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Abstract A deterministic inventory model with two levels

of storage (own warehouse and rented warehouse) with

non-instantaneous deteriorating items is studied. The sup-

plier offers the retailer a trade credit period to settle the

amount. Different scenarios based on the deterioration and

the trade credit period have been considered. In this article,

we have framed two models considering single warehouse

(Model-I) and two warehouses (Model-II) for non-instan-

taneous deteriorating items. The objective of this work is to

minimize the total inventory cost and to find the optimal

length of replenishment and the optimal order quantity.

Mathematical theorems have been developed to determine

the existence and the uniqueness of the optimal solution.

Computational algorithms for the two different models are

designed to find the optimal order quantity and the optimal

cycle time. Comparison between the optimal solutions for

the two models is also given. Numerical illustrations and

managerial insights obtained demonstrate the application

and the performance of the proposed theory.

Keywords Inventory � Non-instantaneous deterioration �
Permissible delay in payment � Two warehouses

Introduction

Deterioration plays an essential role in many inventory

systems. Deterioration is defined as decay, damage, obso-

lescence, evaporation, spoilage, loss of utility, or loss of

marginal value of a commodity which decreases the orig-

inal quality of the product. Many researchers such as Ghare

and Schrader (1963), Philip (1974), Goyal and Giri (2001),

Li and Mao (2009), Geetha and Udayakumar (2015) and

Mahata (2015) assume that the deterioration of the items in

inventory starts from the instant of their arrival.

However, most of the goods such as medicine, volatile

liquids, and blood banks, undergo decay or deterioration

over time. Wu et al. (2006) defined the term ‘‘non-instan-

taneous’’ for such deteriorating items. He gave an optimal

replenishment policy for non-instantaneous deteriorating

items with stock-dependent demand and partial backlog-

ging. In this direction, researchers have developed their

inventory model for a single warehouse which has unlim-

ited capacity. This assumption is not applicable in real-life

situation. When an attractive price discount for bulk pur-

chase is available, the management decides to purchase a

huge quantity of items at a time. These goods cannot be

stored in the existing storage (the owned warehouse with

limited capacity). However, to take advantage, it may be

profitable for the retailer to hire another storage facility

called the rented warehouse. Units are continuously

transferred from rented warehouse to owned and sold from

owned warehouse. Usually, the holding cost in rented

warehouse is higher than that in owned warehouse, due to

the non-availability of better preserving facility which

results in higher deterioration rate. Hence to reduce the

holding cost, it is more economical to consume the goods

of rented warehouse at the earliest.
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Trade credit is an essential tool for financing growth for

many businesses. The number of days for which a credit is

given is determined by the company allowing the credit

and is agreed on by both the company allowing the credit

and the company receiving it. By payment extension date,

the company receiving the credit essentially could sell the

goods and use the credited amount to pay back the debt. To

encourage sales, such a credit is given. During this credit

period, the retailer can accumulate and earn interest on the

encouraged sales revenue. In case of an extension period,

the supplier charges interest on the unpaid balance. Hence,

the permissible delay period indirectly reduces the cost of

holding cost. In addition, trade credit offered by the sup-

plier encourages the retailer to buy more products. Hence,

the trade credit plays a major role in inventory control for

both the supplier as well as the retailer. Goyal (1985)

developed an EOQ model under the condition of a per-

missible delay in payments. Aggarwal and Jaggi (1995)

then extended Goyal’s model to allow for deteriorating

items under permissible delay in payments. Uthayakumar

and Geetha (2009) developed a replenishment policy for

non-instantaneous deteriorating inventory system with

partial backlogging.

In this direction, we have formulated a model for non-

instantaneous deteriorating items with two levels of storage

and the supplier offers the retailer a trade credit period to

settle the amount. The rest of this paper is organized as

follows. Literature review carried is given in the ‘‘Litera-

ture review’’. The assumptions and notations which are

used throughout the article are presented in ‘‘Problem

description’’. In ‘‘Model formulation’’, mathematical

model to minimize the total cost is formulated and the

solution methodology comprising some useful theoretical

results to find the optimal solution is given. Computational

algorithm is designed to obtain the optimal values in the

‘‘Algorithm’’. ‘‘Numerical examples’’ is provided to illus-

trate the theory and the solution procedure. Following this,

sensitivity analysis for the major parameters of the inven-

tory system has been analyzed and the comparison between

the two models is studied in ‘‘Comparative study of the

results between the two models’’. Managerial implications

with respect to the sensitivity analysis were given in

‘‘Managerial implication’’. Finally, we draw a conclusion

in ‘‘Conclusion’’.

Literature review

During the last few decades, a number of research papers in

the inventory area for deteriorating items have been pub-

lished by several researchers. Mukhopadhyay et al. (2004)

considered joint pricing and ordering policy for a deterio-

rating inventory. Malik and Singh (2011) developed an

inventory model for deteriorating items with soft-comput-

ing techniques and variable demand. Taleizadeh (2014b)

developed an economic-order quantity model with partial

backordering and advance payments for an evaporating

item. Taleizadeh and Nematollahi (2014) established an

inventory control problem for deteriorating items with

backordering and financial considerations. Taleizadeh

(2014a) developed an economic-order quantity model for

deteriorating item in a purchasing system with multiple

prepayments. Taleizadeh et al. (2015) gave a joint opti-

mization of price, replenishment frequency, replenishment

cycle, and production rate in vendor-managed inventory

system with deteriorating items. Tavakoli and Taleizadeh

(2017) gave a lot sizing model for decaying item with full

advance payment from the buyer and conditional discount

from the supplier.

Ouyang et al. (2006) derived an inventory model for

non-instantaneous deteriorating items with permissible

delay in payments. Liao (2008) discussed an EOQ model

with non-instantaneous receipt and exponentially deterio-

rating items under two-level trade credits. Maihami and

Kamal Abadi (2012) gave a joint control of inventory and it

is pricing for non-instantaneously deteriorating items under

permissible delay in payments and partial backlogging.

Soni (2013) established an optimal replenishment policy

for non-instantaneous deteriorating items with price and

stock-sensitive demand under permissible delay in pay-

ment. Tat et al. (2013) developed and EOQ model with

non-instantaneous deteriorating items in vendor-managed

inventory system. Udayakumar and Geetha (2014) gave an

optimal replenishment policy for non-instantaneous dete-

riorating items with inflation-induced time-dependent

demand. Maihami and Karimi (2014) developed pricing

and replenishment policy for non-instantaneous deterio-

rating items with stochastic demand and promotional

efforts. Geetha and Udayakumar (2016) developed an

optimal lot sizing policy for non-instantaneous deteriorat-

ing items with price and advertisement-dependent demand

under partial backlogging. Wu et al. (2014) gave a note on

optimal replenishment policies for non-instantaneous

deteriorating items with price and stock-sensitive demand

under permissible delay in payment. Zia and Taleizadeh

(2015) gave a lot sizing model with backordering under

hybrid linked to order multiple advance payments and

delayed payment. Udayakumar and Geetha (2016) devel-

oped an economic-ordering policy for non-instantaneous

deteriorating items over finite-time horizon. Taleizadeh

et al. (2016) developed an imperfect economic production

quantity model with up-stream trade credit periods linked

to raw material-order quantity and downstream trade credit

periods. Heydari et al. (2017) discussed a two-level day in

payments contract for supply chain coordination in the case

of credit-dependent demand.
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In existing literature, Sarma (1987) was the first to

develop a deterministic inventory model with two levels of

storage and an optimum release rate. Murdeshwar and

Sathe (1985) gave some aspects of lot size model with two

levels of storage. Pakkala and Achary (1992) developed a

deterministic inventory model for deteriorating items with

two warehouses and finite-replenishment rates. Goswami

and Chaudhuri (1992) established an economic-order

quantity model for items with two levels of storage for a

linear trend in demand. Benkherouf (1997) established a

deterministic-order-level inventory model for deteriorating

items with two storage facilities. Bhunia and Maiti

(1994, 1998) gave a two-warehouse inventory model for a

linear trend in demand. Ray et al. (1998) developed an

inventory model with two levels of storage and stock-de-

pendent demand rate. Lee and Ying (2000) derived an

optimal inventory policy for deteriorating items with two

warehouses and time-dependent demand. Deterministic

inventory model with two levels of storage, a linear trend

in demand and a fixed time horizon, was derived by Kar

et al. (2001). Yang (2004) gave two-warehouse inventory

model for deteriorating items with shortages under infla-

tion. Zhou and Yang (2005) derived the model for two

warehouses with stock-level-dependent demand. Yang

(2006) developed two-warehouse partial backlogging

inventory models for deteriorating items under inflation.

Lee (2006) investigated two-warehouse inventory model

with deterioration under FIFO dispatching policy. Chung

and Huang (2007) derived an optimal retailer’s ordering

policies for deteriorating items with limited storage

capacity under trade credit financing. Hsieh et al. (2007)

determined an optimal lot size for a two-warehouse system

with deterioration and shortages using net present value.

Rong et al. (2008) gave a two-warehouse inventory model

for a deteriorating item with partially/fully backlogged

shortage and fuzzy lead time. Lee and Hsu (2009) gave a

two-warehouse production model for deteriorating inven-

tory items with time-dependent demands. Liang and Zhou

(2011) developed the two-warehouse inventory model for

deteriorating items under conditionally permissible delay

in payment. Agrawal et al. (2013) derived the model with

ramp-type demand and partially backlogged shortages for a

two-warehouse system. Liao et al. (2012, 2013) developed

two-warehouse inventory models under different assump-

tions. Jaggi et al. (2014) discussed under credit financing in

a two-warehouse environment for deteriorating items with

price-sensitive demand and fully backlogged shortages.

Bhunia and Shaikh (2015) gave an application of PSO in a

two-warehouse inventory model for deteriorating item

under permissible delay in payment with different inven-

tory policies. Lashgari et al. (2016) considered partial up-

stream advanced payment and partial up-stream delayed

payment in a three-level supply chain. Lashgari and

Taleizadeh (2016) developed an inventory control problem

for deteriorating items with backordering and financial

considerations under two levels of trade credit linked to

order quantity. In the literature, the warehouse owned by

the retailer is referred to as owned warehouse OW, while

the one hired on rent is referred to as rented warehouse

RW. The major assumptions used in the previous articles

are summarized in Table 1.

