l
d

PISðSÞ
q

ðxÞ; �l
d

NISðSÞ
q

ðxÞ
n o

ð18Þ

Subject to

x 2 S

¼ x ¼ x1; x2ð Þ 2 RN j A1x1 þ A2x2

�

¼

�

0
BB@

1
CCAb; x� 0; b 2 RM

8>><
>>:

9>>=
>>;
;

xF�

1m � t
LðFÞ
1m � x1m � xF�

1m þ t
RðFÞ
1m ; m ¼ 1; 2; . . .; N1ð Þ

xS�

2n � t
LðFÞ
2n � x2n � xS�

2n þ t
RðSÞ
2n ; n ¼ 1; 2; . . .; N2ð Þ:

In fuzzy decision-making environment, the objective of

each level DM is to obtain maximum possible membership

value (one) of the corresponding fuzzy goal. Now, for the

defined membership goals in (18), the flexible membership

goals according to Pramanik and Roy (2007) with aspira-

tion level one can be formulated as:

�l
d

PISðFÞ
q

ðxÞ þ d�
PISðFÞ � 1;

�l
d

NISðFÞ
q

ðxÞ þ d�
NISðFÞ � 1;

�l
d

PISðSÞ
q

ðxÞ þ d�
PISðSÞ � 1;

�l
d

NISðSÞ
q

ðxÞ þ d�
NISðSÞ � 1:

where d�
PISðFÞ, d�

NISðFÞ, d�
PISðSÞ and d�

NISðSÞ (C0) are the neg-

ative deviational variables.

However, Pramanik and Dey (2011a) imposed restric-

tion on the negative deviational variable.

Therefore, the new FGP formulation according to Pra-

manik and Dey (2011a) for BL-MODM problem can be

formulated as follows:

Model (I):

Minimize c ¼ w1d�
PISðFÞ þw2d�

NISðFÞ þw3d�
PISðSÞ þw4d�

NISðSÞ

ð19Þ

Subject to

�l
d

PISðFÞ
q

ðxÞ þ d�
PISðFÞ ¼ 1;

�l
d

NISðFÞ
q

ðxÞ þ d�
NISðFÞ ¼ 1;

�l
d

PISðSÞ
q

ðxÞ þ d�
PISðSÞ ¼ 1;

�l
d

NISðSÞ
q

ðxÞ þ d�
NISðSÞ ¼ 1;

0� d�
PISðFÞ � 1; 0� d�

NISðFÞ � 1;

0� d�
PISðSÞ � 1; 0� d�

NISðSÞ � 1;

x 2 S

¼ x ¼ x1; x2ð Þ 2 RN j A1x1 þ A2x2

�

¼

�

0
BB@

1
CCAb; x� 0; b 2 RM

8>><
>>:

9>>=
>>;
;

xF�

1m � t
LðFÞ
1m � x1m � xF�

1m þ t
RðFÞ
1m ; m ¼ 1; 2; . . .; N1ð Þ

xS�

2n � t
LðFÞ
2n � x2n � xS�

2n þ t
RðSÞ
2n ; n ¼ 1; 2; . . .; N2ð Þ:

Here, the DMs can take the normalized weight, i.e.,P4
i¼1 wi ¼ 1 with wi = 1/4 or any preference weight in the

decision-making environment.

Model (II):

Minimize r ð20Þ

Subject to

�l
d

PISðFÞ
q

ðxÞ þ d�
PISðFÞ ¼ 1

�l
d

NISðFÞ
q

ðxÞ þ d�
NISðFÞ ¼ 1;

�l
d

PISðSÞ
q

ðxÞ þ d�
PISðSÞ ¼ 1;

�l
d

NISðSÞ
q

ðxÞ þ d�
NISðSÞ ¼ 1;

0� d�
PISðFÞ � 1; 0� d�

NISðFÞ � 1;

0� d�
PISðSÞ � 1; 0� d�

NISðSÞ � 1;

r� d�
PISðFÞ; r� d�

NISðFÞ;

r� d�
PISðSÞ; r� d�

NISðSÞ;

x 2 S

¼ x ¼ x1; x2ð Þ 2 RN j A1x1 þ A2x2

�

¼

�

0
BB@

1
CCAb; x� 0; b 2 RM

8>><
>>:

