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Abstract In this paper, a Multi-Choice Stochastic Bi-Level

Programming Problem (MCSBLPP) is considered where all

the parameters of constraints are followed by normal distri-

bution. The cost coefficients of the objective functions are

multi-choice types. At first, all the probabilistic constraints

are transformed into deterministic constraints using

stochastic programming approach. Further, a general trans-

formation technique with the help of binary variables is used

to transform the multi-choice type cost coefficients of the

objective functions of Decision Makers(DMs). Then the

transformed problem is considered as a deterministic multi-

choice bi-level programming problem. Finally, a numerical

example is presented to illustrate the usefulness of the paper.

Keywords Bi-level programming � Stochastic
programming � Multi-choice programming � Fuzzy
programming � Non-linear programming

Introduction and literature review

Bi-level programming problem under cooperative

environment

Real-life decision-making problems in which there are

multiple Decision Makers(DMs), who make decisions

successively, are often formulated as a multi-level

programming problems. Assuming that each DM makes a

decision without any communication with some other

DMs, as a solution concept to the problems, Stackelberg

solution is employed. However, for decision-making

problems in decentralized firms, it is quite natural to

assume that there exist communication and some cooper-

ative relationship among the DMs.

Anandalingam (1988) considered a mathematical pro-

gramming model of decentralized multi-level systems and

discussed the solution procedure. AnandalingamandApprey

(1991) proposed and discussed the multi-level programming

with conflict resolution. Lai (1996) discussed hierarchical

optimization and obtained a satisfactory solution for this

multi-level programming. Sinha and Sinha (2004) consid-

ered linear multi-level programming under fuzzy environ-

ment. Dempe and Starostina (2007) considered a fuzzy bi-

level programming problem and described the solution

procedure with the help of multi-criteria optimization tech-

nique. In 2001, Roy (2001) proposed an approach to multi-

objective bi-matrix games for Nash equilibrium solution. In

2006, Roy (2006) presented a fuzzy programming tech-

niques for Stackelberg game. He used in his paper a fuzzy

programming technique to solve Stackelberg game and

compared the solutionwith theKuhn–Tucker transformation

technique. In 2007, Roy (2007) solved two-person multi-

criteria bi-matrix games using fuzzy programming tech-

nique. Dey et al. (2014) presented a technique for order

preference by similarity to ideal solution (TOPSIS) algo-

rithm to linear fractional bi-level multi-objective decision-

making problem in 2014. In 2012, Lachhwani and Poonia

(2012) suggested for solving multi-level fractional pro-

gramming problems in a large hierarchical decentralized

organization using fuzzy goal programming approach.

Zheng et al. (2011) discussed a class of bi-level multi-ob-

jective programming problem under fuzzy environment.
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Shih et al. (1996) proposed the multi-level programming

problemwith fuzzy approach and also discussed the solution

concepts assuming cooperative communication among the

DMs. Their methods were based on the idea that the DM at

the lower level optimizes his or her objective function, taking

a goal or preference of the DM at the upper level into con-

sideration. The DM identifies the membership functions of

fuzzy goals for their objective functions, and especially, the

DM at the upper level also specifies those of fuzzy goals for

decision variables. The DM at the lower level solves a fuzzy

programming problem with constraints on a satisfactory

degree of the DM at the upper level.

In this paper, we consider the multi-choice stochastic bi-

level programming problem in cooperative environment

and also assume that the DMs at the upper level and at the

lower level have own fuzzy goals with respect to their

objective functions.

The mathematical model of bi-level programming

problem is as follows:

Model 1

max
forDM11

Z11ðxÞ ¼
Xn

j¼1

c11jxj

max
forDM2f

Z2f ðxÞ ¼
Xn

j¼1

c2fjxj

subject to
Xn

j¼1

aijxj � bi i ¼ 1; 2; . . .;m;

xj � 0 j; f ¼ 1; 2; . . .; n:

Stochastic programming

In most of the real-life decision-making problems in math-

ematical programming, the parameters are considered as

random variables. The branch of mathematical programming

which deals with the theory and methods for the solution of

conditional extremum problems under incomplete informa-

tion about the random parameters is called stochastic pro-

gramming. Many problems in applied mathematics may be

considered as belonging to any one of the following classes:

1. Descriptive problems, in which, with the help of

mathematical methods, information is processed about

the investigated event, some laws of the event being

induced by others.

2. Optimization problems in which from a set of feasible

solutions, an optimal solution is chosen.

Besides the above division of applied mathematical prob-

lems, these problems may be further classified as deter-

ministic and stochastic problems. In the process of solution

of the stochastic problem, several mathematical models

have been developed. However, probabilistic methods were

for a long time applied exclusively to the solution of the

descriptive type of problems. Research on the theoretical

development of stochastic programming has been going on

for last four decades and to solve the several real-life

problems in management science, it has been applied

successfully. The chance constrained programming was

first developed by Charnes and Cooper (1978).