From Table 1, it is clear that, the two-warehouse system

for non-instantaneous deteriorating items under trade credit

policy with the assumption of a[ b[ 0 has not been

considered previously in the literature, represents several

practical real-life situations. A typical example of indus-

tries that actually operate under the same set of assump-

tions is the food industry, vegetable markets, fruits stall,

supermarkets, etc., and the product may deteriorate after

certain time. With longer storage durations, many pro-

cessed food items require more sophisticated warehousing

facilities. Moreover, in the model developed by Liang and

Zhou (2011), they considered instantaneous deteriorating

items under delay in payment. In the present work, we have

made an attempt to investigate the above issues together

and derive a model that helps the retailer to reduce the total

inventory cost of the inventory system, where permissible

delay in payment is offered. The parameters of the pro-

posed model are given in Table 2.

Problem description

To the best of our knowledge, there is no work considering

both single-warehouse and two-warehouse models for non-

instantaneous deteriorating items with trade credit. To

bridge this gap, we have framed two models considering

single warehouse (Model-I) and two warehouses (Model-

II). Different scenarios based on deterioration time and

trade credit period are considered and the theoretical results

to find the optimal solution are derived. The main objective

of the proposed work is to determine the optimal cycle time

and the optimal-order quantity in the above-said situations,

such that the total cost is minimized. We consider the

different types of storage capacity, so that it will suit to

different situations in realistic environment. To develop the

mathematical model, the following assumptions are being

made.

Assumptions

i. Demand rate is known and constant. Demand is

satisfied initially from goods stored in RW and

continues with those in OW once inventory stored at

RW is exhausted. This implies that tw\T . The

replenishment rate is infinite and the lead time is
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zero. The time horizon is infinite. Shortages are not

allowed.

ii. The owned warehouse OW has limited capacity of

W units and the rented warehouse RW has unlimited

capacity. For economic reasons, the items of RW are

consumed first and next the items of OW.

iii. The items deteriorate at a fixed rate a in OW and at b
in RW, for the rented warehouse offers better

facility, so a[ b, and hr � ho [ c a� bð Þ (following
Liang and Zhou (2011)). To guarantee that the

optimal solution exists, we assume that aW\D; that

is, deteriorating quantity for items in OW is less than

the demand rate.

iv. When T �M, the account is settled at T ¼ M.

Beyond the fixed credit period, the retailer begins

paying the interest charges on the items in stock at

rate Ip. Before the settlement of the replenishment

amount, the retailer can use the sales revenue to earn

the interest at annual rate Ie, where Ip � Ie: When

T �M, the account is settled at T ¼ M and the

retailer does not pay any interest charge. Alterna-

tively, the retailer can accumulate revenue and earn

interest until the end of the trade credit period.

Table 1 Summary of related literatures for two-warehouse inventory model

References Deterioration rate in OW ða)
and in RW ðbÞ

Demand

rate

Deterioration Delay in

payment

Permissible shortage Objective

function

Sarma (1987) a[b Constant Instantaneous No Completely

backlogged

Cost

Goswami and

Chaudhuri (1992)

a ¼ b ¼ 0 Time

dependent

Instantaneous No No Cost

Benkherouf (1997) a[b Time

dependent

Instantaneous No Completely

backlogged

Cost

Bhunia and Maiti

(1998)

0\a;b\1 Time

dependent

Instantaneous No Completely

backlogged

Cost

Yang (2004) a\b, 0\a;b\1 Constant Instantaneous No Completely

backlogged

Cost

Zhou and Yang (2005) a ¼ b ¼ 0 Constant Instantaneous No No Profit

Yang (2006) a 6¼ b, 0\a; b\1 Constant Instantaneous No Partially backlogged Cost

Lee (2006) a\1;b[ 0 Constant Instantaneous No Completely

backlogged

Cost

Chung and Huang

(2007)

a ¼ b Constant Instantaneous Yes No Cost

Hsieh et al. (2007) 0\a\1

0\b\1

Constant Instantaneous No Partially backlogged Cost

Rong et al. (2008) a\b Price

dependent

Instantaneous No Partially/completely

backlogged

Profit

Lee and Hsu (2009) 0\a;b\1 Time

dependent

Instantaneous No No Cost

Liang and Zhou

(2011)

a[b Constant Instantaneous Yes No Cost

Liao et al. (2012) a ¼ b Constant Instantaneous Yes No Cost

Liao et al. (2013) b[ a Constant Instantaneous Yes No Cost

Jaggi et al. (2014) 0\a;b\\1 Price

dependent

Instantaneous Yes Completely

backlogged

Profit

Bhunia and Shaikh

(2015)

a[b Price

dependent

Instantaneous Yes Partially backlogged Profit

Table 2 Parameters in the proposed model

Parameters

Deterioration rate in OW ða) and in RW ðbÞ a[b

Demand rate Constant

Deterioration Non-instantaneous

Delay in payment Yes

Permissible shortage No

Objective function Cost
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Notations

In addition, the following notations are used throughout

this paper:

OW The owned warehouse

RW The rented warehouse

D The demand per unit time

k The replenishment cost per order ($/order)

c The purchasing cost per unit item ($/unit)

p The selling price per unit item p[ c

hr The holding cost per unit per unit time in RW

ho The holding cost per unit per unit time in OW

a The deterioration rate in OW

b The deterioration rate in RW

M Permissible delay in settling the accounts

Ip The interest charged per dollar in stocks per year

Ie The interest earned per dollar per year

td The length of time in which the product has no

deterioration

I0ðtÞ The inventory level in OW at time t

IrðtÞ The inventory level in RW at time t

W The storage capacity of OW

Q The retailer’s order quantity (a decision variable)

TCi The total relevant costs

tw The time at which the inventory level reaches zero

in RW

T The length of replenishment cycle (a decision

variable)

Model formulation

In this article, we consider two different inventory models,

namely, single-warehouse system and two-warehouse sys-

tem. Based on the values of M, td, and tw, the classification

for the two different models is given in Table 3.

Model-I (single-warehouse system)

In this system, two scenarios based on values of tdandT

arise.

Scenario I: td\T

In this case, demand becomes constant before the inventory

level becomes zero. Thus, inventory level at OW decreases

because of the increasing demand in the interval ð0; tdÞ and
because of the constant demand and deterioration in the

interval td; Tð Þ. The behavior of the model is given in

Fig. 1.

Hence, the change in the inventory level in OW at any

time t in the interval ð0; TÞ is given by the following dif-

ferential equations:

dI01 tð Þ
dt

¼� D; 0\t\td;

dI02ðtÞ
dt

¼� D� aI02 tð Þ; td\t\T ;

with the boundary condition I02 Tð Þ ¼ 0:

The solutions of the above equation are given, respec-

tively, by

I01 tð Þ ¼D td � tð Þ þ D

a
ea T�tdð Þ � 1
h i

; 0\t\td;

I02 tð Þ ¼D

a
ea T�tð Þ � 1
h i

; td\t\T :

Furthermore, at t ¼ td, we get

Q ¼ Dtd þ
D

a
ea T�tdð Þ � 1
h i

:

Based on the assumptions and description of the model,

the total annual relevant costs (ordering cost ? holding

Table 3 Classification of the model

Model Scenario Case-1 Case-2 Case-3 Case-4

Model-I: single-warehouse system Scenario I: td\T 0\M� td td\M� T M[T –

Scenario II: td [T M\T M[ T – –

Model-II: two-warehouse system Scenario I: td\tw\T 0\M� td td\M� tw tw\M� T M[T

Scenario II: tw\td\T 0\M� tw tw\M� td td\M� T M[T

Scenario III: td [T 0\M� tw tw\M� T M[T –

Fig. 1 Single-warehouse inventory system when td\T
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cost ? deterioration cost ? interest payable - interest

earned) is given by

TC Tð Þ ¼
TC1 Tð Þ; 0\M� td
TC2 Tð Þ; td\M� T

TC3 Tð Þ; M[ T

8<
: ;

where

Case 1 (0\M� td)

TC1 Tð Þ ¼ 1

T
k þ D

a2
ho þ caþ cIp
� �

ðea T�tdð Þ
�

�a T � tdð Þ � 1Þ þ Dho

2
t2d þ td ea T�tdð Þ

� �h i

þ cIpD
t2d
2
� tdM þM2

2

� �
þ 1

a
ðea T�tdð Þ � 1Þ td �Mð Þ

	 


� pIeDM
2

2

�
:

ð1Þ

Case 2 (td\M� T)

TC2 Tð Þ ¼ 1

T
k þ D

a2
ho þ cað Þ ea T�tdð Þ � a T � tdð Þ � 1

� ��

þDho

2
t2d þ td ea T�tdð Þ

� �h i

þ cIpD

a2
ea T�Mð Þ � a T �Mð Þ � 1
h i

� pIeDM
2

2

�
:

ð2Þ

Case 3 (M[ T)

TC3 Tð Þ ¼ 1

T
k þ D

a2
ho þ cað Þ ea T�tdð Þ � a T � tdð Þ � 1

� ��

þDho

2
t2d þ td ea T�tdð Þ

� �h i
� pIeD M � T

2

	 
�
:

ð3Þ

Since T is the decision variable, the necessary condition

to find the optimum value of T to minimize the total cost is
dTC1

dT
¼ 0; dTC2

dT
¼ 0; dTC3

dT
¼ 0, which yield

dTC1

dT
¼ �k þ D

a2
ho þ caþ cIp
� �

� aTðea T�tdð Þ � 1Þ � ea T�tdð Þ � a T � tdð Þ � 1
� �h i

þ cIpD
t2d
2
� tdM þM2

2

� �
þ Dho

2

� aTtde
a T�tdð Þ � t2d þ td ea T�tdð Þ � 1

� �� �h i

þ cIpD

a
ðaT � 1Þ td �Mð Þea T�tdð Þ
h i

þ pIeDM
2

2
¼ 0;

ð4Þ

dTC2

dT
¼ �k þ D

a2
ho þ cað Þ aTðea T�tdð Þ � 1Þ

h

� ea T�tdð Þ � a T � tdð Þ � 1
� �i

þ Dho

2
aTtde

a T�tdð Þ � t2d þ td ea T�tdð Þ � 1
� �� �h i

þ cIpD

a2
aT � 1ð Þ ea T�Mð Þ � 1

� �h

� ea T�Mð Þ � a T �Mð Þ � 1
� �i

þ pIeDM
2

2
¼ 0;

ð5Þ
dTC3

dT
¼ �k þ D

a2
ho þ cað Þ aTðea T�tdð Þ � 1Þ

h

� ea T�tdð Þ � a T � tdð Þ � 1
� �i

þ Dho

2
aTtde

a T�tdð Þ � t2d þ td ea T�tdð Þ � 1
� �� �h i

þ pIeDM ¼ 0;

ð6Þ

provided they satisfy the sufficient condition
d2TC1ðTÞ
dT2

[ 0,
d2TC2ðTÞ
dT2

[ 0, and
d2TC3ðTÞ
dT2

[ 0.