9>>=
>>;
;

xF�

1m � t
LðFÞ
1m � x1m � xF�

1m þ t
RðFÞ
1m ; m ¼ 1; 2; . . .; N1ð Þ

xS�

2n � t
LðFÞ
2n � x2n � xS�

2n þ t
RðSÞ
2n ; n ¼ 1; 2; . . .; N2ð Þ:

Selection of optimal compromise solution

To obtain the optimal compromise solution of problem, the

family of distance functions (Zeleny 1982) is defined as

follows:

Lrðs; kÞ ¼
XK

k¼1

sr
kð1 � xkÞr

 !1=r

ð21Þ

Here, xk (k = 1, 2, …, K) denotes the degree of

closeness of the preferred compromise solution to the

optimal compromise solution vector with respect to kth

objective function. Also, s = (s1,s2,…, sK) represents the

vector of attribute level sk such that
PK

k¼1 sk = 1. If all

the attribute levels sk are same, then sk = 1/K for k = 1,

2, …, K. Here, r ð1 �
¼

r �
¼
1Þ denotes the distance

parameter.

Now for r = 2, the family of distance functions

become
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L2ðs; kÞ ¼
XK

k¼1

s2
kð1 � xkÞ2

 !1=2

ð22Þ

For minimization type problem, xk = (the individual

best solution/the preferred compromise solution) and

maximization type of problem xk = (the preferred com-

promise solution/the individual best solution). The solution

for which L2ðs; kÞ ¼
PK

k¼1 s2
kð1 � xkÞ2

� �1=2
will be

minimal would be the optimal compromise solution for the

problem.

The TOPSIS algorithm for solving linear fractional

BL-MODM problem

We now present the TOPSIS algorithm for solving linear

fractional BL-MODM problem based on FGP technique by

the following steps:

Step 1: Determine the individual maximum and mini-

mum values of all the objective functions for both level

DMs subject to the system constraints.

Step 2: Identify the positive ideal solution and negative

ideal solution for FLDM and construct d
PISðFÞ
q xð Þ and

d
NISðFÞ
q xð Þ for FLDM.

Step 3: Ask the DMs to select q (q = 1, 2, …, ?).

Step 4: Calculate the maximum and minimum values of

d
PISðFÞ
q xð Þ and d

NISðFÞ
q xð Þ subject to the system constraints.

Step 5: Formulate the membership functions l
d

PISðFÞ
q

ðxÞ
and l

d
NISðFÞ
q

ðxÞ.
Step 6: Linearize the non-linear membership functions

l
d

PISðFÞ
q

ðxÞ and l
d

NISðFÞ
q

ðxÞ into equivalent linear membership

functions l̂
d

PISðFÞ
q

ðxÞ and l̂
d

NISðFÞ
q

ðxÞ, respectively, using first-

order Taylor polynomial series.

Step 7: Normalize l̂
d

PISðFÞ
q

ðxÞ and l̂
d

NISðFÞ
q

ðxÞ.
Step 8: Formulate the model (12) and solve the model to

find the satisfactory solution xF� ¼ ðxF�
1 ; xF�

2 Þ of FLDM.

Step 9: FLDM provides the negative and positive

tolerance values t
LðFÞ
1m and t

RðFÞ
1m (m = 1, 2, …, N1),

respectively, on the decision vector xF�
1 ¼

ðxF�
11 ; xF�

12 ; . . .; xF�
1N1

Þ.
Step 10: Find the positive ideal solution and negative

ideal solution for SLDM and construct d
PISðSÞ
q xð Þ and

d
NISðSÞ
q xð Þ for SLDM.

Step 11: Calculate the maximum and minimum values

of d
PISðSÞ
q xð Þ and d

NISðSÞ
q xð Þ subject to the system

constraints.

Step 12: Construct the membership functions l
d

PISðSÞ
q

ðxÞ
and l

d
NISðSÞ
q

ðxÞ.

Step 13: Linearize the non-linear membership functions

l
d

PISðSÞ
q

ðxÞ and l
d

NISðSÞ
q

ðxÞ into equivalent linear membership

functions l̂
d

PISðSÞ
q

ðxÞ and l̂
d

NISðSÞ
q

ðxÞ, respectively, by utilizing

first-order Taylor polynomial series.