Multi-choice programming

Multi-choice programming is a mathematical programming

problem, in which DM is allowed to set multiple number of

choices for a parameter. The situation of multiple choices for a

parameter exists in many managerial decision-making prob-

lems. The multi-choice programming cannot only avoid the

wastage of resources but also decide on the appropriate

resource from multiple resources. A method for modeling the

multi-choice programming problem, using binary variables

was presentedbyChang (2007).Hehas also proposeda revised

method formulti-choice goal programmingmodelwhich does

not involve multiplicative terms of binary variables to model

the multiple aspiration levels Chang (2008). Acharya and

Acharya (2013) presented the generalized transformation

technique for a multi-choice linear programming problems in

which constraints are associated with some multi-choice

parameters. Recently,Mahapatra et al. (2013) and Roy (2006)

discussed the multi-choice stochastic transportation problem

involving extreme value distribution and exponential distri-

bution in which the multi-choice concept involved only in the

cost parameters. In 2014,Maity andRoy (2014) presented also

multi-choice multi-objective transportation problem using

utility function approach. Recently, Maity and Roy (2015)

studied a mathematical model for a transportation problem

consisting of a multi-objective environment with non-linear

cost and multi-choice demand. Roy (2015) discussed the

solution procedure for multi-choice transportation problem

using Langrange’s interpolating polynomial approach. Roy

(2014) presented multi-choice stochastic transportation prob-

lem involving Weibull distribution.

In this paper, we consider a generalized transformation

technique to transform a multi-choice stochastic bi-level

programming problem to an equivalent mathematical pro-

gramming model. Using the transformation technique, the

transformed model can be derived. Applying fuzzy pro-

gramming technique, optimal solution of the proposed

model is obtained.

The organization of the paper is as follows: following the

introduction and literature review in Sect. 1, mathematical

model of multi-choice stochastic bi-level programming

problem (MCSBLPP) is presented in Sect. 2. Mathematical

formulation is presented in Sect. 3 and solution procedure in

Sect. 4. To verify the proposed methodology of the paper, a
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numerical example is presented in Sect. 5. In Sect. 6, the

results of the given problems have been discussed here.

Section 7 presents sensitivity analysis with our proposed

problem. Finally, conclusion is presented in Sect. 8.

Mathematical model of MCSBLPP

In the mathematical model of Sect. 1, considering the cost

coefficients of the objective functions for both DMs are

multi-choice types and also assume that all the parameters

of the constraints are random variables. Then the corre-

sponding mathematical model of bi-level programming

problem is to be treated as multi-choice stochastic bi-level

programming problem (MCSBLPP) and is stated as below:

Model 2

max
forDM11

Z11ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
11j; c

ð2Þ
11j; . . .; c

ðkjÞ
11j

�
xj;

max
forDM2f

Z2f ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
2fj ; c

ð2Þ
2fj ; . . .; c

ðkjÞ
2fj

�
xj;

subject toPr

�Xn

j¼1

aijxj � bi

�
� pi i ¼ 1; 2; . . .;m;

where xj � 0 f ¼ 1; 2; . . .; n 0� pi � 1; 8i; j:
and pi is the pre-specified level of probability.

ð1Þ

Model formulation

Assuming that aij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ and

bi ði ¼ 1; 2; . . .;mÞ are normal random variables, c11j ¼
ðcð1Þ11j; c

ð2Þ
11j; . . .; c

ðkjÞ
11j Þ 8j and c2fj ¼ ðcð1Þ2fj ; c

ð2Þ
2fj ; . . .; c

ðkjÞ
2fj Þ 8j are

multi-choice parameters.

The following cases are to be considered:

1. Only aij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ follows nor-

mal distribution.

2. Only bi ði ¼ 1; 2; . . .;mÞ follows normal distribution.

3. Both aij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ and bi ði ¼
1; 2; . . .;mÞ follow normal distributions.

Conversion of probabilistic constraints

to deterministic constraints

Only aij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ follows Normal
distribution.

Assuming that aij and VarðaijÞ ¼ r2aij are the mean and

variance of aij. Considering that the multivariate distribution

of aij is also known along with the covariance, covðaij; aklÞ
between the random variables aij and akl. We consider fi as

fi ¼
Xn

j¼1

aijxj i ¼ 1; 2; . . .;m:

As xj s are constants (not yet known), let the mean f i and

variance VarðfiÞ are defined as follows: f i ¼
Pn

j¼1

aijxj

ði ¼ 1; 2; . . .;mÞ and VarðfiÞ ¼ XTViX where Vi is ith

covariance matrix which is defined as follows:

Vi ¼

Varðai1Þ covðai1; ai2Þ . . . covðai1; ainÞ
covðai2; ai1Þ Varðai2Þ . . . covðai2; ainÞ

. . . . . . . . . . . .

. . . . . . . . . . . .

covðain; ai1Þ covðain; ai2Þ . . . VarðainÞ

0
BBBBB@

1
CCCCCA

The constraints of Eq. 1 can be rewritten as:

Pr½fi � bi� � pi i ¼ 1; 2; . . .;m;

i:e:;Pr

�
fi � f iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfiÞ

p � bi � f iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfiÞ

p
�
� pi i ¼ 1; 2; . . .;m

Therefore;Pr½fi � bi� ¼ /

�
bi � f iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfiÞ

p
�
: ð2Þ

where /ðxÞ represents the cumulative distribution function

of the standard normal distribution evaluated at x. Defining

ei as /ðeiÞ ¼ pi:

Then the constraints in Eq. 2 can be stated as

/

�
bi � f iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfiÞ

p
�
�/ðeiÞ i ¼ 1; 2; . . .;m:

These inequalities will be satisfied only if

bi � f iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfiÞ

p � ei i ¼ 1; 2; . . .;m;

i:e:; f i þ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfiÞ

p
� bi � 0 i ¼ 1; 2; . . .;m:

Thus, finally, the probabilistic constraints (1) can be

transformed into deterministic constraints as:

Xn

j¼1

aijxj þ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XTViX

p
� bi � 0 i ¼ 1; 2; . . .;m:

Thus, we obtain a multi-choice deterministic model

(Model 3) as follows:

Model 3

max
for DM11

Z11ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
11j; c

ð2Þ
11j; . . .; c

ðkjÞ
11j

�
xj;

max
for DM2f

Z2f ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
2fj ; c

ð2Þ
2fj ; . . .; c

ðkjÞ
2fj

�
xj;

subject to
Xn

j¼1

aijxj þ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XTViX

p
� bi � 0 i ¼ 1; 2; . . .;m;

where xj � 0 8j; f : ð3Þ

J Ind Eng Int (2016) 12:287–298 289

123



Only bi ði ¼ 1; 2; . . .;mÞ follows normal distribution

Considering that bi and VarðbiÞ are the mean and variance

of bi, the constraints of Eq. 1 can be rewritten as

Pr

�Xn

j¼1

aijxj�bi

�
¼Pr

�Pn
j¼1 aijxj � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p � bi � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p
�

¼Pr

�
bi � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p �
Pn

j¼1 aijxj � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p
�
�pi

i:e:; 1� Pr

�
bi � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p �
Pn

j¼1 aijxj � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p
�
� pi;

i:e:;Pr

�
bi � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p �
Pn

j¼1 aijxj � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p
�
� 1� pi:

ð4Þ

Defining ei as /ðeiÞ ¼ 1� pi; the constraints in Eq. 4 can

be stated as

/

�
Pn

j¼1

aijxj � bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p
�
�/ðeiÞ i ¼ 1; 2; . . .;m:

This inequality will be satisfied only if

Pn

j¼1

aijxj � bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p � ei i ¼ 1; 2; . . .;m:

Thus, finally, the probabilistic constraints (1) can be

transformed into deterministic constraints as:

Xn

j¼1

aijxj � bi � ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p
� 0 i ¼ 1; 2; . . .;m:

Thus, we have obtained a multi-choice deterministic model

(Model 4) as follows:

Model 4

max
forDM11

Z11ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
11j;c

ð2Þ
11j; . . .;c

ðkjÞ
11j

�
xj;

max
forDM2f

Z2f ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
2fj ;c

ð2Þ
2fj ; . . .;c

ðkjÞ
2fj

�
xj;

subject to
Xn

j¼1

aijxj � bi � ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbiÞ

p
�0 i¼ 1;2; . . .;m;

where xj�0 8j; f : ð5Þ

Both aij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ and bi ði ¼ 1; 2;

. . .;mÞ follow normal distribution

Define a random variable hi as

hi ¼
Xn

j¼1

aijxj � bi ¼
Xnþ1

k¼1

qikyk;

where qik ¼ aik; qi;nþ1 ¼ bi:

and yk ¼ xk; ynþ1 ¼ �1; k ¼ 1; 2; . . .; nþ 1:

The constraints of Eq. 1 can be rewritten as:

Pr½hi � 0� � pi i ¼ 1; 2; . . .;m: ð6Þ

The mean hi and variance of VarðhiÞ are given by

hi ¼
Xnþ1

k¼1

qikyk ¼
Xn

j¼1

aijxj � bi;

and VarðhiÞ ¼ XTViX where Vi is given by

Vi ¼

Varðai1Þ covðai1; ai2Þ . . . covðai1; ainÞ
covðai2; ai1Þ Varðai2Þ . . . covðai2; ainÞ

. . . . . . . . . . . .

. . . . . . . . . . . .

covðain; ai1Þ covðain; ai2Þ . . . VarðainÞ

0
BBBBBB@

1
CCCCCCA
;

This can be also rewritten as:

VarðhiÞ ¼
Xnþ1

k¼1

�
y2kVarðqikÞ þ 2

Xnþ1

l¼kþ1

ykylcovðqik; qilÞ
�

¼
Xn

k¼1

�
y2kVarðqikÞ þ 2

Xn

l¼kþ1

yky½lcovðqik; qilÞ
�

þ y2nþ1Varðqi;nþ1Þ þ 2y2nþ1covðqi;nþ1; qi;nþ1

þ
Xn

k¼1

�
2ykynþ1covðqik; qi;nþ1Þ

�

¼
Xn

k¼1

�
x2kVarðaikÞ þ 2

Xn

l¼kþ1

xkxlcovðaik; ailÞ
�

þ VarðbiÞ � 2
Xn

k¼1

xkcovðaik; biÞ:

Thus, the constraints in Eq. 6 can be restated as

follows:
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Pr

�
hi � hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhiÞ

p � �hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhiÞ

p
�
� pi i ¼ 1; 2; . . .;m:

Therefore,Pr

�
hi � 0

�
¼ /

�
�hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhiÞ

p
�
:

ð7Þ

Defining ei as /ðeiÞ ¼ pi; and then the constraints in

equation (7) can be rewritten as follows:

/

�
�hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhiÞ

p
�
�/ðeiÞ i ¼ 1; 2; . . .m:

This inequality will be satisfied only if

�hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhiÞ

p � ei i ¼ 1; 2; . . .m;

i.e., hi þ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhiÞ

p
� 0 i ¼ 1; 2; . . .;m:

Thus, finally, the probabilistic constraints (1) can be

transformed into a deterministic constraints asPn
j¼1 aijxij � bi þ ei

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XTViX

p
� 0 i ¼ 1; 2; . . .m: Thus, we

obtain a multi-choice deterministic model (Model 5) as

follows:

Model 5

max
for DM11

Z11ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
11j; c

ð2Þ
11j; . . .; c

ðkjÞ
11j

�
xj;

max
for DM2f

Z2f ðxÞ ¼
Xn

j¼1

�
c
ð1Þ
2fj ; c

ð2Þ
2fj ; . . .; c

ðkjÞ
2fj

�
xj;

subject to
Xn

j¼1

aijxj � bi þ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XTViX

p
� 0 i ¼ 1; 2; . . .;m:

where xj � 0 8j; f : ð8Þ

Transformation of the objective functions involving

multi-choice cost parameters

Now we present a transformation technique of MCSBLPP

to formulate an equivalent mathematical model.