Scenario II: td [ T

In this case, demand becomes constant before the inventory

level becomes zero. Thus, inventory level at OW decreases

because of the increasing demand in the interval 0; Tð Þ
(refer Fig. 2).

Hence, the change in the inventory level in OW at any

time t in the interval ð0; TÞ is given by the following dif-

ferential equation:

dI01 tð Þ
dt

¼ �D; 0\t\T ;

with the boundary condition I01 Tð Þ ¼ 0:
The solution of the above equation is

I01 tð Þ ¼ D t � Tð Þ; 0\t\T:

Based on the assumptions and description of the model, the

total annual relevant costs is given by

Fig. 2 Single-warehouse inventory system when td [T
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TC Tð Þ ¼ TC4 Tð Þ; M\T

TC5 Tð Þ; M[ T

�
;

where

Case 1 (M\T)

TC4 Tð Þ ¼ 1

T
k þ hoDT

2

2
þ cIpD

T2

2
� TM þM2

2

	 

� pIeDM

2

2

� �
:

ð7Þ

Case 2 (M[ T)

TC5 Tð Þ ¼ 1

T
k þ hoDT

2

2
� pIeD M � T

2

	 
� �
: ð8Þ

Since, T is the decision variable, the necessary condition

to find the optimum value of T to minimize the total cost is
dTC4

dT
¼ 0 and dTC5

dT
¼ 0, which yield

dTC4

dT
¼ �k

T2
þ hoD

2
� cIp

T2

T2

2
� TM þM2

2

	 


þ cIpD

T
T �Mð Þ þ pIeDM

2

2T2
¼ 0; ð9Þ

and

dTC5

dT
¼ �k

T2
þ hoD

2
� pIeD

T2
¼ 0; ð10Þ

provided that they satisfy the sufficient condition
d2TC4ðTÞ
dT2

[ 0 and
d2TC5ðTÞ
dT2

[ 0.

Model-II (two-warehouse system)

There are certain circumstances, where the owned ware-

house of the retailer is insufficient to store the goods. In

that situation, the retailer may go for rented warehouse. To

suit to this case, we develop an inventory model, where

there are two warehouses (owned warehouse OW and

rented warehouse RW) (refer Table 3).

The inventory system evolves as follows: Q units of

items arrive at the inventory system at the beginning of

each cycle. Out of which W units are kept in OW and the

remaining ðQ�WÞ units are stored in RW. The items of

OW are consumed only after consuming the goods kept in

RW. For the analysis of the inventory system, it is neces-

sary to compare the value of the parameter td and M with

the possible values that the decision variables tw and T can

take on. This results in the following three scenarios.

Scenario I: td\tw\T

During the time interval ð0; tdÞ, the inventory level at

RW is decreasing only owing to demand rate. The inven-

tory level is dropping to zero due to demand and deterio-

ration during the time interval ðtd; twÞ. The behavior of the
inventory system is depicted in Fig. 3.

Hence, the change in the inventory level in RW at any

time t in the interval ð0; twÞ is given by the following dif-

ferential equations:

dIr1 tð Þ
dt

¼ �D; 0\t\td

dIr2ðtÞ
dt

¼ �D� bIr2 tð Þ; td\t\tw;

with the boundary condition Ir2 twð Þ ¼ 0:
The solutions of the above equations are given,

respectively, by

Ir1 tð Þ ¼ D td � tð Þ þ D

b
eb tw�tdð Þ � 1
h i

; 0\t\td

Ir2 tð Þ ¼ D

b
eb tw�tð Þ � 1
h i

; td\t\tw:

Furthermore, since Ir1 0ð Þ ¼ Q�W and continuity of

Ir tð Þ at t ¼ td, we get

Q ¼ W þ Dtd þ
D

b
eb tw�tdð Þ � 1
h i

:

During the interval ð0; tdÞ, there is no change in the

inventory level in OW as demand is met from RW. Hence,

at any epoch t, the inventory level at OW is

I01 tð Þ ¼ W ; 0\t\td:

After the time td, the inventory level in OW decreases

due to deterioration in the interval ðtd; twÞ and decreases

both by demand and by deterioration in the interval ðtw; TÞ.
Hence, the differential equation governing the inventory

position is given by

dI02ðtÞ
dt

¼� aI02 tð Þ; td\t\tw

dI03ðtÞ
dt

¼� D� aI03 tð Þ; tw\t\T ;

with the boundary condition I03 Tð Þ ¼ 0, and the solution of

the above differential equations is given by

Fig. 3 Two-warehouse inventory system when td\tw\T
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I02 tð Þ ¼Wea tw�tð Þ; td\t\tw

I03 tð Þ ¼D

a
ea T�tð Þ � 1
h i

; tw\t\T:

Based on the assumptions and description of the model,

the total annual cost which is a function of tw and T is

given by

TC tw; Tð Þ ¼
TC6 tw; Tð Þ; 0\M� td
TC7 tw; Tð Þ; td\M� tw
TC8 tw; Tð Þ; tw\M� T

TC9 tw; Tð Þ; M[ T

8><
>:

;

where

TC6 tw;Tð Þ

¼ 1

T
kþ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i�

þ cIp
b2t2d
2

þ eb tw�tdð Þ btd�Mbþ 1ð Þ � b2 Mtd�
M2

2

� �
� b tw�Mð Þ � 1

	 


þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �
þ cIp ea tw�tdð Þ þ a td �Mð Þ � 1

� �h i

þ D

a2
ho þ caþ cIp
� �

ea T�twð Þ � a T � twð Þ � 1
� �h i

� pIeDM
2

2

�
;

ð11Þ
TC7 tw; Tð Þ

¼ 1

T
k þ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i�

þcIp eb tw�Mð Þ � b tw �Mð Þ � 1
h i

þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �
þ cIp ea tw�Mð Þ � 1

� �h i

þ D

a2
ho þ caþ cIp
� �

ea T�twð Þ � a T � twð Þ � 1
� �h i

� pIeDM
2

2

�
;

ð12Þ

TC8 tw; Tð Þ

¼ 1

T
k þ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i�

þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �h i

þ D

a2
ho þ cað Þ ea T�twð Þ � a T � twð Þ � 1

� �h i

þcIp ea T�Mð Þ � a T �Mð Þ � 1
h i

� pIeDM
2

2

�
;

ð13Þ
TC9 tw;Tð Þ

¼ 1

T
k þ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i�

þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �h i

þ D

a2
ho þ cað Þ ea T�twð Þ � a T � twð Þ � 1

� �h i
� pIeD

2
2MT � 1ð Þ

�
:

ð14Þ

Theoretical results

To derive the optimal solutions for the proposed model, we

need the following lemma.

Lemma 1

D hr þ cbþ cIpe
�btd

� �
ebt [ aW ho þ caþ cIp

� �
eat;

D hr þ cbþ cIpe
�bM

� �
ebt [ aW ho þ caþ cIp

� �
eat;

D hr þ cbð Þebt [ aW ho þ cað Þeat;

Proof (See Appendix)

Case 1 (0\M� td)

The necessary conditions for the total annual cost in (11) to

be the minimum are
oTC6 tw;Tð Þ

otw
¼ 0 and

oTC6 tw;Tð Þ
oT

¼ 0, which

give

oTC6 tw;Tð Þ
otw

¼ 1

T

D

b
hr þ cbð Þ eb tw�tdð Þ�1

� �h i
þ cIp eb tw�tdð Þ btd�Mbþ 1ð Þ � 1

h i�

þW ho þ caþ cIp
� �

ea tw�tdð Þ
� �h i

�D

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i�

¼ 0;

ð15Þ

and

oTC6 tw; Tð Þ
oT

¼ � 1

T
TC6 tw; Tð Þ þ 1

T

D

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i� �

¼ 1

T

D

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �

� TC6 tw; Tð Þ
h i� �

¼ 0:

ð16Þ

From Eqs. (15) and (16), we have the following

expressions:

aD hr þ cbð Þ eb tw�tdð Þ � 1
� �

þ cIp eb tw�tdð Þ btd�Mbþ 1ð Þ
� �h i

þWab ho þ caþ cIp
� �

ea tw�tdð Þ
h i

¼ bD ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i

;

ð17Þ

k þ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i

þ cIp
b2t2d
2

þ eb tw�tdð Þ btd�Mbþ 1ð Þ � b2 Mtd�
M2

2

� �
� b tw�Mð Þ � 1

	 


þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �
þ cIp ea tw�tdð Þ þ a td �Mð Þ � 1

� �h i

þ D

a2
ho þ caþ cIp
� �

ea T�twð Þ � a T � twð Þ � 1
� �h i

� pIeDM
2

2
¼ DT

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i

:

ð18Þ
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Theorem 1 If 0\M� td, then the total annual cost

TC6 tw; Tð Þ is convex and reaches its global minimum at the

point ðt�w6
; T�

6 Þ, where ðt�w6
; T�

6 Þ is the point which satisfies

Eqs. (17) and (18).

Proof Let t�w6
and T�

6 be the solution of Eqs. (17) and (18)

and H1ðt�w6
; T�

6 Þ be the Hessian matrix of TC6 tw; Tð Þ eval-
uated at t�w6

and T�
6 . It is known that if this matrix is positive

definite, then the solution ðt�w6
; T�

6 Þ is an optimal solution.