Step 14: Normalize l̂
d

PISðSÞ
q

ðxÞ and l̂
d

NISðSÞ
q

ðxÞ.
Step 15: Formulate the model (17) and solve the model to

obtain the satisfactory solution xS� ¼ ðxS�
1 ; xS�

2 Þ of SLDM.

Step 16: SLDM presents the negative and positive tol-

erance values t
LðSÞ
2n and t

RðSÞ
2n ; n ¼ 1; 2; . . .; N2ð Þ,

respectively, on the decision vector xS�
2 ¼

ðxS�
21; xS�

22; . . .; xS�
2N2

Þ.
Step 17: Formulate the FGP models (19) and (20) for

linear fractional BL-MODM problem.

Step 18: Solve the FGP models (19) and (20) to obtain

the compromise solution of the BL-MODM problem.

Step 19: Distance function L2 (s, k) is utilized in order to

recognize the optimal compromise solution of the problem.

Step 20: If the solution is acceptable to both level DMs

then stop. Otherwise, modify the lower and upper prefer-

ence values of both level DMs and go to Step 17.

Results and discussion

Numerical example

Consider the following numerical example studied by Dey

et al. (2013) with some changes in the first objective function

of SLDM in order to clarify the proposed procedure.

[First level]

Max
x1

z11 xð Þ ¼ 5x1 þ 2x2 þ 3

2x1 � x2 þ 3
; z12 xð Þ ¼ 2x1 þ 5x2 þ 3

x1 þ 4x2 þ 4

� �

[Second level]

Max
x2

z21 xð Þ ¼ 3x1 þ 2x2

x1 þ 5x2 þ 1
; z22 xð Þ ¼ �x1 þ 4x2 þ 3

x1 þ 2x2

� �

Subject to

2x1 þ x2 �5; � x1 þ 3x2 �3; x1 þ x2 �1; x1 �0; x2 �0:

First-level MODM problem:

Max
x1

z11 xð Þ ¼ 5x1 þ 2x2 þ 3

2x1 � x2 þ 3
; z12 xð Þ ¼ 2x1 þ 5x2 þ 3

x1 þ 4x2 þ 4

� �

Subject to

2x1 þ x2 �5; � x1 þ 3x2 �3; x1 þ x2 �1; x1 �0; x2 �0:

The individual best (maximum) solution (PIS) of the

objective functions subject to the constraints is zþ11 = 3.029

at (1.714, 1.571) and zþ12 = 1.231 at (2.5, 0) and the

180 J Ind Eng Int (2014) 10:173–184

123



individual worst (minimum) solution (NIS) of the objective

functions subject to the constraints is z�11 = 1.6 at (1, 0) and

z�12 = 1 at (0.251, 0.749).

Let us assume that a1 = a2 = 0.5, and q = 2.

d
PISðFÞ
2 ðxÞ ¼

ð0:5Þ2
3:029 � 5x1þ2x2þ3

2x1�x2þ3

3:029 � 1:6

" #2

þ ð0:5Þ2
1:231 � 2x1þ5x2þ3

x1þ4x2þ4

1:231 � 1

" #2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1=2

;

d
NISðFÞ
2 ðxÞ ¼

ð0:5Þ2
5x1þ2x2þ3
2x1�x2þ3

� 1:6

3:029 � 1:6

" #2

þ ð0:5Þ2
2x1þ5x2þ3
x1þ4x2þ4

� 1

1:231 � 1

" #2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1=2

:

Also we determine: d
PISðFÞ
2 ðxÞ

� �þ
¼ Minx2S d

PISðFÞ
2

xð Þ ¼ 0:087 at (1.723, 1.554); d
PISðFÞ
2 ðxÞ

� ��
¼

Maxx2S d
PISðFÞ
2 xð Þ ¼ 0:707 at (1, 0); d

NISðFÞ
2 ðxÞ

� �þ
¼

Maxx2S d
NISðFÞ
2 xð Þ ¼ 0:648 at (1.714, 1.571);

d
NISðFÞ
2 ðxÞ

� ��
¼ Minx2S d

NISðFÞ
2 xð Þ ¼ 0 at (1, 0).