Step 1: Find the total number of choices from upper

level and lower level decision maker’s objective functions.

Consider the total number of choices for upper level

objective function is kj. Suppose that kj � 2.

Step 2: Find the number of binary variables, which is

required to handle the multi-choice parameters in the fol-

lowing manner.

Find lj, for which 2ðlj�1Þ\kj � 2lj . Here lj number of

binary variables are needed. Let the binary variables be

z
ð1Þ
j ; z

ð2Þ
j ; . . .; z

ðljÞ
j .

Step 3: Express 2lj ¼ lj
0

� �
þ lj

1

� �
þ � � � þ lj

rj1

� �
þ

. . .þ lj
rj2

� �
þ � � � þ lj

lj

� �
; and select the smallest number

of consecutive terms whose sum is equal to or just greater

than kj from the expansion.

Let the terms be
lj
rj1

� �
;

lj
rj1þ1

� �
; . . .;

lj
rj2

� �
.

Step 4: Set kj binary codes to kj number of choices as

follows:
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Step 5: Restrict ð2lj � kjÞ number of binary codes to

overcome repetitions as follows:

zjð1Þ þ zjð2Þ þ . . .þ zjðliÞ� rj1

zjð1Þ þ zjð2Þ þ � � � þ zjðliÞ� rj2

zjðt1Þ þ zjðt2Þ þ � � � þ zjðtrj2 Þ� rj2�1;

t ¼ ðkj � Njð1ÞÞ þ 1; ðkj � Njð1ÞÞ þ 2; � � � ;
lj

rj2

� �

Restrictions should be imposed on z
ðt1Þ
j z

ðt2Þ
j z

ðt3Þ
j . . .z

ðtrj2Þ
j 2

P
ðrj2 jÞ
t

Step 6: Formulate the mathematical model and this

model is denoted by Model 6 as follows:

max
for DM11

Z11ðxÞ ¼
Xn

j¼1

X

lj

rj1

� �

t¼1

P
ðrj1 Þ
t Q

ðrj1 Þ
t c

ðtÞ
11j þ

X

lj

rj1þ1

� �

t¼1

P
ðrj1þ1Þ
t Q

ðrj1þ1Þ
t c

ð
lj

rj1

� �
þtÞ

11j

2
666664

þ � � �
X

lj

rj2�1

� �

t¼1

P
ðrj2�1Þ
t Q

ðrj2�1Þ
t c

ð
lj

rj1

� �
þ

lj

rj1þ1

� �
þ���þ

lj

rj2�2

� �
þtÞ

11j þ
Xðkj�N

ð1Þ
j

Þ

t¼1

P
ðrj2 Þ
t Q

ðrj2 Þ
t c

ðNð1Þ
j

þtÞ
11j

3
777775
xj

max
forDM2f

Z2f ðxÞ ¼
Xn

j¼1

X

lj

rj1

� �

t¼1

P
ðrj1 Þ
t Q

ðrj1 Þ
t c

ðtÞ
2fj þ

X

lj

rj1þ1

� �

t¼1

P
ðrj1þ1Þ
t Q

ðrj1þ1Þ
t c

ð
lj

rj1

� �
þtÞ

2fj

2
666664

þ � � �
X

lj

rj2�1

� �

t¼1

P
ðrj2�1Þ
t Q

ðrj2�1Þ
t c

ð
lj

rj1

� �
þ

lj

rj1þ1

� �
þ���þ

lj

rj2�2

� �
þtÞ

2fj þ
Xðkj�N

ð1Þ
j

Þ

t¼1

P
ðrj2 Þ
t Q

ðrj2 Þ
t c

ðNð1Þ
j

þtÞ
2fj

3
777775
xj

where N
ð1Þ
j ¼

lj

rj1

� �
þ

lj

rj1þ1

� �
þ � � � þ

lj

rj2�1

� �

t1 2
�
1; 2; 3; . . .; ðlj � sÞ þ 1g; t2 2 f2; 3; . . .; ðlj � sÞ þ 2g; . . .; ts 2 fs; sþ 1; . . .; lj

�

f ¼1; 2; . . .; n;

IsðtÞ ¼
�
ft1; t2; . . .; tsgj t1\t2\ � � �\ts; s ¼ rj1 ; rj1 þ 1; . . .; rj2

�

P
sj
t ¼

�
z
ðt1Þ
j z

ðt2Þ
j z

ðt3Þ
j . . .z

ðtsÞ
j jft1; t2; . . .; ts

�
2 IsðtÞ; s ¼ rj1 ; rj1 þ 1; . . .; rj2g

Q
sj
t ¼

	Ylj

t¼1

ð1� zjðtÞÞj t 62 ft1; t2; . . .; tsg
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Model 6

zjð1Þ þ zjð2Þ þ � � � þ zjðljÞ� rj1

zjð1Þ þ zjð2Þ þ � � � þ ziðljÞ� rj2

zjðt1Þ þ zjðt2Þ þ � � � þ zjðtrj2 Þ� rj2�1 ;

t ¼ ðkj � Njð1ÞÞ þ 1; ðkj � Njð1ÞÞ þ 2; . . .;
lj

rj2

 !

z
ðljÞ
j ¼ 0=1 ; lj ¼ 1; 2; . . .; dln kj

ln 2
e j ¼ 1; 2; . . .; n

whereN
ð1Þ
j ¼

lj

rj1

 !
þ

lj

rj1þ1

 !
þ � � � þ

lj

rj2�1

 !