Taking the second derivative of TC6 tw; Tð Þ with respect to

tw and T , and then, finding the values of these functions at

point ðt�w6
; T�

6 Þ, we obtain

o2TC6 tw; Tð Þ
ot2w

����
t�w6

;T�
6

� �

¼ 1

T
D hr þ cbð Þ eb tw�tdð Þ

� �h i
þ cIp eb tw�tdð Þ btd�Mbþ 1ð Þ

h in

þWa ho þ caþ cIp
� �

ea tw�tdð Þ
� �h i

þD ho þ caþ cIp
� �

ea T�twð Þ
� �h io���

t�w6
;T�

6

� �

[
1

T
D ho þ caþ cIp

� �
ea T�twð Þ

� �h i����
ðt�w6 ;T

�
6
Þ
[ 0 ½by Lemma 1�

o2TC6 tw; Tð Þ
oT2

����
t�w6

;T�
6

� �

¼ � 1

T

oTC6

oT
þ 1

T
D ho þ caþ cIp
� �

ea T�twð Þ� oTC6

oT

� �����
t�w6

;T�
6

� �

¼ 1

T
D ho þ caþ cIp
� �

ea T�twð Þ � 2
oTC1

oT

� �����
ðt�w6 ;T

�
6
Þ

[
1

T
D ho þ caþ cIp
� �

ea T�twð Þ
n o����

ðt�w6 ;T
�
6
Þ
[ 0;

o2TC6 tw; Tð Þ
otwoT

����
ðt�w6 ;T

�
6
Þ
¼ �1

T
D ho þ caþ cIp
� �

ea T�twð Þ
n o����

ðt�w6 ;T
�
6
Þ

¼ o2TC6 tw; Tð Þ
oTotw

����
ðt�w6 ;T

�
6
Þ
:

Hence, we obtain that

o2TC6

ot2w

o2TC6

oT2
� o2TC6

otwoT

o2TC6

oTotw

� �����
ðt�w6 ;T

�
6
Þ
[ 0

holds, which implies that the matrix H1ðt�w6
; T�

6 Þ is positive
definite and ðt�w6

; T�
6 Þ is the optimal solution of TC6 tw; Tð Þ:

Case 2 (td\M� tw)

The necessary conditions for the total annual cost in

Eq. (12) to be the minimum are
oTC7 tw;Tð Þ

otw
¼ 0 and

oTC7 tw;Tð Þ
oT

¼ 0, which give

oTC7 tw;Tð Þ
otw

¼ 1

T

D

b
hr þ cbð Þ eb tw�tdð Þ � 1

� �h i
þ cIp eb tw�Mð Þ � 1

h i�

þW ho þ cað Þ ea tw�tdð Þ
� �

þ cIp ea tw�Mð Þ
� �h i

�D

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i�

¼ 0;

ð19Þ

and

oTC7 tw; Tð Þ
oT

¼ � 1

T
TC7 tw; Tð Þ

þ 1

T

D

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i� �

¼ 1

T

D

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �

� TC7 tw; Tð Þ
h i� �

¼ 0:

ð20Þ

From Eqs. (19) and (20), we have the following

expressions:

aD hr þ cbð Þ eb tw�tdð Þ � 1
� �

þ cIp eb tw�Mð Þ � 1
� �h i

þWab ho þ cað Þea tw�tdð Þ þ cIpe
a tw�Mð Þ

h i

¼ bD ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i

;

ð21Þ

kþ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i

þ cIp eb tw�Mð Þ � b tw�Mð Þ � 1
h i

þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �
þ cIp ea tw�Mð Þ � 1

� �h i

þ D

a2
ho þ caþ cIp
� �

ea T�twð Þ � a T � twð Þ � 1
� �h i

:

� pIeDM
2

2
¼ DT

a
ho þ caþ cIp
� �

ea T�twð Þ � 1
� �h i

:

ð22Þ

Theorem 2 If td\M� tw, then the total annual cost

TC7 tw; Tð Þ is convex and reaches its global minimum at the

point ðt�w7
; T�

7 Þ, where ðt�w7
; T�

7 Þ is the point which satisfies

Eqs. (21) and (22).

Proof (Similar to the proof of Theorem 1).

Case 3 (tw\M� T)

The necessary conditions for the total annual cost in

Eq. (13) to be the minimum are
oTC8 tw;Tð Þ

otw
¼ 0 and

oTC8 tw;Tð Þ
oT

¼ 0, which give

oTC8 tw; Tð Þ
otw

¼ 1

T

D

b
hr þ cbð Þ eb tw�tdð Þ � 1

� �h i�

þW ho þ cað Þ ea tw�tdð Þ
� �h i

�D

a
ho þ cað Þ ea T�twð Þ � 1

� �h i�
¼ 0;

ð23Þ
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and

oTC8 tw;Tð Þ
oT

¼ � 1

T
TC8 tw; Tð Þ þ 1

T

D

a
ho þ cað Þ ea T�twð Þ � 1

� �
þ cIpe

a T�Mð Þ � 1
h i� �

¼ 1

T

D

a
ho þ cað Þ ea T�twð Þ � 1

� �
þ cIpe

a T�Mð Þ � 1
h i

� TC8 tw;Tð Þ
� �

¼ 0:

ð24Þ

Equations (23) and (24) can be written as

aD hr þ cbð Þ eb tw�tdð Þ � 1
� �h i

þWab ho þ cað Þea tw�tdð Þ
h i

¼ bD ho þ cað Þ ea T�twð Þ � 1
� �h i

;

ð25Þ

k þ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i

þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �h i

þ D

a2
ho þ cað Þ ea T�twð Þ � a T � twð Þ � 1

� �h i

þ cIp ea T�Mð Þ � a T �Mð Þ � 1
h i

� pIeDM
2

2

¼ DT

a
ho þ cað Þ ea T�twð Þ � 1

� �
þ cIp ea T�Mð Þ � 1

� �h i
:

ð26Þ

Theorem 3 If tw\M� T , then the total annual cost

TC8 tw; Tð Þ is convex and reaches its global minimum at the

point ðt�w8
; T�

8 Þ, where ðt�w8
; T�

8 Þ is the point which satisfies

Eqs. (25) and (26).

Proof (Similar to the proof of Theorem 1).

Case 4 (M[ T)

The necessary conditions for the total annual cost in

Eq. (14) to be the minimum are
oTC9 tw;Tð Þ

otw
¼ 0 and

oTC9 tw;Tð Þ
oT

¼ 0, which give

oTC9 tw; Tð Þ
otw

¼ 1

T

D

b
hr þ cbð Þ eb tw�tdð Þ � 1

� �h i�

þW ho þ cað Þ ea tw�tdð Þ
� �h i

�D

a
ho þ cað Þ ea T�twð Þ � 1

� �h i�
¼ 0;

ð27Þ

and

oTC9 tw;Tð Þ
oT

¼ � 1

T
TC9 tw; Tð Þ

þ 1

T

D

a
ho þ cað Þ ea T�twð Þ � 1

� �
þ cIpe

a T�Mð Þ � 1
h i� �

¼ 1

T

D

a
ho þ cað Þ ea T�twð Þ � 1

� �
þ cIpe

a T�Mð Þ � 1
h i

� TC9 tw;Tð Þ
� �

¼ 0:

ð28Þ

Equations (27) and (28) can be written as

aD hr þ cbð Þ eb tw�tdð Þ � 1
� �h i

þWab ho þ cað Þea tw�tdð Þ
h i

¼ bD ho þ cað Þ ea T�twð Þ � 1
� �h i

;

ð29Þ

kþ D

b2
hr þ cbð Þ eb tw�tdð Þ � b tw�tdð Þ � 1

� �h i

þW

a
ho þ cað Þ ea tw�tdð Þ � 1

� �h i

þ D

a2
ho þ cað Þ ea T�twð Þ � a T � twð Þ � 1

� �h i

� pIeD

2
2MT � 1ð Þ ¼ DT

a
ho þ cað Þ ea T�twð Þ � 1

� �h i

� pIeD

2
:

ð30Þ

Theorem 4 If M[ T , then the total annual cost

TC9 tw; Tð Þ is convex and reaches its global minimum at the

point ðt�w9
; T�

9 Þ, where ðt�w9
; T�

9 Þ is the point which satisfies

Eqs. (29) and (30).

Proof (Similar to the proof of Theorem 1).

Scenario II: tw\td\T

In this case, during the time interval ð0; twÞ, the inventory

level at RW decreases only owing to demand rate, where tw
is the epoch at which the inventory level in RW is zero.

The inventory level is dropping to zero due to demand and

deterioration during the time interval ðtd; twÞ. This case is

demonstrated in Fig. 4.

Hence, the change in the inventory level in RW at any

time t in the interval ð0; twÞ is given by the following dif-

ferential equations:Fig. 4 Two-warehouse inventory system when tw\td\T
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dIr1 tð Þ
dt

¼ �D; 0\t\tw

with the boundary condition Ir1 twð Þ ¼ 0 and the solution of

the above differential equation is given by

Ir1 tð Þ ¼ D tw � tð Þ; 0\t\tw:

Again, during the interval ð0; twÞ, demand is met from

RW alone, and there is no change in the inventory level in

OW. Thus, at any instant t, the inventory level I02ðtÞ at OW
is

I01 tð Þ ¼ W ; 0\t\tw:

After time tw, demand is met from OW. Hence, the

inventory level at OW decreases because of the increasing

demand rate during the interval ðtw; tdÞ and then because of

the demand rate and deterioration during the interval

(td; TÞ. Thus, differential equations governing the inventory
level in OW during the interval ðtw; TÞ are
dI02ðtÞ
dt

¼� D; td\t\tw

dI03ðtÞ
dt

¼� D� aI03 tð Þ; tw\t\T ;

with the boundary condition I03 Tð Þ ¼ 0, and the solutions

of the above equations are given, respectively, by

I02 tð Þ ¼D

a
ea T�tdð Þ � 1

� �
þ D td � tð Þ; tw\t\td

I03 tð Þ ¼D

a
ea T�tð Þ � 1
h i

; td\t\T:

Furthermore, since I02 twð Þ ¼ W , we get

W ¼ D

a
ea T�tdð Þ � 1

� �
þ D td � twð Þ:

Based on the assumptions and description of the model,

the total annual relevant costs is given by

TC tw; Tð Þ ¼
TC10 tw; Tð Þ; 0\M� tw
TC11 tw; Tð Þ; tw\M� td
TC12 tw; Tð Þ; td\M� T

TC13 tw; Tð Þ; M[ T

8><
>:

;

where

TC10 tw; Tð Þ ¼ 1

T
k þ hrDt

2
w

2
þ D

a2
ho þ caþ cIp
� ��

� ea T�tdð Þ � a T � tdð Þ � 1
� �

þ D

a
ho þ cIp
� �

� a
t2d
2
� tdtw þ t2w

2

� �
þ ea T�tdð Þ � 1
� �

td � twð Þ
	

þaWtw � þ cIp D
t2w
2
�Mtw þM2

2

� �
�WM

	 