The membership functions of d
PISðFÞ
2 (x) and d

NISðFÞ
2 (x)

can be formulated as follows:

l
d

PISðFÞ
2

ðxÞ ¼

0; if 0:707 � d
PISðFÞ
2 ðxÞ

0:707 � d
PISðFÞ
2 ðxÞ

0:707 � 0:087
; if 0:087� d

PISðFÞ
2 ðxÞ � 0:707

1; if d
PISðFÞ
2 ðxÞ � 0:087

8>>>><
>>>>:

;

l
d

NISðFÞ
2

ðxÞ ¼

0; if d
NISðFÞ
2 ðxÞ

� �
� 0

d
NISðFÞ
2 ðxÞ � 0

0:648 � 0
; if 0� d

NISðFÞ
2 ðxÞ � 0:648

1; if d
NISðFÞ
2 ðxÞ � 0:648

8>>>>><
>>>>>:

Transform the non-linear membership functions

l
d

PISðFÞ
2

ðxÞ and l
d

NISðFÞ
2

ðxÞ into equivalent linear membership

functions l̂
d

PISðFÞ
2

ðxÞ and l̂
d

NISðFÞ
2

ðxÞ, respectively, by apply-

ing first-order Taylor polynomial series as follows:

l
d

PISðFÞ
2

ðxÞ¼� l
d

PISðFÞ
2

(1.723, 1.554) ? (x1 - 1.723)

ol
d

PISðFÞ
2

ðxÞ

ox1

� �

at x¼ð1:723; 1:554Þ
? (x2 - 1.554)

ol
d

PISðFÞ
2

ðxÞ

ox2

� �

at x¼ð1:723; 1:554Þ
¼ l̂

d
PISðFÞ
2

ðxÞ = 1 ? (x1 - 1.723)

9 0.226 ? (x2 - 1.554) 9 0.113, where Maxx2S l
d

PISðFÞ
2

ðxÞ = 1 at xPISðFÞ� = (1.723, 1.554),

l
d

NISðFÞ
2

ðxÞ¼� l
d

NISðFÞ
2

(1.714, 1.571) ? (x1 - 1.714)

ol
d

NISðFÞ
2

ðxÞ

ox1

� �

at x¼ð1:714; 1:571Þ
? (x2 - 1.571)

ol
d

NISðFÞ
2

ðxÞ

ox2

� �

at x¼ð1:714; 1:571Þ
¼ l̂

d
NISðFÞ
2

ðxÞ = 1 ? (x1 - 1.714)

9 0.053 ? (x2 - 1.571) 9 0.474, where Max
x2S

l
d

NISðFÞ
2

ðxÞ

= 1 at xNISðFÞ� = (1.714, 1.571).

Normalize l̂
d

PISðFÞ
2

ðxÞ and l̂
d

NISðFÞ
2

ðxÞ:

�l
d

PISðFÞ
2

ðxÞ ¼
l̂

d
PISðFÞ
2

ðxÞ�aPISðFÞ

bPISðFÞ�aPISðFÞ , where bPISðFÞ ¼

Max
x2S

l̂
d

PISðFÞ
2

ðxÞ ¼ 1 and aPISðFÞ ¼ Min
x2S

l̂
d

PISðFÞ
2

ðxÞ= 0.548;

�l
d

NISðFÞ
2

ðxÞ ¼
l̂

d
NISðFÞ
2

ðxÞ � aNISðFÞ

bNISðFÞ � aNISðFÞ ; where

bNISðFÞ ¼ Max
x2S

l̂
d

NISðFÞ
2

ðxÞ ¼ 1 and

aNISðFÞ ¼ Min
x2S

l̂
d

NISðFÞ
2

ðxÞ ¼ 0:218:

Solve the following model in order to get the satisfac-

tory solution of FLDM:

Max b

Subject to

�l
d

PISðFÞ
2

ðxÞ�b; �l
d

NISðFÞ
2

ðxÞ�b; 0�b� 1;

2x1 þ x2 � 5; � x1 þ 3x2 � 3; x1 þ x2 � 1; x1 � 0; x2 � 0:

We get the satisfactory solution of the FLDM as

xF�
= (xF�

1 ,xF�
2 ) = (1.714, 1.571) with b = 1. Suppose that

the FLDM decides xF�

1 = 1.714 with upper tolerance

t
RðFÞ
1 = 0.286 and lower tolerance t

LðFÞ
1 = 0.214 such that

1.714 - 0.214 B x1 B1.714 ? 0.286.