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð9Þ

subject to
Pn

j¼1

aijxj � bi þ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XTViX

p
� 0 i ¼ 1; 2; . . .;m;

xj � 0; 8j

or S ¼ fxj; 8j :
Pn

j¼1

aijxj � bi þ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XTViX

p
� 0 i ¼ 1;

2; . . .;m; xj � 0; 8jg
Step 7: Mathematical Model 6 is a mixed integer non-

linear programming problem. Solve the model with the

help of LINGO 13.0 packages.

Solution procedure

Basic concepts of fuzzy set and membership function

Fuzzy set was first introduced by Zadeh in 1965 on a

mathematical way to represent impreciseness or vagueness

in everyday life.

Fuzzy set: A fuzzy set A in a discourse X is defined as

the following set of pairs A ¼ fðx; lAÞ : x 2 Ag, where lA :
X ! ½0; 1� is a mapping, called membership function of

fuzzy set A and lA is called the membership value or

degree of membership of x 2 X in the fuzzy set A. The

larger lA is the stronger grade of membership form in A.

Normal fuzzy set: Let A be a fuzzy set in X. The height

h(A) of A is defined as

hðAÞ ¼ SupflAðxÞg:

If hðAÞ ¼ 1, then fuzzy set is called a normal fuzzy set,

otherwise it is called subnormal.

a� cut: Let A be a fuzzy set in X and a 2 ð0; 1�. The
a� cut of fuzzy set A in crisp set Aa given by

Aa ¼ fx 2 X : lAðxÞ� ag:

Convex fuzzy set: A fuzzy set A in Rn is said to be a

convex fuzzy set if its a� cut Aa are (crisp) bounded

sets, 8a 2 ð0; 1�.
Fuzzy number: Let A be a fuzzy set in R (set of real

numbers). Then A is called a fuzzy number if

(i) A is normal,

(ii) A is convex,

(iii) lA is upper semicontinuous, and,

(iv) the support of A is bounded.

Triangular fuzzy number: A fuzzy number A is called a

triangular fuzzy number(TFN) if its membership function

lA is given by

max
forDM11

Z11ðxÞ ¼
Pn

j¼1

� P

lj

rj1

� �

t¼1

P
ðrj1 Þ
t Q

ðrj1 Þ
t c

ðtÞ
11j þ

P

lj

rj1þ1

� �

t¼1

P
ðrj1þ1Þ
t Q

ðrj1þ1Þ
t c

ð
lj

rj1

� �
þtÞ

11j þ � � �

P

lj

rj2�1

� �

t¼1

P
ðrj2�1Þ
t Q

ðrj2�1Þ
t c

ð
lj

rj1

� �
þ

lj

rj1þ1

� �
þ���þ

lj

rj2�2

� �
þtÞ

11j þ
Pðkj�N

ð1Þ
j

Þ

t¼1

P
ðrj2 Þ
t Q

ðrj2 Þ
t c

ðNð1Þ
j

þtÞ
11j

�
xj

8
>>>>>>>>>><

>>>>>>>>>>:

max
forDM2f

Z2f ðxÞ ¼
Pn

j¼1

� P

lj

rj1

� �

t¼1

P
ðrj1 Þ
t Q

ðrj1 Þ
t c

ðtÞ
2fj þ

P

lj

rj1þ1

� �

t¼1

P
ðrj1þ1Þ
t Q

ðrj1þ1Þ
t c

ð
lj

rj1

� �
þtÞ

2fj þ � � �

P

lj

rj2�1

� �

t¼1

P
ðrj2�1Þ
t Q

ðrj2�1Þ
t c

ð
lj

rj1

� �
þ

lj

rj1þ1

� �
þ���þ

lj

rj2�2

� �
þtÞ

2fj þ
Pðkj�N

ð1Þ
j

Þ

t¼1

P
ðrj2Þ
t Q

ðrj2Þ
t c

ðNð1Þ
j

þtÞ
2fj

�
xj

8
>>>>>>>>>><

>>>>>>>>>>:
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lAðxÞ ¼

0; if x\al; x[ au;
x� al

a� al
; if al � x� a;

au � x

au � a
; if a\x� au:

8
>>><

>>>:
ð10Þ

The TFN A is denoted by the triplet A ¼ ðal; a; auÞ:
Fuzzy programming

In fuzzy programming, we construct the linear mem-

bership functions which are defined as:

l11ðZ11ðxÞÞ ¼

0; if Z11ðxÞ[ Z0
11;

Z11ðxÞ � Z1
11

Z0
11 � Z1

11

; if Z1
11\Z11ðxÞ� Z0

11;

1; if Z11ðxÞ� Z1
11;

8
>>><

>>>:

ð11Þ

l2f ðZ2f ðxÞÞ ¼

0; if Z2f ðxÞ[ Z0
2f ;

Z2f ðxÞ � Z1
2f

Z0
2f � Z1

2f

; if Z1
2f\Z2f ðxÞ� Z0

2f ;

1; if Z2f ðxÞ� Z1
2f ;

where f ¼ 1; 2; . . .; n:

8
>>>>>><

>>>>>>:

ð12Þ

Zimmermann (1978) suggested a method for assessing the

parameters of the membership function. In his method, the

parameters Z0
11; Z

1
11 and Z0

2f ; Z
1
2f 8f are determined as:

Z0
11 ¼ max

x2S
Z11ðxÞ; Z1

11 ¼ min
x2S

Z11ðxÞ and

Z0
2f ¼ max

x2S
Z2f ðxÞ 8f ¼ 1; 2; . . .; n ; Z1

2f ¼ min
x2S

Z2f ðxÞ
8f ¼ 1; 2; . . .; n, where S is the feasible region of Model

6.