� pIeDM

2

2

�
;

ð31Þ

TC11 tw; Tð Þ ¼ 1

T
k þ hrDt

2
w

2
þ D

a2
ho þ caþ cIp
� ��

� ea T�tdð Þ � a T � tdð Þ � 1
� �

þho Wtw þ D

a
ea T�tdð Þ � 1

� �
td � twð Þ

	

þD
t2d
2
� tdtw þ t2w

2

� �

þ cIp

D

a
ea T�tdð Þ � 1

� �	

� td �Mð Þ þ D
t2d
2
� tdM þM2

2

� �

� pIeDM

2

2

�
;

ð32Þ

TC12 tw; Tð Þ ¼ 1

T
k þ hrDt

2
w

2
þ D

a2
ho þ cað Þ

�

� ea T�tdð Þ � a T � tdð Þ � 1
� �

þho Wtw þ D

a
ea T�tdð Þ � 1

� �
td � twð Þ

	

þD
t2d
2
� tdtw þ t2w

2

� �


þDcIp

a2
ea T�Mð Þ � a T �Mð Þ � 1

� �
� pIeDM

2

2

�
;

ð33Þ
TC13 tw; Tð Þ

¼ 1

T
k þ hrDt

2
w

2
þ D

a2
ho þ cað Þ ea T�tdð Þ � a T � tdð Þ � 1

� ��

þho Wtw þ D

a
ea T�tdð Þ � 1

� �
td � twð Þ þ D

t2d
2
� tdtw þ t2w

2

� �	 


�pIeD M � T

2

	 
�
:

ð34Þ

Theoretical results

Case 1 (0\M� tw)

The necessary conditions for the total annual cost in (31) to

be the minimum are
oTC10 tw;Tð Þ

otw
¼ 0 and

oTC10 tw;Tð Þ
oT

¼ 0,

which give

oTC10 tw; Tð Þ
otw

¼ 1

T
hrDtw þ D

a
ho þ cIp
� ��

a tw�tdð Þ�ðea T�tdð Þ � 1Þ þ aW
� �h i

þ cIpD tw�Mð Þ
o

¼ 0;

ð35Þ
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oTC10 tw; Tð Þ
oT

¼ � 1

T
TC10 tw; Tð Þ

þ 1

T

D

a
ho þ caþ cIp
� �

ea T�tdð Þ � 1
� �h�

þD ho þ cIp
� �

ea T�tdð Þ tw�tdð Þ
io

¼ 1

T

D

a
ho þ caþ cIp
� �

ea T�tdð Þ � 1
� �h�

þD ho þ cIp
� �

ea T�tdð Þ tw�tdð Þ
i
� TC10 tw; Tð Þ

o
¼ 0:

ð36Þ

From Eqs. (35) and (36), we have the following

expressions:

ahrDtw þ acIpD tw�Mð Þ ¼ D ho þ cIp
� �

ðea T�tdð Þ � 1Þ � a tw�tdð Þ�aW
h i

;
ð37Þ

k þ hrDt
2
w

2
þ D

a2
ho þ caþ cIp
� �

ea T�tdð Þ � a T � tdð Þ � 1
� �

þ D

a
ho þ cIp
� �

a
t2d
2
� tdtw þ t2w

2

� �
þ ea T�tdð Þ � 1
� �	

� td � twð Þ þ aWtw �

þ cIp D
t2w
2
�Mtw þM2

2

� �
�WM

	 

� pIeDM

2

2

¼ DT

a
ho þ caþ cIp
� �

ea T�tdð Þ � 1
� �h i

þ DT ho þ cIp
� �

ea T�tdð Þ tw�tdð Þ:
ð38Þ

Theorem 5 If 0\M� td, then the total annual cost

TC10 tw; Tð Þ is convex and reaches its global minimum at

the point ðt�w10
; T�

10Þ, where ðt�w10
; T�

10Þ is the point which

satisfies Eqs. (37) and (38).

Proof (Similar to the proof of Theorem 1).

Case 2 (tw\M� td)

The necessary conditions for the total annual cost in (32) to

be the minimum are
oTC11 tw;Tð Þ

otw
¼ 0 and

oTC11 tw;Tð Þ
oT

¼ 0,

which give

oTC11 tw; Tð Þ
otw

¼ 1

T
hrDtw þ ho W � D

a
ea T�tdð Þ � 1

� �
þ D tw�tdð Þ

	 
� �

¼ 0:

ð39Þ

In addition

oTC11 tw;Tð Þ
oT

¼ � 1

T
TC11 tw; Tð Þ

þ 1

T

D

a
ho þ caþ cIp
� �

ea T�tdð Þ � 1
� �h i�

þDhoe
a T�tdð Þ td�twð Þ þ cIpDe

a T�tdð Þ td�Mð Þ
o

¼ 1

T

D

a
ho þ caþ cIp
� �

ea T�tdð Þ � 1
� �h i�

þDhoe
a T�tdð Þ td�twð Þ þ cIpDe

a T�tdð Þ td�Mð Þ � TC11 tw;Tð Þ
o
¼ 0:

ð40Þ

From Eqs. (39) and (40), we have the following

expressions:

ahrDtw þ ahoW ¼ Dho ea T�tdð Þ � 1
� �

þ aD tw�tdð Þ; ð41Þ

k þ hrDt
2
w

2
þ D

a2
ho þ caþ cIp
� �

ea T�tdð Þ � a T � tdð Þ � 1
� �

þ ho Wtw þ D

a
ea T�tdð Þ � 1

� �
td � twð Þ þ D

t2d
2
� tdtw þ t2w

2

� �	 


þ cIp
D

a
ea T�tdð Þ � 1

� �
td �Mð Þ þ D

t2d
2
� tdM þM2

2

� �	 

� pIeDM

2

2

¼ DT

a
ho þ caþ cIp
� �

ea T�tdð Þ � 1
� �h i

þ DhoTe
a T�tdð Þ td�twð Þ

þ cIpDTe
a T�tdð Þ td�Mð Þ:

ð42Þ

Theorem 6 If td\M� tw, then the total annual cost

TC11 tw; Tð Þ is convex and reaches its global minimum at

the point ðt�11; T�
11Þ, where ðt�11; T�

11Þ is the point which

satisfies Eqs. (41) and (42).

Proof (Similar to the proof of Theorem 1).

Case 3 (td\M� T)

The necessary conditions for the total annual cost in (33) to

be the minimum are
oTC12 tw;Tð Þ

otw
¼ 0 and

oTC12 tw;Tð Þ
oT

¼ 0,

which give

Fig. 5 Two-warehouse inventory system when td [T
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oTC12 tw; Tð Þ
otw

¼ 1

T
hrDtw þ ho W � D

a
ea T�tdð Þ � 1

� �
þ D tw�tdð Þ

	 
� �
¼ 0:

ð43Þ

In addition

oTC12 tw; Tð Þ
oT

¼ � 1

T
TC12 tw; Tð Þ þ 1

T

D

a
ho þ cað Þ ea T�tdð Þ � 1

� �h i�

þDhoe
a T�tdð Þ td�twð Þ þ D

a
cIp ea T�Mð Þ � 1

� ��

¼ 1

T

D

a
ho þ cað Þ ea T�tdð Þ � 1

� �h i
þ Dhoe

a T�tdð Þ td�twð Þ
�

þD

a
cIp ea T�Mð Þ � 1

� �
� TC12 tw; Tð Þ

�
¼ 0:

ð44Þ

From Eqs. (43) and (44), we have the following

expressions:

aðhrDtw þ hoWÞ ¼ Dho ea T�tdð Þ � 1
� �

� aD tw�tdð Þ;

ð45Þ

k þ hrDt
2
w

2
þ D

a2
ho þ cað Þ ea T�tdð Þ � a T � tdð Þ � 1

� �

þ ho Wtw þ D

a
ea T�tdð Þ � 1

� �
td � twð Þ þ D

t2d
2
� tdtw þ t2w

2

� �	 


þ DcIp

a2
ea T�Mð Þ � a T �Mð Þ � 1

� �

� pIeDM
2

2
¼ DT

a
ho þ cað Þ ea T�tdð Þ � 1

� �h i

þ DThoe
a T�tdð Þ td�twð Þ þ D

a
cIp ea T�Mð Þ � 1

� �
:

ð46Þ

Theorem 7 If td\M� T , then the total annual cost

TC12 tw; Tð Þ is convex and reaches its global minimum at

the point ðt�w12
; T�

12Þ, where ðt�w12
; T�

12Þ is the point which

satisfies Eqs. (45) and (46).

Proof (Similar to the proof of Theorem 1).

Case 4 (M[ T)

The necessary conditions for the total annual cost in (34) to

be the minimum are
oTC13 tw;Tð Þ

otw
¼ 0 and

oTC13 tw;Tð Þ
oT

¼ 0,

which give

oTC13 tw; Tð Þ
otw

¼ 1

T
hrDtw þ ho W � D

a
ea T�tdð Þ � 1

� �
þ D tw�tdð Þ

	 
� �
¼ 0;

ð47Þ

oTC13 tw; Tð Þ
oT

¼ � 1

T
TC13 tw; Tð Þ þ 1

T

D

a
ho þ cað Þ ea T�tdð Þ � 1

� �h i�

þDhoe
a T�tdð Þ td�twð Þ� pIeD

2

�

¼ 1

T

D

a
ho þ cað Þ ea T�tdð Þ � 1

� �h i
þ Dhoe

a T�tdð Þ td�twð Þ
�

� pIeD

2
� TC13 tw; Tð Þ

�
¼ 0:

ð48Þ

From Eqs. (47) and (48), we have the following

expressions:

ahrDtw þ ahoW ¼ ho D ea T�tdð Þ � 1
� �

� aD tw�tdð Þ
h i

;

ð49Þ

k þ hrDt
2
w

2
þ D

a2
ho þ cað Þ ea T�tdð Þ � a T � tdð Þ � 1

� �

þ ho Wtw þ D

a
ea T�tdð Þ � 1

� �
td � twð Þ þ D

t2d
2
� tdtw þ t2w

2

� �	 


� pIeD M � T

2

	 


¼ DT

a
ho þ cað Þ ea T�tdð Þ � 1

� �h i
þ DhoTe

a T�tdð Þ td�twð Þ � pIeDT

2
:

ð50Þ

Theorem 8 If M[ T , then the total annual cost

TC13 tw; Tð Þ is convex and reaches its global minimum at

the point ðt�w13
; T�

13Þ, where ðt�w13
; T�

13Þ is the point which

satisfies Eqs. (49) and (50).