Second-level MODM problem:

Max
x2

z21 xð Þ ¼ 3x1 þ 2x2

x1 þ 5x2 þ 1
; z22 xð Þ ¼ �x1 þ 4x2 þ 3

x1 þ 2x2

� �

Subject to

2x1 þ x2 � 5; � x1 þ 3x2 � 3; x1 þ x2 � 1;
x1 � 0; x2 � 0:

The individual best solution of the objective functions of

SLDM subject to the constraints is zþ21 = 2.143 at (2.5, 0)

and zþ22 = 3.5 at (0, 1) and the individual worst solution of
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the objective functions of SLDM subject to the constraints

is z�21 = 0.333 at (0, 1) and z�22 = 0.2 at (2.5, 0).

d
PISðSÞ
2 ðxÞ ¼

ð0:5Þ2
2:143 � 3x1þ2x2

x1þ5x2þ1

2:143 � 0:333

" #2

þ ð0:5Þ2
3:5 � �x1þ4x2þ3

x1þ2x2

3:5 � 0:2

" #2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1=2

d
NISðSÞ
2 ðxÞ ¼

ð0:5Þ2
3x1þ2x2

x1þ5x2þ1
� 0:333

2:143 � 0:333

" #2

þ ð0:5Þ2
�x1þ4x2þ3

x1þ2x2
� 0:2

3:5 � 0:2

" #2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1=2

Also we calculate: d
PISðSÞ
2 ðxÞ

� �þ
¼ Minx2S d

PISðSÞ
2 xð Þ ¼

0:288 at (1, 0); d
PISðSÞ
2 ðxÞ

� ��
¼ Maxx2S d

PISðSÞ
2 xð Þ ¼ 0:477

at (1.714, 1.571); d
NISðSÞ
2 ðxÞ

� �þ
¼ Maxx2S d

NISðSÞ
2 xð Þ ¼ 0:5

at (0, 1); d
NISðSÞ
2 ðxÞ

� ��
¼ Minx2S d

NISðSÞ
2 xð Þ ¼ 0:238 at

(1.847, 1.305).

The membership functions of d
PISðSÞ
2 (x) and d

NISðSÞ
2 (x)

can be constructed as:

l
d

PISðSÞ
2

ðxÞ ¼

0; if 0:477 � d
PISðSÞ
2 ðxÞ

0:477 � d
PISðSÞ
2 ðxÞ

0:477 � 0:288
if ; 0:288� d

PISðSÞ
2 ðxÞ� 0:477

1; if d
PISðSÞ
2 ðxÞ� 0:288

8>>><
>>>:

;

l
d

NISðSÞ
2

ðxÞ ¼

0; if d
NISðSÞ
2 ðxÞ

� �
� 0:238

d
NISðSÞ
2 ðxÞ � 0:238

0:5 � 0:238
; if ; 0:238� d

NISðSÞ
2 ðxÞ� 0:5

1; if d
NISðSÞ
2 ðxÞ� 0:5

8>>><
>>>:

We also transform the non-linear membership functions

l
d

PISðSÞ
2

ðxÞ and l
d

NISðSÞ
2

ðxÞ into equivalent linear membership

functions l̂
d

PISðSÞ
2

ðxÞ and l̂
d

NISðSÞ
q

ðxÞ, respectively, using first-

order Taylor polynomial series as:

l
d

PISðSÞ
2

ðxÞ¼� l
d

PISðSÞ
2

1; 0ð Þ þ x1�1ð Þ

ol
d

PISðSÞ
2

ðxÞ
ox1

 !

at x¼ð1; 0Þ

þ x2� 0ð Þ
ol

d
PISðSÞ
2

ðxÞ
ox2

 !

at x¼ð1; 0Þ

¼ l̂
d

PISðSÞ
q

ðxÞ

=1 ? (x1 - 1) 9 (-1.22) ? (x2 - 0) 9 (-2.474),

where

Maxx2S l
d

PISðSÞ
2

ðxÞ ¼ 1 at xPISðSÞ� ¼ 1; 0ð Þ;

l
d

NISðSÞ
2

ðxÞ¼� l
d

NISðFÞ
q

0; 1ð Þ þ x1� 0ð Þ

ol
d

NISðSÞ
2

ðxÞ
ox1

 !

at x¼ð0; 1Þ

þ x2� 0ð Þ
ol

d
NISðSÞ
2

ðxÞ
ox2

 !