Now, to give an algorithm of fuzzy programming

technique for deriving a compromise solution to Model 2,

which is summarized in the following way:

Step 1: Solve the objective function of the upper level

decision maker (i.e., leader) and the lower level decision

makers (i.e., followers) with constraints (8) independently.

Step 2: Calculate the linear membership functions in

equations (10) and (11) for DM11 and DM2f , 8f .
Step 3: Solve the problem which is defined as follows:

Model 7

max k
subject to

l11ðZ11ðxÞÞ� k

l2f ðZ2f ðxÞÞ� k

and Eq. 8

x� 0; f ¼ 1; 2; . . .; n

8
>>><

>>>:
ð13Þ

in which a smaller satisfactory degree between those of

DM11 and DM2f is maximized. If DM11 is satisfied with

the obtained optimal solution, the solution becomes a

satisfactory solution. Otherwise, DM11 is to specify the

minimal satisfactory level d together with the lower and

upper bounds ½Dmin;Dmax� of the ratio of satisfactory

degree D, where D ¼ maxfl2f ðZ2f ðxÞÞl11ðZ11ðxÞÞ
; 8fg with the sat-

isfactory degree k� ð¼ minfl11ðZ11ðx�ÞÞ; l2f ðZ2f ðx�ÞÞg,
8f and x� is an optimal solution of Model 6) of

DMs and the related information about the solution in

mind.

Step 4: Solve the problem which is defined as follows:

Model 8

max l2f ðZ2f ðxÞÞ
subject to

l11ðZ11ðxÞÞ� d

and Eq. 8

x� 0; f ¼ 1; 2; . . .; n

8
><

>:
ð14Þ

in which the satisfactory degree of DM2f is maximized

under the condition that the satisfactory degree of DM11

is larger than or equal to the minimal satisfactory level d,
and then an optimal solution x in equation (12) is pro-

posed to DM11 together with k, l11ðZ11Þ, l2f ðZ2f Þ; 8f
and D.

Step 5: If the solution x satisfies one of the following

two conditions and DM11 accepts it, then goto Step 7 and

the solution x is determined to be the satisfactory solution.

5.1: DM11’s satisfactory degree is larger than or equal to

the minimal satisfactory level d specified by DM11’s self,

i.e., l11ðZ11ðxÞÞ� d.
5.2: The ratio D of satisfactory degrees lies in between

the Dmin and Dmax, i.e., D 2 ½Dmin;Dmax�.
Step 6: Ask DM11 to revise the minimal satisfactory

level d in accordance with the following procedure of

updating the minimal satisfactory level.

6.1: If Step 5.1 is not satisfied, then DM11 decreases the

minimal satisfactory level d.
6.2: If the ratio D exceeds its upper bound, then DM11

increases the minimal satisfactory level d. Conversely, if D
is below its lower bound, then DM11 decreases the minimal

satisfactory level d.
6.3: Although Steps 5.1 and 5.2 are satisfied, if DM11 is

not satisfied with the obtained solution and judges that it is

desirable to increase the satisfactory degree of DM11 at the

expense of the satisfactory degree of DM2f , 8f , then DM11

increases the minimal satisfactory level d. Conversely, if
DM11 judges that it is desirable to increase the satisfactory

degree of DM2f , 8f at the expense of the satisfactory

degree of DM11, then DM11 decreases the minimal satis-

factory level d.
Step 7: Stop.
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Numerical example

A reputed industry farming organization operates six farms

which are located at Bankura, Purulia, Bardwan, East

Midnapur, West Midnapur and Nadia in West Bengal of

India of comparable productivity. These farms planted two

types of crops: rice and wheat, respectively. The output of

each farm is limited both by the usable acreage and by the

amount of water available for irrigation. Considering those

parameters: usable acreage and water availability both

follow a normal distribution. The data for the upcoming

season is as shown below:

Farms Usable Acreage Minimum water available

(in cubic feet)

Mean Variance Mean Variance

Bankura 10 6 75 52

Purulia 13 7 78 55

Bardwan 15 8 95 62

Nadia 11 6.5 72 49

East Midnapur 12 6.6 80 59

West Midnapur 18 9 120 93

The organization is considering planting crops which

differ primarily in their expected profits per acre and in

their consumption of water and the profit to be considered

in multi-choice type. Furthermore, the total acreage that

can be devoted to each of the crops is limited by the

amount of appropriate harvesting equipment available. The

organization wishes to know how much of each crop

should be planted at the respected farms to maximize the

expected profit as well as the maximum revenue earned by

the West Bengal Govt. Due to fluctuation of season in West

Bengal, revenue is multi-choice type and also the expected

revenue from these crops is (40, 42, 45) and (28, 30),

respectively.

Crops Maximum

acreage

Water

consumption

(in cubic feet)

Expected profit

(per acre)

Mean Variance Mean Variance

Rice 70 52 65 48 (25000,26000,30000)

Wheat 50 41 50 41 (40000,45000)

Let x1, i.e., x11; x12; x13; x14; x15; x16 and x2, i.e.,

x21; x22; x23; x24; x25; x26 be the number of acres to be allo-

cated for rice and wheat crops to the six firms located at

Bankura, Purulia, Bardwan, East Midnapur, West

Midnapur and Nadia, respectively. There are two different

level decision makers with respect to this problem, i.e.,

government (i.e., leader) and the manager of industry (i.e.,

follower) and each one controls only one decision variable.