Proof (Similar to the proof of Theorem 1).

Scenario III: td [ T

In this case, the inventory levels both in RW as well as

in OW become zero before the demand stabilises. Thus, the

inventory levels at both the warehouses decrease only

because of the increasing demand. The case is depicted in

Fig. 5.

The inventory level at RW at any epoch t in the time

interval ð0; twÞ is given by

dIr1 tð Þ
dt

¼ �D; 0\t\tw:

During the interval ð0; twÞ, demand is met from RW and

there is no change in the inventory level in OW. Thus, at any

epoch t, during this interval, the inventory level in OW is

I01 tð Þ ¼ W ; 0\t\tw:

During the interval ðtw; TÞ, the inventory level at OW

decreases due to increase in the demand rate. Thus, the

differential equation governing the inventory level in OW

during the interval ðtw; TÞ is
dI02ðtÞ
dt

¼ �D; tw\t\T :
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Using the boundary condition I02 Tð Þ ¼ 0, the solution of

the above equation is given by

I02 tð Þ ¼ DðT � tÞ; tw\t\T :

Based on the assumptions and description of the model,

the total annual relevant costs is given by

TC tw; Tð Þ ¼
TC14 tw; Tð Þ; 0\M� tw
TC15 tw; Tð Þ; tw\M� T

TC16 tw; Tð Þ; M[ T

8<
: ;

where

TC14 tw; Tð Þ ¼ 1

T
k þ hrDt

2
w

2
þ h0 Wtw þ D

T2

2
� Ttw þ t2w

2

� �	 
�

þ cIp D
t2w
2
�Mtw þM2

2

	 

þW tw�Mð Þ

	

þD
T2

2
� Ttw þ t2w

2

	 


� pIeDM

2

2

�
;

ð51Þ

TC15 tw; Tð Þ ¼ 1

T
k þ hrDt

2
w

2
þ ho Wtw þ D

T2

2
� Ttw þ t2w

2

� �	 
�

þDcIp
T2

2
� TM þM2

2

	 

� pIeDM

2

2

�
;

ð52Þ

TC16 tw; Tð Þ ¼ 1

T
k þ hrDt

2
w

2
þ h0 Wtw þ D

T2

2
� Ttw þ t2w

2

� �	 
�

�pIeD M � T

2

	 
�
:

ð53Þ

Theoretical results

Case 1 (0\M� tw)

The necessary conditions for the total annual cost in (51) to

be the minimum are
oTC14 tw;Tð Þ

otw
¼ 0 and

oTC14 tw;Tð Þ
oT

¼ 0,

which give

oTC14 tw; Tð Þ
otw

¼ 1

T
hrDtw þ ho þ cIp

� �
D tw�Tð Þ þWÞ



þcIpD tw�Mð Þ
�
¼ 0;

ð54Þ
oTC14 tw; Tð Þ

oT
¼ � 1

T
TC14 tw; Tð Þ þ 1

T
D ho þ cIp
� �

ðT � twÞ
 �

¼ 1

T
D ho þ cIp
� �

ðT � twÞ � TC14 tw; Tð Þ
 �

¼ 0:

ð55Þ

From Eqs. (54) and (55), we have the following

expressions:

D ho þ cIp
� �

tw�Tð Þ þWÞ þ cIp tw�Mð Þ
� �

¼ �hrDtw;

ð56Þ

kþhrDt
2
w

2
þho WtwþD

T2

2
�Ttwþ

t2w
2

� �	 


þcIp D
t2w
2
�Mtwþ

M2

2

	 

þW tw�Mð ÞþD

T2

2
�Ttwþ

t2w
2

	 
	 


�pIeDM
2

2
¼DT hoþcIp

� �
T�twð Þ:

ð57Þ

Theorem 9 If 0\M� tw, then the total annual cost

TC14 tw; Tð Þ is convex and reaches its global minimum at

the point ðt�w14
; T�

14Þ, where ðt�w14
; T�

14Þ is the point which

satisfies Eqs. (56) and (57).

Proof (Similar to the proof of Theorem 1).

Case 2 (tw\M� T)

The necessary conditions for the total annual cost in (52) to

be the minimum are
oTC15 tw;Tð Þ

otw
¼ 0 and

oTC15 tw;Tð Þ
oT

¼ 0,

which give

oTC15 tw; Tð Þ
otw

¼ 1

T
hrDtw þ hoðW þ D tw�Tð ÞÞf g ¼ 0;

ð58Þ
oTC15 tw;Tð Þ

oT
¼� 1

T
TC15 tw;Tð Þ

þD

T
ho T� twð ÞþcIpðT�MÞ

 �

¼ 1

T
DhoðT� twÞþcIpðT�MÞ�TC15 tw;Tð Þ

 �

¼0:

ð59Þ

From Eqs. (58) and (59), we have the following

expressions:

hrDtw þ hoW ¼ hoD T � twð Þ; ð60Þ

k þ hrDt
2
w

2
þ h0 Wtw þ D

T2

2
� Ttw þ t2w

2

� �	 


þ DcIp
T2

2
� TM þM2

2

	 

� pIeDM

2

2

¼ DTho T � twð Þ þ TcIp T �Mð Þ:

ð61Þ

Theorem 10 If tw\M� T , then the total annual cost

TC15 tw; Tð Þ is convex and reaches its global minimum at

the point ðt�w15
; T�

15Þ, where ðt�w15
; T�

15Þ is the point which

satisfies Eqs. (60) and (61).

Proof (Similar to the proof of Theorem 1).
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Case 3 (M[ T)

The necessary conditions for the total annual cost in (53) to

be the minimum are
oTC16 tw;Tð Þ

otw
¼ 0 and

oTC16 tw;Tð Þ
oT

¼ 0,

which give

oTC16 tw; Tð Þ
otw

¼ 1

T
hrDtw þ hoðW þ D tw�Tð ÞÞf g ¼ 0;

ð62Þ
oTC16 tw;Tð Þ

oT
¼� 1

T
TC16 tw;Tð Þ

þD

T
ho T� twð ÞþcIpðT�MÞ

 �

¼ 1

T
DhoðT� twÞþcIpðT�MÞ�TC16 tw;Tð Þ

 �

¼0:

ð63Þ

From Eqs. (62) and (63), we have the following

expressions:

hoD T � twð Þ ¼ hrDtw þ hoW ; ð64Þ

k þ hrDt
2
w

2
þ ho Wtw þ D

T2

2
� Ttw þ t2w

2

� �	 


� pIeD M � T

2

	 


¼ DTho T � twð Þ � pIeDT

2
: ð65Þ

Theorem 11 If M[ T , then the total annual cost

TC16 tw; Tð Þ is convex and reaches its global minimum at

the point ðt�w16
; T�

16Þ, where ðt�w16
; T�

16Þ is the point which

satisfies Eqs. (64) and (65).

Proof (Similar to the proof of Theorem 1).

Algorithm

Based on the above analysis, we state the algorithm which

enables us to obtain the overall optimal policy for the single-

warehouse system and two-warehouse inventory system.

Algorithm I (single-warehouse system)

Step 1: Input all the parameters of the inventory system.

Step 2: Compare the values of M and td. If M\td, then

go to step 3, and if M[ td, go to step 4.

Step 3:

(i) Determine T�
1 ; from Eq. (4). If td\T , let T� ¼ T�

1

and TC� ¼ TC�
1, otherwise go to step (ii).

(ii) Determine T�
4 ; from Eq. (9). If T � td, let T

� ¼ T�
4

and TC� ¼ TC�
4; otherwise, go to step (iii).

(iii) Determine T�
5 ; from Eq. (10). If T\M� td, let

T� ¼ T�
5 and TC

� ¼ TC�
5; otherwise, go to step (iv).

(iv) Let T� = arg min TC�
1;TC

�
4;TC

�
5

 �
, output the

optimal T� and TC�.

Step 4:

(i) Determine T�
2 ; from Eq. (5). If td\T , let T� ¼ T�

2

and TC� ¼ TC�
2; otherwise, go to step (ii).

(ii) Determine T�
3 ; from Eq. (5). If M\T � td, let

T� ¼ T�
3 and TC� ¼ TC�

3; otherwise, go to step

(iii).

(iii) Let T� = arg min TC�
2;TC

�
3

 �
, output the optimal

T� and TC�.

Algorithm II (two-warehouse system)

Step 1: Input all the parameters of the inventory system.

Step 2: Compare the values of M and td. If M\td, then

go to step 3, and if M[ td, go to step 4.

Step 3:

(i) Determine t�w6
and T�

6 , from Eqs. (15) and (16). If

t�w6
\T�

6 , let t�w ¼ t�w6
, T� ¼ T�

6 , and

TC� ¼ TC�
6ðt�w6

; T�
6 Þ; otherwise, go to step (ii).

(ii) Determine t�w10
and T�

10, from Eqs. (35) and (36). If

M\t�w10
� td\T�

10, let t�w ¼ t�w10
, T� ¼ T�

10, and

TC� ¼ TC�
10ðt�w10

; T�
10Þ; otherwise, go to step (iii).

(iii) Determine t�w11
and T�

11, from Eqs. (39) and (40). If

t�w11
\T�

11, let t�w ¼ t�w11
, T� ¼ T�

11, and

TC� ¼ TC�
11ðt�w11

; T�
11Þ; otherwise, go to step (iv).

(iv) Determine t�w14
and T�

14, from Eqs. (54) and (55). If

M\t�w14
\T�

14 � td, let t�w ¼ t�w14
, T� ¼ T�

14, and

TC� ¼ TC�
14ðt�w14

; T�
14Þ; otherwise, go to step (v).

(v) Determine t�w15
and T�

15, from Eqs. (58) and (59). If

t�w15
\M\T�

15 � td, let t�w ¼ t�w15
, T� ¼ T�

15, and

TC� ¼ TC�
15ðt�w15

; T�
15Þ; otherwise, go to step (vi).