at x¼ð0; 1Þ

¼ l̂
d

NISðSÞ
2

ðxÞ ¼ 1 þ x1� 0ð Þ � �1:156ð Þ þ x2�1ð Þ �
�0:867ð Þ; where Maxx2Sld

PISðSÞ
2

ðxÞ ¼ 1 at xPISðSÞ� ¼ 0; 1ð Þ:
Normalize l̂

d
PISðSÞ
2

ðxÞ and l̂
d

NISðSÞ
2

ðxÞ:

�l
d

PISðSÞ
2

ðxÞ ¼
l̂

d
PISðSÞ
2

ðxÞ � aPISðSÞ

bPISðSÞ � aPISðSÞ ; where

bPISðSÞ ¼ Max
x2S

l̂
d

PISðSÞ
2

ðxÞ ¼ 1 and

aPISðSÞ ¼ Min
x2S

l̂
d

PISðSÞ
2

ðxÞ ¼ �3:759;

�l
d

NISðSÞ
2

ðxÞ ¼
l̂

d
NISðSÞ
2

ðxÞ � aNISðSÞ

bNISðSÞ � aNISðSÞ ; where

bNISðSÞ ¼ Max
x2S

l̂
d

NISðSÞ
2

ðxÞ ¼ 1 and

aNISðSÞ ¼ Min
x2S

l̂
d

NISðSÞ
2

ðxÞ ¼ �1:477:

Solve the following model in order to get the satisfac-

tory solution of SLDM:

Max k

Subject to

�l
d

PISðSÞ
q

ðxÞ; � k; �l
d

NISðSÞ
q

ðxÞ� k; 0� k� 1;

2x1 þ x2 � 5; � x1 þ 3x2 � 3; x1 þ x2 � 1;
x1 � 0; x2 � 0:

We obtain the satisfactory solution of the SLDM as

xS� ¼ ðxS�
1 ; xS�

2 Þ ¼ 0:693; 0:307ð Þ with k ¼ 0:919. Also

let the SLDM decides xS�

2 ¼ 0:307 with upper tolerance

t
RðSÞ
2 ¼ 0:693 and lower tolerance t

LðSÞ
2 ¼ 0:057 such that

0.307 - 0.057 B x2 B 0.307 ? 0.693.

Finally, the FGP models for solving linear fractional

BL-MODM problem are presented as follows:

Model (I):

Minimize c ¼ 1=4 ðd�
PISðFÞ þ d�

NISðFÞ þ d�
PISðSÞ þ d�

NISðSÞÞ

Subject to

1 þ x1 � 1:723ð Þ � 0:226 þ x2 � 1:554ð Þ � 0:113ð Þ� 0:548Þð Þ
= 0:452 þ d�

PISðFÞ ¼ 1;

1 þ x1 � 1:714ð Þ � 0:053 þ x2 � 1:571ð Þ � 0:474ð Þ � 0:218ð Þ
= 0:782 þ d�

NISðFÞ ¼ 1;

1 þ x1 � 1ð Þ � �1:22ð Þ þ x2 � 0ð Þ � �2:474ð Þð Þ þ 3:759ð Þ
=4:759 þ d�

PISðSÞ ¼ 1;
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1 þ x1 � 0ð Þ � �1:156ð Þ þ x2 � 1ð Þ � �0:867ð Þð Þ þ 1:477Þð Þ
=2:477 þ d�

NISðSÞ ¼ 1;

0� d�
PISðFÞ � 1; 0� d�

NISðFÞ � 1; 0� d�
PISðSÞ � 1;

0� d�
NISðSÞ � 1;

2x1 þ x2 � 5; � x1 þ 3x2 � 3; x1 þ x2 � 1;

1:714� 0:214� x1 � 1:714 þ 0:286;

0:307� 0:057� x2 � 0:307 þ 0:693;

x1 � 0; x2 � 0:

The solution of the FGP model (I) is presented in

Table 1.