The government controls rice crop (i.e., x1) in the first level

and the manager controls wheat crop (i.e., x2) in the second

level. Two objectives are established, respectively: (i) rev-

enue from the profits Z11ðx1; x2Þ and (ii) profit on the

cultivation of crops Z21ðx1; x2Þ.
This is clearly a multi-choice stochastic bi-level pro-

gramming problem. The problem cannot be solved without

using multi-choice programming and stochastic program-

ming approaches.

Using the methodology presented in Sect. 3.2, first we

convert the multi-choice objective functions into deter-

ministic objective function and again using Sect. 3.1, we

convert the probabilistic constraints into deterministic

constraints and then the whole problem is transformed as

follows:

max
forDM11

: Z11ðx1; x2Þ ¼
�
40z1z2 þ 42z1 ð1� z2Þ þ 45

ð1� z1Þz2
�

ðx11 þ x12 þ x13 þ x14 þ x15 þ x16Þ þ
�
28z3 þ

30 ð1� z3Þ
�
ðx21 þ x22 þ x23 þ x24 þ x25 þ x26Þ;

max
forDM21

: Z21ðx1; x2Þ ¼
�
25000z4z5 þ 26000z4ð1� z5Þ þ

30000ð1� z4Þz5
�

ðx11 þ x12 þ x13 þ x14 þ x15 þ x16Þ þ
�
40000z6 þ 45000ð1� z6Þ

�
ðx21 þ x22 þ x23 þ x24 þ x25þ

x26Þ;
subject to

x11 þ x12 þ x13 þ x14 þ x15 þ x16 � 2:33ð52Þ
1
2 � 70;

x21 þ x22 þ x23 þ x24 þ x25 þ x26 � 2:33ð41Þ
1
2 � 50;

x11 þ x21 � 2:33ð6Þ
1
2 � 10;

x12 þ x22 � 2:33ð7Þ
1
2 � 13;

x13 þ x23 � 2:33ð8Þ
1
2 � 15;

x14 þ x24 � 2:33ð6:5Þ
1
2 � 11;

x15 þ x25 � 2:33ð6:6Þ
1
2 � 12;

x16 þ x26 � 2:33ð9Þ
1
2 � 18;

65x11 þ 50x21 þ 2:33
�
48x211 þ 41x221 þ 52

�1
2 � 75;

65x12 þ 50x22 þ 2:33
�
48x212 þ 41x222 þ 55

�1
2 � 78;

65x13 þ 50x23 þ 2:33
�
48x213 þ 41x223 þ 62

�1
2 � 95;

65x14 þ 50x24 þ 2:33
�
48x214 þ 41x224 þ 49

�1
2 � 72;

65x15 þ 50x25 þ 2:33
�
48x215 þ 41x225 þ 59

�1
2 � 80;

65x16 þ 50x26 þ 2:33
�
48x216 þ 41x226 þ 93

�1
2 � 120;
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1� z1 þ z2 � 2;

1� z4 þ z5 � 2;

where x1j; x2j � 0 j ¼ 1; 2; . . .; 6:

Results and discussion

The above mathematical programming model is treated as

non-linear programming problem and is solved by Lingo

13.0 packages. The results of the optimal solution to

individual problems are obtained as:

Z1
11 ¼ 204:82 at x1j ¼ 0 j ¼ 1; 2; . . .; 6; x21 ¼ 1:04; x22

¼ 1:09; x23 ¼ 1:35; x24 ¼ 1; x25 ¼ 1:11; x26 ¼ 1:72 and the

control variables are z1 ¼ z2 ¼ z3 ¼ 1; Z0
11 ¼ 4532:97 at

x11 ¼ 13:14; x12 ¼ 13:78; x13 ¼ 7:94; x14 ¼ 13:37; x15 ¼
13:56; x16 ¼ 24:99; x21 ¼ 2:56; x22 ¼ 5:38; x23 ¼ 3:57; x24
¼ 3:57; x25 ¼ 4:42; x26 ¼ 0 and the control variables are

z1 ¼ 1; z2 ¼ z3 ¼ 0;

Z1
21 ¼ 15047:83 at x11 ¼ 0:82; x12 ¼ 0:86; x13 ¼ 1:07;

x14 ¼ 0:79; x15 ¼ 0:88; x16 ¼ 1:36; x2j ¼ 0ðj ¼ 1; 2; � � � ; 6Þ
and the control variables are z4 ¼ 1; z5 ¼ z6 ¼ 0; Z0

21 ¼
4465141 at x11 ¼ 0; x12 ¼ 19:16; x13 ¼ 1:28; x14 ¼ 9:23;

x15 ¼ 9:75; x16 ¼ 12:03; x21 ¼ 15:71; x22 ¼ 0; x23 ¼ 20:31;

x24 ¼ 7:71; x25 ¼ 8:23; x26 ¼ 12:96 and the control vari-

ables are z5 ¼ 1; z4 ¼ z6 ¼ 0:

Next, we find the linear membership functions using the

equations (10) and (11) by Zimmermann method and the

maximin problem for this numerical example can be

written as:

max k;

subject to ðZ11ðxÞ � 204:82Þ=ð4532:97� 204:82Þ� k;

ðZ21ðxÞ � 15047:83Þ=ð4465141� 15047:83Þ� k;

x 2 S;

where S denotes the feasible region of Model 6.
Using the procedure described in Sect. 4, we derive

the results after the first iteration and are shown in

Table 1.