(vi) Determine t�w16
and T�

16, from Eqs. (62) and (63). If

t�w16
\T�

16, let t�w ¼ t�w16
; T� ¼ T�

16, and

TC� ¼ TC�
16ðt�w16

; T�
16Þ; otherwise, go to step (vii).

(vii) Let t�w; T
�� �

= arg min TC�
6ðt�w6

; T�
6 Þ;

n
TC�

10

ðt�w10
; T�

10Þ;TC�
11ðt�w11

; T�
11Þ; TC�

14ðt�w14
; T�

14Þ; TC�
15

ðt�w15
; T�

15Þ;TC�
16ðt�w16

; T�
16Þg, output the optimal t�w,

T� and TC�.

Step 4:

(i) Determine t�w7
and T�

7 , from Eqs. (19) and (20). If

t�w7
\T�

7 , let t�w ¼ t�w7
, T� ¼ T�

7 , and

TC� ¼ TC�
7ðt�w7

; T�
7 Þ; otherwise, go to step (ii).

(ii) Determine t�w8
and T�

8 , from Eqs. (23) and (24). If

t�w8
\M\T�

8 , let t�w ¼ t�w8
, T� ¼ T�

8 , and

TC� ¼ TC�
8ðt�w8

; T�
8 Þ; otherwise, go to step (iii).

(iii) Determine t�w9
and T�

9 , from Eqs. (27) and (28). If

t�w9
\T�

9 �M, let t�w ¼ t�w9
, T� ¼ T�

9 , and

TC� ¼ TC�
9ðt�w9

; T�
9 Þ; otherwise, go to step (iv).
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(iv) Determine t�w12
and T�

12, from Eqs. (43) and (44). If

t�w12
\T�

12, let t�w ¼ t�w12
, T� ¼ T�

12, and

TC� ¼ TC�
12ðt�w12

; T�
12Þ; otherwise, go to step (v).

(v) Determine t�w13
and T�

13, from Eqs. (47) and (48). If

t�w13
\T�

13 �M, let t�w ¼ t�w13
, T� ¼ T�

13, and

TC� ¼ TC�
13ðt�w13

; T�
13Þ; otherwise, go to step (vi).

(vi) Let t�w; T
�� �

= arg min TC�
7ðt�w7

; T�
7 Þ;TC�

8

n

ðt�w8
; T�

8 Þ;TC�
9ðt�w9

; T�
9 Þ;TC�

12ðt�w12
; T�

12Þ;TC�
13ðt�w13

;

T�
13Þg, output the optimal t�w, T

� and TC�.

Numerical examples

The following examples illustrate our solution procedure

when single warehouse (Model-I) is considered.

Example 1 (M\td) Consider an inventory system with

the following data: k ¼ 450, D ¼ 1000; ho ¼ 10, c ¼ 20,

p ¼ 25, Ie ¼ 0:2, Ip ¼ 0:5, M ¼ 0:0833, a ¼ 0:08, and

td ¼ 0:1045, in appropriate units. In this case, we see

that M\td: Therefore, applying algorithm I, we get the

optimal solutions, T� ¼ 0:5554, the corresponding total

cost TC� ¼ 5092:42, and the ordering quantity

Q� ¼ 563:64:

Example 2 (M[ td) The data are the same as in Example

1 except: M ¼ 0:0417 and td ¼ 0:0322, in appropriate

units. Here, we see that M[ td. Therefore, applying

algorithm I, we get the optimal solutions, T� ¼ 0:2067, the

corresponding total cost TC� ¼ 3712:26, and Q� ¼ 207:90:

Example 3 (td [ T) The data are the same as in Example

1 except: M ¼ 0:99 and td ¼ 0:9984, in appropriate units.

In this case, we see that td [ T . Therefore, applying

algorithm I, we get the optimal solutions, T� ¼ 1:0440, the

corresponding total cost TC� ¼ 8206:40, and

Q� ¼ 1044:10:

To illustrate the situations, where two warehouses

(Model-II) are considered, we have the following set of

examples.

Example 4 (M\td) Consider an inventory system with

the following data: k ¼ 450, D ¼ 1000; hr ¼ 15; ho ¼ 10,

c ¼ 20, p ¼ 25, Ie ¼ 0:2, Ip ¼ 0:5, M ¼ 0:0833, W ¼ 100,

a ¼ 0:08, b ¼ 0:02, and td ¼ 0:1045, in appropriate units.

Here, we see that M\td: Therefore, applying algorithm II,

we get the optimal solutions t�w ¼ 0:1179 and T� ¼ 0:2429,

the corresponding total cost TC� ¼ 2714:80, and

Q� ¼ 251:88:

Example 5 (M[ td) The data are the same as in Example

4 except: M ¼ 0:0417, and td ¼ 0:0322, in appropriate

units. Here, we see that M[ td. Therefore, applying

algorithm II, we get the optimal solutions t�w ¼ 0:0888 and

T� ¼ 0:2502, the corresponding total cost TC� ¼ 3505:30,

and Q� ¼ 252:51:

Example 6 (td [ T) The data are the same as in Example

4 except: M ¼ 0:99 and td ¼ 0:9984, in appropriate units.

Here, we see that td [ T . Therefore, applying algorithm II,

we get the optimal solutions t�w ¼ 0:3548 and T� ¼ 0:9874,

the corresponding total cost TC� ¼ 1379:60, and

Q� ¼ 458:91:

Comparative study of the results between the two

models

Comparative study with respect to the major parameters for

the single and two-warehouse models is done in this sec-

tion. In this article, we discussed two models. Single

warehouse is considered in Model-I and Model-II is framed

with two-warehouse system. Different scenarios based on

the time in which the product deteriorates is classified. In

‘‘Numerical examples’’, we have given six numerical data

sets for obtaining the solution using the computational

algorithms. Example 1, Example 2, and Example 3 repre-

sent the single-warehouse model (Model-I) for the various

scenarios M\td,M[ td, and td [ T , respectively. From

Example 3, when td [ T , the total cost of the single-

warehouse inventory system is TC� ¼ 8206:40 and Q� ¼
1044:10: From this, we infer that the retailer should avail

the permissible delay in payment before the cycle time, so

that the total cost of the inventory system can be reduced

when compared to the case M\td and M[ td. Similarly,

from Example 4 (M\td) and Example 5 ðM[ tdÞ which

represent two-warehouse system (Model-II), we see that

the total cost of the inventory system in the case M\td is

less than the total cost of case M[ td. In addition, Table 4

infers that the total cost of the inventory system is reduced

effectively when the retailer avails the rented warehouse

facility, that is, when the retailer adopts two-warehouse

storage facilities. For example, under scenario M\td, the

Table 4 Comparison of the results between the two models

Model Scenario t�w T� Q� TC�

Single warehouse M\td – 0.5554 563.64 5092.42

M[ td – 0.2067 207.90 3712.26

td [T – 1.0440 1044.10 8206.40

Two warehouses M\td 0.1179 0.2429 251.88 2714.80

M[ td 0.0888 0.2502 252.51 3505.30

td [T 0.3548 0.9874 458.91 1379.60
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Table 5 Effect of change in

various parameters of the

inventory in the two-warehouse

model

Changing parameter Change in parameter tw T Q TC tw; Tð Þ

c 16 0.1261 0.2603 226.08 2598.50

17 0.1238 0.2555 223.77 2628.80

18 0.1216 0.2513 221.62 2658.30

19 0.1199 0.2471 219.93 2686.90

p 30 0.1173 0.2417 217.34 2700.50

35 0.1168 0.2405 216.79 2686.10

40 0.1162 0.2392 216.21 2671.70

45 0.1157 0.2380 215.65 2657.10

hr 20 0.1157 0.2408 248.62 2716.40

25 0.1143 0.2395 246.42 2717.60

30 0.1131 0.2384 244.69 2718.40

35 0.1120 0.2371 243.01 2719.10

ho 2 0.1347 0.3056 234.73 2338.60

4 0.1312 0.2873 231.24 2448.00

6 0.1272 0.2713 227.24 2546.30

8 0.1229 0.2568 222.88 2635.00

k 450 0.1179 0.2429 217.92 2714.80

550 0.1331 0.2758 233.06 3100.40

650 0.1464 0.3048 246.40 3444.90

750 0.1587 0.3315 258.72 3759.10

Ip 0.4 0.1151 0.2368 215.09 2642.50

0.6 0.1122 0.2305 212.18 2568.20

0.8 0.1092 0.2240 209.21 2491.80

1.0 0.1062 0.2174 206.15 2413.10

Ie 0.6 0.1116 0.2301 211.62 2808.40

0.7 0.1059 0.2185 205.89 2893.40

0.8 0.1006 0.2078 200.58 2970.60

0.9 0.0948 0.1969 194.78 3040.40

a 0.10 0.1171 0.2405 217.09 2730.40

0.15 0.1142 0.2333 214.21 2767.80

0.20 0.1117 0.2271 211.74 2803.00

0.25 0.1094 0.2214 209.40 2836.10

b 0.02 0.1179 0.2429 217.92 2714.80

0.04 0.1177 0.2429 217.69 2715.00

0.06 0.1175 0.2425 217.47 2715.10

0.08 0.1173 0.2423 217.27 2715.30

td 0.1145 0.1215 0.2440 221.54 2660.70

0.1150 0.1221 0.2446 222.13 2658.00

0.1155 0.1223 0.2447 222.33 2655.40

0.1160 0.1225 0.2448 222.53 2652.80

M 0.0417 0.1136 0.2527 213.58 3025.00

0.0500 0.1145 0.2508 214.46 2961.70

0.0583 0.1153 0.2488 215.34 2899.10

0.0667 0.1161 0.2467 216.10 2837.00
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total cost of the system TC� ¼ 5092:42 which is effectively

reduced to TC� ¼ 2714:80 when the retailer avails the

rented warehouse facility. Furthermore, consider the case

ðM[ tdÞ, the total cost of the integrated system in single-

warehouse model is TC� ¼ 3712:26, whereas in two-

warehouse model, the total cost is TC� ¼ 3505:30

(less = 206.96). In addition when we consider the case

td [ T , the difference between the total cost in two models

is very much significant (8206:40 - 1379:60 = 6826.80).

In all the scenarios, the total cost is effectively reduced in a

two-warehouse model comparatively. Furthermore, the

comparative study infers that the retailer should order less

quantity more frequently in two-warehouse model, but in

single-warehouse model, the optimal replenishment policy

suggests that more quantity may be ordered less frequently.