Model (II):

Minimize r

Subject to

1 þ x1 � 1:723ð Þ � 0:226 þ x2 � 1:554ð Þ � 0:113ð Þ� 0:548ð Þ.
0:452 þ d�

PISðFÞ ¼ 1;

1 þ x1 � 1:714ð Þ � 0:053 þ x2 � 1:571ð Þ � 0:474ð Þ � 0:218ð Þ.
0:782 þ d�

NISðFÞ ¼ 1;

1 þ x1 � 1ð Þ � �1:22ð Þ þ x2 � 0ð Þ � �2:474ð Þð Þ þ 3:759ð Þ.
4:759 þ d�

PISðSÞ ¼ 1;

ð1 þ x1 � 0ð Þ � �1:156ð Þ þ x2 � 1ð Þ � �0:867ð Þð Þ þ 1:477ð Þ.
2:477 þ d�

NISðSÞ ¼ 1;

0� d�
PISðFÞ � 1; 0� d�

NISðFÞ � 1; 0� d�
PISðSÞ � 1;

0� d�
NISðSÞ � 1;

r� d�
PISðFÞ; r� d�

NISðFÞ; r� d�
PISðSÞ; r� d�

NISðSÞ;

2x1 þ x2 � 5; � x1 þ 3x2 � 3; x1 þ x2 � 1;

1:714� 0:214� x1 � 1:714 þ 0:286;

0:307� 0:057� x2 � 0:307 þ 0:693;

x1 � 0; x2 � 0:

The solution offered by the FGP model (II) is presented

in Table 1.

On comparing the distance function (see the Table 1),

we observe that our proposed FGP Model (II) offers better

compromise optimal solution than the solution obtained by

Dey et al. (2013) and Baky and Abo-Sinna (2013).

Therefore, the compromise optimal solution of the problem

is obtained as x1 = 1.5, x2 = 0.645.

Note 1: Solutions of the problem are obtained using

software Lingo version 6.

Conclusion

We have presented a new approach for dealing with linear

fractional BL-MODM problem. In the paper, we have

studied TOPSIS approach for solving linear fractional BL-

MODM problem, which is a hybrid model of TOPSIS and

fuzzy goal programming. In the proposed approach, first

the membership functions of distance functions from PIS

and NIS of first and second levels are formulated. Linear-

ization technique is used in order to transform the non-

linear membership functions into equivalent linear mem-

bership functions using first-order Taylor series approxi-

mation and normalization technique (Stanojević 2013) is

employed to normalize them. Thereafter, max–min models

are formulated in order to obtain the satisfactory decision

for each level DM. Both level DMs consider a possible

relaxation on their decision for the benefit of the hierar-

chical organization. The FGP models are then developed in

order to achieve highest degree of the membership goals of

both level DMs by minimizing negative deviational vari-

ables. Distance functions are also utilized to identify

optimal compromise solution. Finally, an illustrative

numerical example is provided to demonstrate the effec-

tiveness of the proposed TOPSIS approach. We hope that

Table 1 Comparison of distance for the compromise solution of the problem based on different approaches

Methods Optimal

solution

Decision

variables x1, x2

Objective values

of FLDM z11, z12

Objective values

of SLDM z21, z22

Membership values

lz11
, lz12

, lz21
, lz22

Distance

values

Proposed FGP

model (I)

c = 0.487 x1 = 1.5,

x2 = 0.25

z11 = 1.913,

z12 = 1.115

z21 = 1.333,

z22 = 1.25

lz11
= 0.219, lz12

= 0.5,

lz21
= 0.553, lz22

= 0.318

0.8370006

Proposed FGP

model (II)

r = 0.576 x1 = 1.5,

x2 = 0.645

z11 = 2.202,

z12 = 1.142

z21 = 1.011,

z22 = 1.462

lz11
= 0.421, lz12

= 0.613,

lz21
= 0.375, lz22

= 0.382

0.8352558

Dey et al. (2013) q = 0.915 x1 = 1.5,

x2 = 0.25

z11 = 1.913,

z12 = 1.115

z21 = 1.333,

z22 = 1.25

lz11
= 0.219, lz12

= 0.5,

lz21
= 0.553, lz22

= 0.318

0.8370006

Baky and Abo-

Sinna (2013)

d ¼ 0:591 x1 = 2,

x2 = 0.115

z11 = 1.922,

z12 = 1.173

z21 = 1.743,

z22 = 0.655

lz11
= 0.225, lz12

= 0.747,

lz21
= 0.779, lz22

= 0.138

0.9119718
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the proposed methodology can be effective in dealing with

the non-linear BL-MODM, multi-level MODM problems

and other real-world decision-making problems.
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