Suppose that DM11 is not satisfied with the solution

obtained in Iteration 1 and then DM11 specifies the minimal

satisfactory level d ¼ 0:9693 and we see that the bounds of

the ratio at the interval ½Dmin;Dmax� ¼ ½0:9693; 0:9852�,
taking into account of the result of the first iteration. Then,

the problem with the minimal satisfactory level is rewritten

as follows:

max l21ðZ21ðxÞÞ;
subject to ðZ11ðxÞ � 204:82Þ=ð4532:97� 204:82Þ� 0:9693;

where x 2 S: ð15Þ

The result of the second iteration including an optimal

solution to problem (12) is shown in Table 2 in a similar

way as done in first iteration.

At the second iteration, the ratio D ¼ 0:9999 of satis-

factory degree is not valid interval [0.9693, 0.9852] of

ratio. So, DM11 updates the minimal satisfactory level at

d ¼ 0:9777 Then, the problem with the revised minimum

satisfactory level is solved, and the result of third iteration

is shown in Table 3.

Table 1 Results from iteration

1
x1j: 15.71 0 0 8.13 17.98 18.76

x2j: 0 19.64 21.59 8.81 0 6.23

ðZ11; Z21Þ: (4399.98, 4328401)

ðz1; z2; z3; z4; z5; z6Þ: (0, 1, 0, 0, 1, 0)

l11ðZ11Þ: 0.9692

l21ðZ21Þ: 0.9692

k: 0.9692

D: 0.9999

Table 2 Results from iteration

2
x1j: 15.71 19.16 21.59 1.16 1 1.5

x2j: 0 0 0 15.32 16.98 23.49

ðZ11; Z21Þ: (4400.1, 4328283)

ðz1; z2; z3; z4; z5; z6Þ: (0, 1, 0, 0, 1, 0)

l11ðZ11Þ: 0.9693

l21ðZ21Þ: 0.9692

k: 0.9692

D: 0.9999
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At the third iteration, the satisfactory degree l11ðZ11Þ ¼
0:9777 of DM11 which equals to the minimum satisfactory

level d ¼ 0:9777, and the ratio D ¼ 0:9844 of the satis-

factory degree is in the valid interval [0.9693, 0.9852] of

ratio. Therefore, this solution satisfies the termination

condition of the interactive process, and it becomes a

compromise solution for both DMs.

Sensitivity analysis

The main intention of this study is to formulate and solve

the stochastic bi-level programming problem for coopera-

tive game in multi-choice nature under fuzzy programming

technique. Let us discuss why we have considered such a

study and what is the contribution of this study compared

to other research works carried out by many researchers in

this direction. Bi-Level Programming Problem (BLPP) has

been studied by several researchers, for example, (Anan-

dalingam 1988; Sakawa et al. 2000; Roy 2006; Lachhwani

and Poonia 2012; Dey et al. 2014) and many others. Most

of them have not considered when the objective functions

are in multi-choice nature. Due to globalization of the

market or other real-life phenomena, we have assumed that

the cost parameter of the objective functions is of multi-

choice type and that non-linearity occurs in the BLPP. But

here we have presented the parameters of constraints that

follow a normal distribution. So, our proposed method

treated non-linearity when the objective functions and the

constraints are both non-linear.

By conventional method, we find that the objective

functions of the upper level and lower level decision

makers are 4393.38 and 4465141, respectively (using

LINGO 13.0 pakages) but according to our findings the

results are 4433.42 and 4294956. We see that only the

upper level decision maker gives a better result with

respect to our proposed method. Actually, in real-life sit-

uation we always give priority to the upper level decision

maker while the lower level always remains secondary. In

this situation too, our proposed model works well from this

point of view. Hence, taking these observations into con-

sideration, we feel that the proposed method is a better

method for our study.

Conclusion

This paper has presented the solution procedure for solving

the multi-choice stochastic bi-level programming problem

with consideration of normal random variable. All the

probabilistic constraints have been transferred into the

equivalent deterministic constraints by stochastic pro-

gramming approach and a general transformation tech-

nique has used for the multi-choice cost coefficients of the

objective functions using fuzzy programming technique

which provides a compromise solution. From our study, it

has been concluded that in a cooperative environment there

exists a compromise solution which governs by the upper

level decision maker.

In the real-life decision-making problem, the cost coeffi-

cients of the objective functions and the constraints may not

be known previously due to uncountable factors. For this

reason, the cost coefficients of the objective functions are of

multi-choice rather than by single choice and the constraints

are followed random variables. In this paper, we have for-

mulated the MCSBLPP model by considering both the fac-

tors. Finally, it is obvious that the formulated model is highly

applicable for these types of bi-level programming problems

such as supply chain planning problem, managerial decision-

making problem, facility location, transportation problem,

etc. and solving this model, the decision maker has provided

the optimal planning for taking the right decision.

In future study, one can extend this work, i.e., to solve

the multi-choice stochastic multi-level programming

problem with interval programming using fuzzy goal pro-

gramming technique.
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Table 3 Results from iteration

3
x1j: 15.71 19.16 21.59 3.84 1 1.5

x2j: 0 0 0 13.1 16.98 23.49

ðZ11; Z21Þ: (4433.42, 4294956)

ðz1; z2; z3; z4; z5; z6Þ: (0, 1, 0, 0, 1, 0)

l11ðZ11Þ: 0.9769

l21ðZ21Þ: 0.9617

k: 0.9618

D: 0.9844
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