Therefore, the retailer can gain more profit by improving

the storage facility such as warehouses, godowns, and so on

to store materials.

Managerial implication

In this section, we perform the sensitivity analysis on the

key parameters of Model-II, to study their effect on the

inventory system. The results are summarized in Tables 5,

6, 7, and 8 and the graphical representation of the sensi-

tivity analysis is shown in Figs. 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, and 16. Based on the computational results obtained

Table 6 Optimal solutions for different ordering cost k in Example 4

W k D tw T Q TC tw; Tð Þ

50 450 1000 0.1533 0.2709 305.03 2542.20

1500 0.1409 0.2268 286.41 2794.90

2000 0.1331 0.2011 274.64 2954.80

500 1000 0.1608 0.2864 316.28 2721.90

1500 0.1466 0.2390 294.86 3009.40

2000 0.1378 0.2115 281.73 3197.10

550 1000 0.1673 0.3006 325.97 2892.40

1500 0.1522 0.2512 303.28 3213.50

2000 0.1422 0.2215 288.26 3428.10

75 450 1000 0.1365 0.2584 279.74 2644.90

1500 0.1296 0.2187 269.43 2893.40

2000 0.1241 0.1946 261.08 3047.40

500 1000 0.1437 0.2742 290.53 2832.80

1500 0.1351 0.2308 277.66 3115.80

2000 0.1289 0.2053 268.35 3297.62

550 1000 0.1509 0.2896 301.33 3010.30

1500 0.1407 0.2428 286.03 3326.70

2000 0.1340 0.2153 275.96 3535.30

100 450 1000 0.1179 0.2429 251.88 2714.80

1500 0.1174 0.2087 251.06 2966.00

2000 0.1155 0.1867 248.30 3118.00

500 1000 0.1258 0.2601 263.76 2913.70

1500 0.1232 0.2214 259.80 3198.50

2000 0.1198 0.1986 254.75 3377.70

550 1000 0.1331 0.2758 274.59 3100.40

1500 0.1289 0.2339 268.38 3417.90

2000 0.1245 0.2084 261.74 3623.70

Table 7 Sensitivity analysis with respect to the parameters hr and ho

hr # ho ! 2 4 6 8

22 tw 0.1286 0.1256 0.1224 0.1188

T 0.3002 0.2821 0.2665 0.2527

TC 2346.80 2454.80 2551.50 2638.60

Q 228.57 225.65 222.36 218.83

24 tw 0.1272 0.1244 0.1214 0.1180

T 0.2989 0.2810 0.2656 0.2519

TC 2348.60 2456.30 2552.70 2639.30

Q 227.22 224.44 221.40 218.02

26 tw 0.1258 0.1234 0.1204 0.1172

T 0.2976 0.2800 0.2647 0.2511

TC 2350.20 2457.60 2553.70 2640.00

Q 225.82 223.38 220.42 217.20

28 tw 0.1246 0.1224 0.1196 0.1167

T 0.2967 0.2792 0.2639 0.2508

TC 2351.70 2458.80 2554.60 2640.60

Q 224.57 222.44 219.64 216.70

Table 8 Sensitivity analysis with respect to the parameters a and b

a # b ! 0.03 0.05 0.07 0.09

0.10 tw 0.1170 0.1167 0.1164 0.1162

T 0.2403 0.2400 0.2397 0.2394

TC 2730.50 2730.60 2730.70 2730.80

Q 216.96 216.67 216.41 216.18

0.12 tw 0.1158 0.1156 0.1156 0.1154

T 0.2374 0.2371 0.2369 0.2371

TC 2745.70 2745.80 2745.90 2746.00

Q 215.79 215.55 215.33 215.37

0.14 tw 0.1174 0.1147 0.1146 0.1145

T 0.2346 0.2348 0.2347 0.2346

TC 2760.50 2760.60 2760.70 2760.80

Q 214.67 214.74 214.59 214.45

0.16 tw 0.1139 0.1138 0.1136 0.1135

T 0.2324 0.2323 0.2322 0.2321

TC 2775.00 2775.10 2775.20 2775.20

Q 213.90 213.77 213.64 213.51
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from the sensitivity analysis, the following inferences can

be made from managerial view point:

• When k increases, the optimal cycle time T� and the

minimum total relevant cost per unit time TC� increase
simultaneously. For example, when W = 50 and

D = 1000, k increases from 450 to 550 units, T�

increases from 0.2709 to 0.3006, and also TC�

increases from 2542.20 to 2892.40. This implies that,

from managerial view point, if the ordering cost per

order is reduced effectively, then the total cost per unit

time could be reduced. The retailer should order more

quantity per order when the ordering cost per order is

high.

• When retailer’s warehouse capacity W is increasing,

the optimal replenishment cycle time T� will decrease,
but the relevant total costs TC� will increase. For

example, when k = 450/order and D = 1000 units, W

increases from 50 to 100 units, T� decreases from

0.2709 to 0.2429, but TC� increases from 2542.20 to

Fig. 6 Effect of change in c on the optimal solution

Fig. 7 Effect of change in p on the optimal solution

Fig. 8 Effect of change in hr on the optimal solution

Fig. 9 Effect of change in ho on the optimal solution
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2714.80. This implies that the retailer should order less

frequently to reduce the total inventory cost when

warehouse storage capacity is more.

• When there is an increase in the value ofM, the optimal

order quantity Q� increases, whereas the optimal total

cost TC� decreases. This shows that the retailer can

minimize the total cost if the retailer obtains a longer

permissible delay period from the supplier.

• When the holding cost increases, the length of the cycle

time T� decreases and the total cost TC� increases. If

the retailer can effectively reduce the holding cost of

the item by improving equipment of storehouse, the

total cost will be lowered. When the holding cost

increases, the ordering quantity Q� decreases. From the

managerial point of view, when the holding cost for a

product is more, the retailer should order less.

• When the fresh product time increases, the optimal total

cost TC� decreases and Q� increases. Hence, from our

model, we suggest that when the fresh product time of a

product is more, the retailer should order more quantity.

In addition, it shows that the model with non-

Fig. 10 Effect of change in k on the optimal solution

Fig. 11 Effect of change in Ip on the optimal solution

Fig. 12 Effect of change in Ie on the optimal solution

Fig. 13 Effect of change in a on the optimal solution
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instantaneous deteriorating items always has smaller

total annual inventory cost than with instantaneous

deteriorating items. If the retailer can extend effectively

the length of time, the product has no deterioration for a

few days or months, then the total annual cost will be

reduced obviously.

• When the selling price p increases, there is a decrease

in the optimal order quantity Q�. The larger the value of
p, the smaller is the value of the optimal cycle time T�.
That is, when the unit selling price is increasing, the

retailer will order less quantity more frequently.

Conclusion

The purpose of this article is to frame a model that will

help the retailer to determine the optimal replenishment

policy for non-instantaneous deteriorating items. The sup-

plier offers a permissible delay in payments with two levels

of storage facilities. Our model suits well for the retailer

in situations involving unlimited storage space. Thus, the

decision maker can easily determine whether it will be

financially advantageous to rent a warehouse to hold much

more items to obtain a trade credit period. It was assumed

that the rented warehouse charges are higher holding cost

than the owned warehouse. To reduce the inventory costs,

it will be economical to consume the goods of the rented

warehouse at the earliest. From the results obtained, we see

that the retailer can reduce total annual inventory cost by

ordering lower quantity when the supplier provides a per-

missible delay in payments by improving storage condi-

tions for non-instantaneous deteriorating items.

Incorporating more realistic assumptions such as allowable

shortages, probabilistic demand, or quantity discounts, this

article paves way to extend future research works.
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Appendix

Proof of Lemma 1

Based on the assumptions, we know that

0\b\a\\1; ho þ ca\hr þ cb; D� aW[ 0 and bM
is sufficiently small.

(a) Let f tð Þ ¼ D hr þ cbþ cIpe
�btd

� �
ebt � aW hr þð

cbþ cIpÞeat; t[ 0, then we have

f 0ð Þ ¼ D hr þ cbþ cIpe
�btd

� �
� aW hr þ cbþ cIp

� �

¼ hr þ cbð Þ D� aWð Þ þ cIpðDe�btd�aWÞ
[ hr þ cbð Þ D� aWð Þ þ cIpðDð1� btdÞ�aWÞ[ 0;

and f
0 ðtÞ ¼ bD hr þ cbþ cIpe

�btd
� �

ebt þ a2W hr þð
cbþ cIpÞeat; t[ 0.

Hence, f tð Þ is an increasing function and f tð Þ[ 0 for

all t[0: As a result, D hrþ cbþ cIpe
�btd

� �
ebt[aW

hrþ cbþ cIp
� �

eat [aW hoþ caþ cIp
� �

eat holds.

(b) Let g tð Þ ¼ D hr þ cbþ cIpe
�bM

� �
ebt � aW hr þð

cbþ cIpÞeat; t[ 0, then we have

g 0ð Þ ¼ D hr þ cbþ cIpe
�bM

� �
� aW hr þ cbþ cIp

� �

¼ hr þ cbð Þ D� aWð Þ þ cIpðDe�bM�aWÞ
[ hr þ cbð Þ D� aWð Þ þ cIpðDð1� bMÞ�aWÞ[ 0;

and g
0 ðtÞ ¼ bD hr þ cbþ cIpe

�bM
� �

ebt þ a2W hr þð
cbþ cIpÞeat; t[ 0.

Hence, g tð Þ is an increasing function and g tð Þ[ 0

for all t[ 0: As a result, D hr þ cbþð
cIpe

�bMÞebt [ aW hr þ cbþ cIp
� �

eat [ aW ho þ cað
þ cIpÞeat holds.

(c) Similarly, let h tð Þ ¼ D hr þ cbð Þebt � aW hr þð
cbÞeat; t[ 0, then we have

h 0ð Þ ¼ D hr þ cbð Þ � aW hr þ cbð Þ
¼ hr þ cbð Þ D� aWð Þ[ 0;

and h
0 ðtÞ ¼ bD hr þ cbð Þebt þ a2W hr þ cbð Þeat;

t[ 0:

Hence, h tð Þ is an increasing function and h tð Þ[ 0

for all t[ 0: As a result,

D hr þ cbð Þebt [ aW hr þ cbð Þeat [ aW ho þ cað Þ eat

holds.

This completes the proof of the lemma.
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